Final Exam

Due: May 17, 2024

1. Consider the Lie group

$$
\mathrm{G}=\left\{\left(\begin{array}{ccc}
x & y & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in \mathrm{GL}(3, \mathbb{R}): x>0, y, z \in \mathbb{R}\right\}
$$

whose Lie algebra, endowed with the Lie bracket $[A, B]=A B-B A$ from $\mathfrak{g l}(3, \mathbb{R})$, is

$$
\mathfrak{g}=\operatorname{span}\left\{X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), Y=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), Z=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\} \subset \mathfrak{g l}(3, \mathbb{R}) .
$$

a) Compute the Lie brackets $[X, Y],[Y, Z],[X, Z]$ of the basis elements of \mathfrak{g}, and write them in terms of X, Y, Z.
b) Let g be the left-invariant Riemannian metric on G that at $\mathrm{Id} \in \mathrm{G}$ coincides with the inner product on \mathfrak{g} for which $\{X, Y, Z\}$ is an orthonormal basis. Denote by $X, Y, Z \in \mathfrak{X}(\mathrm{G})$ the left-invariant vector fields corresponding to $X, Y, Z \in \mathfrak{g}$. Use the Koszul formula and a) to compute the the Levi-Civita connection ∇ of (G, g),

$$
\begin{array}{lll}
\nabla_{X} X= & \nabla_{X} Y= & \nabla_{X} Z= \\
\nabla_{Y} X= & \nabla_{Y} Y= & \nabla_{Y} Z= \\
\nabla_{Z} X= & \nabla_{Z} Y= & \nabla_{Z} Z=
\end{array}
$$

(To avoid unnecessary computations, recall that $\nabla_{A} B-\nabla_{B} A=[A, B]$.)
c) Show that the curvature operator $R: \wedge^{2} \mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}$ is $R=-\mathrm{Id}$. Conclude that g is not a bi-invariant metric, and that (G, g) is isometric to hyperbolic 3 -space.
d) On a matrix Lie group, such as G , the adjoint action is given by conjugation, i.e., $\operatorname{Ad}(A) B=A B A^{-1}$, for all $A \in \mathrm{G}$ and $B \in \mathfrak{g}$. Show that

$$
\text { if } A=\left(\begin{array}{lll}
x & y & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \text { then } \begin{aligned}
& \operatorname{Ad}(A) X=X-y Y-z Z \\
& \operatorname{Ad}(A) Y=x Y \\
& \operatorname{Ad}(A) Z=x Z
\end{aligned}
$$

and use the matrix that represents $\operatorname{Ad}(A): \mathfrak{g} \rightarrow \mathfrak{g}$ in the basis $\{X, Y, Z\}$ to compute the eigenvalues of $\operatorname{Ad}(A)$. Conclude that G does not admit bi-invariant metrics.
a) The Lie brackets (given by commutators) can be computed as follows:

$$
[X, Y]=Y, \quad[X, Z]=Z, \quad[Y, Z]=0
$$

b) Since X, Y, Z and g are left-invariant, terms of the form $X(\mathrm{~g}(Y, Z))$ vanish. Thus, Koszul's formula simplifies to the last three terms, which are determined by the above brackets. Moreover, since $\{X, Y, Z\}$ is orthonormal, we can skip computing some instances of Koszul's formula, e.g.,

$$
\begin{gathered}
0=X(\mathrm{~g}(X, X))=2 \mathrm{~g}\left(\nabla_{X} X, X\right), \quad \text { hence } \quad \nabla_{X} X=a Y+b Z \\
0=X(\mathrm{~g}(X, Y))=\mathrm{g}\left(\nabla_{X} X, Y\right)+\mathrm{g}\left(X, \nabla_{X} Y\right) \quad \text { hence } \quad a=-\mathrm{g}\left(X, \nabla_{X} Y\right) \\
0=X(\mathrm{~g}(X, Z))=\mathrm{g}\left(\nabla_{X} X, Z\right)+\mathrm{g}\left(X, \nabla_{X} Z\right) \quad \text { hence } \quad b=-\mathrm{g}\left(X, \nabla_{X} Z\right) .
\end{gathered}
$$

