MATH71000, Spring 2024 Renato Ghini Bettiol

Final Exam

Due: MAy 17, 2024

1. Consider the Lie group
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whose Lie algebra, endowed with the Lie bracket [A, B] = AB — BA from gl(3,R), is

0 00 1
0l,Zz=10 0 0]} cgl(3,R).
0 000

O O =

1 00 0
g=span¢< X=[(0 0 0],Y=1]0
0 00 0

a) Compute the Lie brackets [X,Y], [V, Z], [X, Z] of the basis elements of g, and
write them in terms of X,Y, Z.

b) Let g be the left-invariant Riemannian metric on G that at Id € G coincides with
the inner product on g for which {X,Y, Z} is an orthonormal basis. Denote by
X,Y,Z € X(G) the left-invariant vector fields corresponding to X,Y,Z € g. Use
the Koszul formula and a) to compute the the Levi-Civita connection V of (G, g),

VxX = VxY = VxZ =
VyX = VyY = VyZ =
VzX = VzY = VzZ =

(To avoid unnecessary computations, recall that V4B — VpA = [A, B].)

c) Show that the curvature operator R: A?g — A%gis R = —Id. Conclude that g is
not a bi-invariant metric, and that (G, g) is isometric to hyperbolic 3-space.

d) On a matrix Lie group, such as G, the adjoint action is given by conjugation, i.e.,
Ad(A)B = ABA~!, for all A€ G and B € g. Show that

z Ad(A)X =X —yY — 27,
0], then Ad(A)Y =zY,
1 Ad(A)Z = zZ,

if A=

S O R
o

and use the matrix that represents Ad(A): g — g in the basis {X, Y, Z} to compute
the eigenvalues of Ad(A). Conclude that G does not admit bi-invariant metrics.

a) The Lie brackets (given by commutators) can be computed as follows:

X,Y]=Y, [X.Z]=2, [Y,Z]=0



b)

Since X, Y, Z and g are left-invariant, terms of the form X (g(Y, 7)) vanish. Thus,
Koszul’s formula simplifies to the last three terms, which are determined by the
above brackets. Moreover, since {X,Y, Z} is orthonormal, we can skip computing
some instances of Koszul’s formula, e.g.,

0= X(g(X,X)) =2¢(VxX,X), hence VyxX=aV +bZ
0=X(gX,Y))=¢g(VxX,Y)+g(X,VxY) hence a=—-g(X,VxY)
0=X(g(X,2)=¢g(VxX,Z)+g(X,VxZ) hence b=—-g(X,VxZ2).
Altogether, we find:

VxX =0 VxY =0 VxZ=0
VyX=-Y VWY =X VyZ=0
VzX=—-72 VzY =0 VzZ=X

The curvature operator R: A2g — AZg is diagonal on the basis {XA\Y, XAZ, Y AZ}
and all eigenvalues are equal to —1. For instance, we compute:
(RIXAY), XANY) =(VxVyY = VyVxY — V[xyY, X)
=(VxX - VyY, X)
=-1
(RIXAY),XNZ)=(VxVyZ -VyVxZ —VixyZ, X)
—VyZ, X>

i1l
o~

(RIXAY),YNZ)=(VxVyZ —-VyVxZ — V[X,Y]Z7Y>
~VyZ,Y)

=0,

o~ o~

the remaining (similar) computations needed are:
(RXANZ),XNZ)=-1
(RYNZ),YNZ)=-1
(RIXNZ),YNZ)=0.