Altogether, we find:

$$
\begin{array}{lll}
\nabla_{X} X=0 & \nabla_{X} Y=0 & \nabla_{X} Z=0 \\
\nabla_{Y} X=-Y & \nabla_{Y} Y=X & \nabla_{Y} Z=0 \\
\nabla_{Z} X=-Z & \nabla_{Z} Y=0 & \nabla_{Z} Z=X
\end{array}
$$

c) The curvature operator $R: \wedge^{2} \mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}$ is diagonal on the basis $\{X \wedge Y, X \wedge Z, Y \wedge Z\}$ and all eigenvalues are equal to -1 . For instance, we compute:

$$
\begin{aligned}
\langle R(X \wedge Y), X \wedge Y\rangle & =\left\langle\nabla_{X} \nabla_{Y} Y-\nabla_{Y} \nabla_{X} Y-\nabla_{[X, Y]} Y, X\right\rangle \\
& =\left\langle\nabla_{X} X-\nabla_{Y} Y, X\right\rangle \\
& =-1 \\
\langle R(X \wedge Y), X \wedge Z\rangle & =\left\langle\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, X\right\rangle \\
& =\left\langle-\nabla_{Y} Z, X\right\rangle \\
& =0 \\
\langle R(X \wedge Y), Y \wedge Z\rangle & =\left\langle\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, Y\right\rangle \\
& =\left\langle-\nabla_{Y} Z, Y\right\rangle \\
& =0,
\end{aligned}
$$

the remaining (similar) computations needed are:

$$
\begin{aligned}
\langle R(X \wedge Z), X \wedge Z\rangle & =-1 \\
\langle R(Y \wedge Z), Y \wedge Z\rangle & =-1 \\
\langle R(X \wedge Z), Y \wedge Z\rangle & =0 .
\end{aligned}
$$

Thus, (G, g) has sec $\equiv-1$, so g is not bi-invariant (for otherwise it would have $\sec \geq 0)$. As G is simply-connected, it follows that (G, g) is isometric to \mathbb{H}^{3}.
d) Since $\operatorname{Ad}(A) B=A B A^{-1}$, we compute

$$
\begin{aligned}
\operatorname{Ad}(A) X & =\left(\begin{array}{lll}
x & y & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{x} & -\frac{y}{x} & -\frac{z}{x} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & -y & -z \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=X-y Y-z Z
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Ad}(A) Y & =\left(\begin{array}{lll}
x & y & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{x} & -\frac{y}{x} & -\frac{z}{x} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & x & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=x Y \\
\operatorname{Ad}(A) Z & =\left(\begin{array}{lll}
x & y & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{x} & -\frac{y}{x} & -\frac{z}{x} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=x Z .
\end{aligned}
$$

Thus, $\operatorname{Ad}(A)$ is represented in the basis $\{X, Y, Z\}$ by the upper triangular matrix

$$
\operatorname{Ad}(A)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-y & x & 0 \\
-z & 0 & x
\end{array}\right)
$$

whose eigenvalues are $1, x, x$. All inner products on \mathfrak{g} are of the form $\mathrm{g}(P \cdot, \cdot)$ where $P: \mathfrak{g} \rightarrow \mathfrak{g}$ is positive-definite and \mathfrak{g}-symmetric $\left(P^{T}=P\right)$, so $\operatorname{Ad}(A)$ is a linear isometry of such an inner product if and only if $(\operatorname{Ad}(A))^{T} P \operatorname{Ad}(A)=P$, i.e., $\operatorname{Ad}(A)^{-1}=P^{-1}(\operatorname{Ad}(A))^{T} P$. If this is case, $\operatorname{Ad}(A)^{-1}$ has the same eigenvalues as $\operatorname{Ad}(A)$, but that is only possible if $x=1$. Thus, $\operatorname{Ad}(A)$ cannot be a linear isometry of \mathfrak{g} for all $x>0$, regardless of the inner product chosen on \mathfrak{g}, so G does not admit a bi-invariant metric.
2. Let $\left(M^{4}, \mathrm{~g}\right)$ be a closed Riemannian 4-manifold. The conformal metric $\mathrm{h}=u^{2} \mathrm{~g}$, where $u: M^{4} \rightarrow \mathbb{R}$ is a positive smooth function, has scalar curvature given by:

$$
\operatorname{scal}_{\mathrm{h}}=\left(-6 \Delta u+u \operatorname{scal}_{\mathrm{g}}\right) u^{-3},
$$

where $\Delta u=\operatorname{tr}$ Hess u. Suppose scal ${ }_{g} \equiv \kappa$ and $\operatorname{scal}_{h} \equiv \kappa$ are both constant and equal.
a) Prove that if $\kappa \neq 0$, then either $u \equiv 1$, or there exist points $p, q \in M$ such that $u(p)<1<u(q)$.
b) Prove that if $\kappa<0$, then $\mathrm{h}=\mathrm{g}$. What happens if $\kappa=0$?
a) As scalg $\equiv \kappa$ and scal ${ }_{h} \equiv \kappa$, we have that $u: M \rightarrow \mathbb{R}$ solves the PDE

$$
\Delta u=\frac{\kappa}{6} u\left(1-u^{2}\right) .
$$

Note that if a positive solution $u: M \rightarrow \mathbb{R}$ is constant, then $\Delta u=0$, so $u \equiv 1$. Since M is closed, by Stokes' Theorem, we have that integrating both sides

$$
0=\int_{M} \Delta u \operatorname{vol}_{\mathrm{g}}=\frac{\kappa}{6} \int_{M} u\left(1-u^{2}\right) \operatorname{vol}_{\mathrm{g}} .
$$

Thus, $1-u^{2}$ has zero weighted average on M with respect to the measure u vol $_{g}$, so either $u(x) \geq 1$ for all $x \in M$ or $u(x) \leq 1$ for all $x \in M$ imply $u \equiv 1$. Therefore, if $u \not \equiv 1$, then there exist $p, q \in M$ such that $u(p)<1<u(q)$.
b) Since M is closed, $u: M \rightarrow \mathbb{R}$ achieves a minimum p_{0} and a maximum q_{0}. At the minimum, $0 \leq \Delta u\left(p_{0}\right)=\frac{\kappa}{6} u\left(p_{0}\right)\left(1-u\left(p_{0}\right)^{2}\right)$. By a), if $u \not \equiv 1$, then $0<u\left(p_{0}\right)<1$, so the previous inequality would imply that $\kappa \geq 0$. Since we have $\kappa<0$, it follows that $u \equiv 1$, hence $\mathrm{h}=\mathrm{g}$.
If $\kappa=0$, then the PDE becomes $\Delta u=0$, whose only (positive) solutions on the closed manifold M are (positive) constants $u \equiv c$. Thus, in that case, instead of $\mathrm{h}=\mathrm{g}$, the conclusion becomes $\mathrm{h}=c^{2} \mathrm{~g}$ for some constant $c>0$, i.e., h and g are homothetic.
3. Let K^{2} be the Klein bottle, and recall that it is double-covered by the 2 -torus T^{2}. Provide either a construction (just a brief outline of the curvature computations is fine) or a topological obstruction (quoting a theorem) as answer to the following questions:
a) Does $K^{2} \times S^{1}$ admit a Riemannian metric with sec ≤ 0 ? How about sec <0 ?
b) Does $K^{2} \times \mathbb{R} P^{2}$ admit a Riemannian metric with Ric >0 ? How about Ric ≥ 0 ?
c) Does $\mathbb{C} P^{n}$ admit a Riemannian metric with sec ≤ 0 ? How about $\mathrm{sec} \geq 10$?
d) Does $\mathbb{S}^{3} / \mathbb{Z}_{3} \times \mathbb{S}^{3} / \mathbb{Z}_{5}$ admit a metric with sec >0 ? How about scal $\equiv k>0$?
a) The double covering $T^{3} \rightarrow K^{2} \times S^{1}$ can be endowed with a flat metric such that the group \mathbb{Z}_{2} of deck transformations act as isometries, thus $K^{2} \times S^{1}$ admits a flat metric; i.e., with sec $\equiv 0$, in particular, with sec ≤ 0. By Preissmann's Theorem, it does not admit a metric with sec <0, since $\pi_{1}\left(K^{2} \times S^{1}\right) \cong(\mathbb{Z} \rtimes \mathbb{Z}) \times \mathbb{Z}$ contains Abelian subgroups nonisomorphic to \mathbb{Z}, e.g., $\mathbb{Z} \oplus \mathbb{Z}$.
b) By Myers' Theorem, $K^{2} \times \mathbb{R} P^{2}$ does not admit a metric with Ric >0, since, by compactness, it would have Ric $>k>0$, while $\pi_{1}\left(K^{2} \times \mathbb{R} P^{2}\right) \cong(\mathbb{Z} \rtimes \mathbb{Z}) \times \mathbb{Z}_{2}$ is not finite, or, equivalently, the universal covering $\mathbb{R}^{2} \times \mathbb{S}^{2}$ is not compact. It does admit metrics with Ric ≥ 0, e.g., the product metric of the flat metric on K^{2} and the round metric on $\mathbb{R} P^{2}$ with sec $\equiv 1$ has sec ≥ 0; in particular, Ric ≥ 0.
c) By the Cartan-Hadamard Theorem, there is no metric with sec ≤ 0 on $\mathbb{C} P^{n}$, since its universal covering is $\mathbb{C} P^{n}$ itself, which is not diffeomorphic to $\mathbb{R}^{2 n}$. The Fubini-Study metric g on $\mathbb{C} P^{n}$ has $\sec _{\mathrm{g}} \geq 1$, so $\frac{1}{10} \mathrm{~g}$ has $\sec _{\frac{1}{10} \mathrm{~g}}=10 \sec _{\mathrm{g}} \geq 10$.
d) By Synge's Theorem, the fundamental group of an even-dimensional closed manifold with sec >0 is either \mathbb{Z}_{2} or trivial, so $\mathbb{S}^{3} / \mathbb{Z}_{3} \times \mathbb{S}^{3} / \mathbb{Z}_{5}$ does not admit a metric with sec >0, as it has $\pi_{1}\left(\mathbb{S}^{3} / \mathbb{Z}_{3} \times \mathbb{S}^{3} / \mathbb{Z}_{5}\right) \cong \mathbb{Z}_{15}$. Each of $\mathbb{S}^{3} / \mathbb{Z}_{3}$ and $\mathbb{S}^{3} / \mathbb{Z}_{5}$ admit metrics with sec $\equiv 1$, hence scal $\equiv 6$, so the product metric has scal $\equiv 12>0$.
4. Let ($M, \mathrm{~g}$) be a connected compact Riemannian manifold with $\sec _{M} \geq 0$ and compact boundary $\partial M \neq \emptyset$. Suppose ∂M is convex, i.e., for all $p \in \partial M$, the shape operator $\left(S_{\vec{n}}\right)_{p}: T_{p} \partial M \rightarrow T_{p} \partial M$, given by $S_{\vec{n}}(X)=-\nabla_{X} \vec{n}$, is positive-definite, where \vec{n} is the inward-pointing unit normal of ∂M.
a) Does ∂M have to be connected? If yes, give a proof; if no, give a counter-example.
b) Prove that $\pi_{1}(M, \partial M)=\{1\}$, hence the inclusion $\partial M \hookrightarrow M$ induces a surjective homomorphism $\pi_{1}(\partial M) \rightarrow \pi_{1}(M)$. You may use (without proof) the fact that minimizing length in a nontrivial free homotopy class of curves in M with endpoints in ∂M yields a geodesic in M with endpoints in ∂M.
c) Give two examples of the above situation, to show that $\pi_{1}(\partial M) \rightarrow \pi_{1}(M)$ may or may not be injective.
a) Yes, ∂M has to be connected.

Suppose $\partial M=\bigcup_{j=1}^{k} N_{j}$ has multiple connected components. As ∂M is compact, let $p, q \in \partial M$ be the closest points among pairs of points in different connected components of ∂M, say $p \in N_{1}$ and $q \in N_{2}$. Since ($M, \mathrm{~g}$) is complete, there exists a minimizing unit speed geodesic $\gamma:[0, L] \rightarrow M$ with $\gamma(0)=p$ and $\gamma(L)=q$ such that $\operatorname{dist}(x, y) \geq L$ for all $x \in N_{1}$ and $y \in N_{2}$.
Given $v \in T_{p} N_{1}=T_{p} \partial M$, let $V(t)=P_{t} v$ be the parallel transport of v along $\gamma(t)$. Since γ minimizes length from N_{1} to N_{2}, by the first variation of energy, we have $\dot{\gamma}(0)=\vec{n}$ and $\dot{\gamma}(L)=-\vec{n}$, so $V(L) \in T_{q} N_{2}$. Let $\gamma_{s}(t), t \in[0, L], s \in(-\varepsilon, \varepsilon)$, be a variation of γ with endpoints in ∂M and variational field V. In order to facilitate the computation in the second variation formula, it is convenient to choose γ_{s} in such way that $\alpha:(-\varepsilon, \varepsilon) \rightarrow N_{1}, \alpha(s)=\gamma_{s}(0)$, and $\beta:(-\varepsilon, \varepsilon) \rightarrow N_{2}, \beta(s)=\gamma_{s}(L)$, are geodesics in N_{1} and N_{2} respectively, i.e., $\nabla_{\dot{\alpha}}^{N_{1}} \dot{\alpha}=0$ and $\nabla_{\dot{\beta}}^{N_{2}} \dot{\beta}=0$. Note this choice is possible as we only prescribed the variational field $V=\left.\frac{\mathrm{d}}{\mathrm{d}} \gamma_{s}\right|_{s=0}$, so the endpoints $\alpha(s)=\gamma_{s}(0)$ and $\beta(s)=\gamma_{s}(L)$ can be chosen as any curves tangent to $V(0)$ and $V(L)$, e.g., $\alpha(s)=\exp _{p}^{N_{1}}(s V(0))$ and $\beta(s)=\exp _{q}^{N_{2}}(s V(L))$. Then,
$\left.\mathrm{g}\left(\frac{D V}{\mathrm{~d} s}, \dot{\gamma}\right)\right|_{t=0}=\mathrm{g}\left(\nabla_{\dot{\alpha}}^{M} \dot{\alpha}, \dot{\gamma}(0)\right)=\mathrm{g}\left(\nabla_{\dot{\alpha}}^{\partial M} \dot{\alpha}+\mathbb{I}_{\partial M}(\dot{\alpha}, \dot{\alpha}), \vec{n}\right)=\mathrm{g}\left(S_{\vec{n}}(\dot{\alpha}), \dot{\alpha}\right)>0$
$\left.\mathrm{g}\left(\frac{D V}{\mathrm{~d} s}, \dot{\gamma}\right)\right|_{t=L}=\mathrm{g}\left(\nabla_{\dot{\beta}}^{M} \dot{\beta}, \dot{\gamma}(L)\right)=\mathrm{g}\left(\nabla_{\dot{\beta}}^{\partial M} \dot{\beta}+\mathbb{I}_{\partial M}(\dot{\beta}, \dot{\beta}),-\vec{n}\right)=-\mathrm{g}\left(S_{\vec{n}}(\dot{\beta}), \dot{\beta}\right)<0$,
since $S_{\vec{n}}$ is positive-definite. Thus, by the second variation formula,

$$
\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}} E_{\mathrm{g}}\left(\gamma_{s}\right)\right|_{s=0}=\left.\mathrm{g}\left(\frac{D V}{\mathrm{~d} s}, \dot{\gamma}\right)\right|_{0} ^{L}+\int_{0}^{L} \mathrm{~g}\left(\frac{D V}{\mathrm{~d} t}, \frac{D V}{\mathrm{~d} t}\right)-\mathrm{g}(R(V, \dot{\gamma}) \dot{\gamma}, V) \mathrm{d} t<0
$$

so for sufficiently small $0<|s|<\varepsilon$, the curve γ_{s}, is shorter than $\gamma_{0}=\gamma$ and joins N_{1} to N_{2}, contradicting the choice of γ. Thus, ∂M is connected.
b) Suppose $\pi_{1}(M, \partial M) \neq\{1\}$, and let $\gamma:[0, L] \rightarrow M$ be a geodesic in M with endpoints $\gamma(0), \gamma(L) \in \partial M$ obtained by minimizing length on a nontrivial free homotopy class of curves in M with endpoints in ∂M. As in the previous item, by the first variation formula, $\dot{\gamma}(0)=\vec{n}$ and $\dot{\gamma}(L)=-\vec{n}$, and an identical computation with the second variation formula contradicts the minimality of γ. Thus, $\pi_{1}(M, \partial M)=\{1\}$ and hence the long exact sequence

$$
\cdots \rightarrow \pi_{1}(\partial M) \rightarrow \pi_{1}(M) \rightarrow \pi_{1}(M, \partial M) \rightarrow \pi_{0}(\partial M)=\{1\}
$$

implies that the induced homomorphism $\pi_{1}(\partial M) \rightarrow \pi_{1}(M)$ is surjective.
c) Let $M^{n} \subset \mathbb{R}^{n}$ be a strictly convex body with smooth boundary. Endowed with the flat metric induced from \mathbb{R}^{n}, we have $\sec _{M} \equiv 0$ and $\partial M \cong \mathbb{S}^{n-1}$ has $S_{\vec{n}} \succ 0$, cf. HW4 Prob. 2 and X. If $n=2$, then $\pi_{1}(\partial M) \cong \mathbb{Z} \rightarrow \pi_{1}(M) \cong\{1\}$ is not injective, while for $n \geq 3$ it is trivially injective since $\pi_{1}(\partial M) \cong \pi_{1}(M) \cong\{1\}$.

Note that the conclusions above remain valid if the hypotheses $\sec _{M} \geq 0$ and $S_{\vec{n}} \succ 0$ are weakend to $\operatorname{Ric}_{M} \succeq 0$ and $H_{\partial M}=\operatorname{tr} S_{\vec{n}}>0$, by replacing v with an orthonormal basis $v_{i} \in T_{p} \partial M$, and summing the second variation formula over $1 \leq i \leq n-1$.
5. Recall from Problem 6 in the Midterm that if $(M, \mathrm{~g})$ is a complete noncompact manifold and $p \in M$, then there exists a unit speed geodesic $\gamma: \mathbb{R} \rightarrow M$ such that $\gamma(0)=p$ and $\operatorname{dist}(\gamma(t), \gamma(s))=|t-s|$ for all $t, s \geq 0$. Assume, moreover, that ($\left.M^{n}, \mathrm{~g}\right)$ has Ric ≥ 0.
a) Fix $a>0$, and use Bishop Volume Comparison to show that, for all $t>a$,

$$
\frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} \leq \frac{(t+a)^{n}}{(t-a)^{n}}
$$

b) Show that $B_{a}(p) \subset B_{t+a}(\gamma(t)) \backslash B_{t-a}(\gamma(t))$, and conclude that, given $t>t_{0}>a$,

$$
\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right) \geq c\left(n, t_{0}\right) \operatorname{Vol}\left(B_{a}(p)\right) t
$$

where $c\left(n, t_{0}\right)=\inf _{t \in\left[t_{0},+\infty\right)} \frac{1}{t} \frac{(t-a)^{n}}{(t+a)^{n}-(t-a)^{n}}>0$.
c) Show that $B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right) \subset B_{r}(p)$ and conclude that, for all $r>2 t_{0}-a$,

$$
c r \leq \operatorname{Vol}\left(B_{r}(p)\right) \leq C r^{n},
$$

where $c, C>0$ are constants. In particular, $\left(M^{n}, \mathrm{~g}\right)$ has infinite volume.
d) For each $1 \leq k \leq n$, give an example of a complete noncompact Riemannian manifold $\left(M^{n}, \mathrm{~g}\right)$ with Ric ≥ 0 for which $\operatorname{Vol}\left(B_{r}(p)\right)=O\left(r^{k}\right)$ as $r \nearrow+\infty$.
a) Let $\overline{B_{r}} \subset \mathbb{R}^{n}$ be an Euclidean ball of radius r, and recall that $\operatorname{Vol}\left(\overline{B_{r}}\right)=\operatorname{Vol}\left(\overline{B_{1}}\right) r^{n}$. By Bishop Volume Comparison, since ($M^{n}, \mathrm{~g}$) has Ric ≥ 0, the function

$$
r \mapsto \frac{\operatorname{Vol}\left(B_{r}(\gamma(t))\right)}{\operatorname{Vol}\left(\overline{B_{r}}\right)}
$$

is nonincreasing, thus, for $t>a$, we have

$$
\frac{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)}{\operatorname{Vol}\left(\overline{B_{t-a}}\right)} \geq \frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(\overline{B_{t+a}}\right)}
$$

SO

$$
\frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} \leq \frac{\operatorname{Vol}\left(\overline{B_{t+a}}\right)}{\operatorname{Vol}\left(\overline{B_{t-a}}\right)}=\frac{\operatorname{Vol}\left(\overline{B_{1}}\right)(t+a)^{n}}{\operatorname{Vol}\left(\overline{B_{1}}\right)(t-a)^{n}}=\frac{(t+a)^{n}}{(t-a)^{n}} .
$$

b) Using the triangle inequality, we have that if $x \in B_{a}(p)$, i.e., $\operatorname{dist}(x, p)<a$, then

$$
\operatorname{dist}(x, \gamma(t)) \leq \operatorname{dist}(x, p)+\operatorname{dist}(p, \gamma(t))<a+t
$$

so $x \in B_{t+a}(\gamma(t))$. However, if $x \in B_{t-a}(\gamma(t))$, then $\operatorname{dist}(x, \gamma(t))<t-a$, so

$$
t=\operatorname{dist}(p, \gamma(t)) \leq \operatorname{dist}(p, x)+\operatorname{dist}(x, \gamma(t))<a+(t-a)=t
$$

which is a contradiction. Thus, we must have $x \notin B_{t-a}(\gamma(t))$, hence proving that $B_{a}(p) \subset B_{t+a}(\gamma(t)) \backslash B_{t-a}(\gamma(t))$, see figure below. Thus, for all $t>a$, using the

inequality from a), we have that

$$
\begin{aligned}
& \frac{\operatorname{Vol}\left(B_{a}(p)\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} \leq \frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)-}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)}\left(B_{t-a}(\gamma(t))\right) \\
&=\frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)}-1 \leq \frac{(t+a)^{n}}{(t-a)^{n}}-1,
\end{aligned}
$$

and hence

$$
\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right) \geq \operatorname{Vol}\left(B_{a}(p)\right) \frac{1}{\frac{(t+a)^{n}}{(t-a)^{n}}-1}=\operatorname{Vol}\left(B_{a}(p)\right) \frac{(t-a)^{n}}{(t+a)^{n}-(t-a)^{n}}
$$

Given $t>t_{0}>a$, setting $c\left(n, t_{0}\right)=\inf _{t \in\left[t_{0},+\infty\right)} \frac{1}{t} \frac{(t-a)^{n}}{(t+a)^{n}-(t-a)^{n}}>0$, we obtain

$$
\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right) \geq \operatorname{Vol}\left(B_{a}(p)\right) c\left(n, t_{0}\right) t
$$

c) If $\operatorname{dist}\left(x, \gamma\left(\frac{r+a}{2}\right)\right)<\frac{r+a}{2}-a$, then by the triangle inequality,

$$
\operatorname{dist}(x, p) \leq \operatorname{dist}\left(x, \gamma\left(\frac{r+a}{2}\right)\right)+\operatorname{dist}\left(\gamma\left(\frac{r+a}{2}\right), p\right)<\left(\frac{r+a}{2}-a\right)+\frac{r+a}{2}=r,
$$

so $x \in B_{r}(p)$, which proves that $B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right) \subset B_{r}(p)$. Setting $t=\frac{r+a}{2}$ in the inequality obtained in b), we have that if $t>t_{0}$, i.e., $r>2 t_{0}-a$,

$$
\operatorname{Vol}\left(B_{r}(p)\right) \geq \operatorname{Vol}\left(B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right)\right) \geq \operatorname{Vol}\left(B_{a}(p)\right) c\left(n, t_{0}\right) \frac{r+a}{2}>c r
$$

where $c=\frac{1}{2} \operatorname{Vol}\left(B_{a}(p)\right) c\left(n, t_{0}\right)$. So there exist constants $c, C>0$ such that

$$
c r \leq \operatorname{Vol}\left(B_{r}(p)\right) \leq C r^{n},
$$

where $C=\operatorname{Vol}\left(\overline{B_{1}}\right)$, once again by Bishop Volume Comparison. Since the above lower bound for $\operatorname{Vol}\left(B_{r}(p)\right)$ holds for all $r>2 t_{0}-a$, taking $r \nearrow+\infty$ we conclude that $\left(M^{n}, \mathrm{~g}\right)$ has infinite volume.
d) For each $1 \leq k \leq n$, let $M^{n}=\mathbb{S}^{n-k} \times \mathbb{R}^{k}$ and g be the product metric, which has sec ≥ 0 and hence Ric ≥ 0. By Fubini's theorem, $\operatorname{Vol}\left(B_{r}(p)\right)$ is asymptotic to $\operatorname{Vol}\left(\mathbb{S}^{n-k}\right) \operatorname{Vol}\left(\overline{B_{1}}\right) r^{k}$ where $\overline{B_{1}} \subset \mathbb{R}^{k}$ is the Euclidean unit ball.

Note: The above constant $c=\frac{1}{2} \operatorname{Vol}\left(B_{a}(p)\right) c\left(n, t_{0}\right)$ cannot be made "universal", i.e., independent of $\operatorname{Vol}\left(B_{a}(p)\right)$, as shown by examples of C. Croke of complete noncompact manifolds with Ric ≥ 0 and $\inf _{p \in M} \operatorname{Vol}\left(B_{a}(p)\right)=0$.
6. Consider the unit sphere $\mathbb{S}^{5} \subset \mathbb{R}^{6}$ and let $M=\mathbb{S}^{5} \cap\left(\mathbb{R}^{3} \oplus\{0\}\right)$ and $N=S^{5} \cap\left(\{0\} \oplus \mathbb{R}^{3}\right)$, which are isometric copies of the unit sphere \mathbb{S}^{2} sitting in \mathbb{S}^{5}.
a) Verify that M and N are totally geodesic in \mathbb{S}^{5}.
b) Given a unit vector $x \in \mathbb{R}^{3}$, identify $T_{(x, 0)} M$ with a subspace of $T_{(x, 0)} \mathbb{S}^{5}$, and let $T_{(x, 0)} M^{\perp} \subset T_{(x, 0)} \mathbb{S}^{5}$ be its orthogonal complement. If $v \in T_{(x, 0)} M^{\perp}$ is a unit vector, find an explicit formula for the geodesic $\gamma(t)=\exp _{(x, 0)}$ tv on $S^{5} \subset \mathbb{R}^{6}$.
c) Let $T M^{\perp}=\bigcup_{x \in M} T_{(x, 0)} M^{\perp}$ be the normal bundle of $M \subset \mathbb{S}^{5}$, which is a trivial bundle $T M^{\perp} \cong M \times \mathbb{R}^{3}$. We write $(x, t, v) \in T M^{\perp}$, where $t \geq 0$ and $v \in T_{(x, 0)} M^{\perp}$ is a unit vector. Show that the restriction of $f: T M^{\perp} \rightarrow \mathbb{S}^{5}, f(x, t, v)=\exp _{(x, 0)} t v$, to $\left\{(x, t, v) \in T M^{\perp}: 0 \leq t<\frac{\pi}{2}\right\}$ is a diffeomorphism onto its image $\mathbb{S}^{5} \backslash N$.
d) Show that, for each $(x, 0) \in M$, the map $\phi_{x}: \mathbb{S}^{2} \subset T_{(x, 0)} M^{\perp} \rightarrow N$ given by $\phi_{x}(v)=f\left(x, \frac{\pi}{2}, v\right)$ is an isometry.
e) Show that $M, N \subset \mathbb{S}^{5}$ are subsets at maximal distance $\operatorname{dist}_{\mathrm{g}}(M, N)=\pi / 2$, i.e., the function $M \ni x \mapsto \operatorname{distg}(x, N)=\inf \left\{\operatorname{distg}_{\mathrm{g}}(x, y): y \in N\right\}$ is constant and equal to $\pi / 2$, and for any subset $P \subset \mathbb{S}^{5}, P \not \subset N$, one has $\operatorname{dist}_{\mathrm{g}}(x, P)<\frac{\pi}{2}$ for some $x \in M$.
a) The unique geodesic $\gamma: \mathbb{R} \rightarrow \mathbb{S}^{5} \subset \mathbb{R}^{6}$ with initial conditions $\gamma(0)=p$ and $\dot{\gamma}(0)=v$ is $\gamma(t)=(\cos t) p+(\sin t) v$. Thus, if either $p \in M$ and $v \in T_{p} M$, i.e., $p=\left(p_{1}, 0\right)$ and $v=\left(v_{1}, 0\right)$, or if $p \in N$ and $v \in T_{p} N$, i.e., $p=\left(0, p_{2}\right)$ and $v=\left(0, v_{2}\right)$, then $\gamma(t)=\left((\cos t) p_{1}+(\sin t) v_{1}, 0\right) \in M$ or $\gamma(t)=\left(0,(\cos t) p_{1}+(\sin t) v_{1}\right) \in N$, respectively, for all $t \in M$, so M and N are totally geodesic.
b) By the same discussion above, the given geodesic $\gamma(t)=\exp _{(x, 0)}$ tv on $\mathbb{S}^{5} \subset \mathbb{R}^{6}$ is $\gamma(t)=((\cos t) x,(\sin t) v)$.
c) By the above, $f(x, t, v)=\exp _{(x, 0)} t v=((\cos t) x,(\sin t) v)$, so its restriction to $M \times B_{\frac{\pi}{2}}(0)=\left\{(x, t, v) \in T M^{\perp}: 0 \leq t<\frac{\pi}{2}\right\}$ is a diffeomorphism onto its image $\mathbb{S}^{5} \backslash N$, since $\cos t$ and $\sin t$ are diffeomorphisms from ($0, \frac{\pi}{2}$) to (0,1); namely, its inverse is given by $f^{-1}(y, w)=\left(\frac{y}{\|y\|}, \arccos \|y\|, \frac{w}{\|w\|}\right)$ for all $(y, w) \in \mathbb{S}^{5} \backslash(M \cup N)$ and $f^{-1}(y, 0)=(y, 0,0)$ if $(y, 0) \in M$.
d) Identifying $T_{(x, 0)} M^{\perp} \cong\left(\{0\} \oplus \mathbb{R}^{3}\right) \subset \mathbb{R}^{6}$, the map $\phi_{x}: \mathbb{S}^{2} \subset T_{(x, 0)} M^{\perp} \rightarrow N$ given by $\phi_{x}(v)=f\left(x, \frac{\pi}{2}, v\right)=(0, v)$ is the identity map, hence an isometry.
e) The geodesic $\gamma(t)=\exp _{(x, 0)}$ tv $=((\cos t) x,(\sin t) v)$ is minimizing for $t \in\left(0, \frac{\pi}{2}\right)$, and $\gamma(t) \notin N$ for $t \in\left(0, \frac{\pi}{2}\right)$, while $\exp _{(x, 0)} \frac{\pi}{2} v=(0, v) \in N$, so for all $x \in M$, we have $\operatorname{dist}_{\mathrm{g}}(x, N)=\frac{\pi}{2}$ and this distance is achieved along any geodesic normal to M. Alternatively, note that M and N are orbits of the isometric action of $\mathrm{SO}(3) \times \mathrm{SO}(3)$ on $\mathbb{S}^{5} \subset \mathbb{R}^{6}=\mathbb{R}^{3} \oplus \mathbb{R}^{3}$, hence these submanifolds are equidistant. Moreover, if $p=\left(p_{1}, p_{2}\right) \in \mathbb{S}^{5} \backslash(M \cup N) \subset \mathbb{R}^{6}$, then $\operatorname{dist}(p, M)=\arccos \left\|p_{1}\right\|<\frac{\pi}{2}$ is achieved along a geodesic $\gamma(t)=\exp _{(x, 0)} t v$, where $x=\frac{p_{1}}{\left\|p_{1}\right\|}$ and $v=\frac{p_{2}}{\left\|p_{2}\right\|} \in T_{(x, 0)} M^{\perp}$, so N is the set at maximal distance from M, and vice-versa.