Thus, (G,g) has sec = —1, so g is not bi-invariant (for otherwise it would have
sec > 0). As G is simply-connected, it follows that (G, g) is isometric to H3.

d) Since Ad(A)B = ABA™!, we compute

z oy z\ (1 00\ /2 -2 =
Ad(A)X=1[0 1 o [0 0 O 0 1 0
0 01 0 0 0 0 0 1
1 —y —z
=10 0 0 |=X-9yY —27
0 0 O



z y z\ (01 0\ /L -2 2=
AdA)yY =[o 1 0o]loo oo 1 o

0 0 1 0 0 0 0O 0 1

0 = O

=10 0 0] =2Y

0 0 O

z y z\ (0 01\ /1 -2 =
Ad(A)z=(0 1 0|00 o]0 1T o

0 0 1 0 0 0 0O 0 1

0 0 =

0 0 O

Thus, Ad(A) is represented in the basis {X,Y, Z} by the upper triangular matrix

1 0 0
Ad(A)=|-y = 0],
—z 0 =z

whose eigenvalues are 1,z,z. All inner products on g are of the form g(P-,-)
where P: g — g is positive-definite and g-symmetric (PT = P), so Ad(A) is a
linear isometry of such an inner product if and only if (Ad(A))T P Ad(A) = P,
i.e., Ad(A)~! = P~1(Ad(A))T P. If this is case, Ad(A)~! has the same eigenvalues
as Ad(A), but that is only possible if x = 1. Thus, Ad(A) cannot be a linear
isometry of g for all x > 0, regardless of the inner product chosen on g, so G does
not admit a bi-invariant metric.

. Let (M*,g) be a closed Riemannian 4-manifold. The conformal metric h = u? g, where
w: M* — R is a positive smooth function, has scalar curvature given by:

scaly, = ( — 6 Au + u scalg ) w3,
where Au = tr Hessu. Suppose scal; = x and scaly, = ~ are both constant and equal.

a) Prove that if k # 0, then either u = 1, or there exist points p,q € M such that
u(p) <1 < u(q).
b) Prove that if k < 0, then h = g. What happens if k = 07

a) As scaly = K and scaly, = K, we have that u: M — R solves the PDE

Au=Eu(l—u?).



Note that if a positive solution u: M — R is constant, then Au = 0, so u = 1.
Since M is closed, by Stokes’ Theorem, we have that integrating both sides

0= [ Auvol, = g/ u (1 —u?) volg.
M M

Thus, 1 — u? has zero weighted average on M with respect to the measure uvolg,

so either u(x) > 1 for all z € M or u(x) <1 for all x € M imply v = 1. Therefore,
if u # 1, then there exist p,q € M such that u(p) < 1 < u(q).

Since M is closed, u: M — R achieves a minimum py and a maximum ¢y. At the
minimum, 0 < Au(pg) = % u(po) (1 — u(po)?). By a), if u # 1, then 0 < u(po) < 1,
so the previous inequality would imply that x > 0. Since we have x < 0, it follows
that v = 1, hence h = g.

If kK = 0, then the PDE becomes Au = 0, whose only (positive) solutions on the
closed manifold M are (positive) constants u = c¢. Thus, in that case, instead of
h = g, the conclusion becomes h = ¢? g for some constant ¢ > 0, i.e., h and g are
homothetic.

3. Let K2 be the Klein bottle, and recall that it is double-covered by the 2-torus T2.
Provide either a construction (just a brief outline of the curvature computations is fine)
or a topological obstruction (quoting a theorem) as answer to the following questions:

a
b
c
d

~— ~— ~—

a)

Does K2 x S! admit a Riemannian metric with sec < 0? How about sec < 0?
Does K2 x RP? admit a Riemannian metric with Ric > 0? How about Ric > 07
Does CP" admit a Riemannian metric with sec < 0?7 How about sec > 107

Does $3/Z3 x $3/Z5 admit a metric with sec > 0? How about scal = k > 07?

The double covering T3 — K2 x S' can be endowed with a flat metric such that
the group Zs of deck transformations act as isometries, thus K2 x S admits a flat
metric; i.e., with sec = 0, in particular, with sec < 0. By Preissmann’s Theorem,
it does not admit a metric with sec < 0, since m1 (K2 x S') & (Z x Z) x Z contains
Abelian subgroups nonisomorphic to Z, e.g., Z & Z.

By Myers’ Theorem, K2 x RP? does not admit a metric with Ric > 0, since, by
compactness, it would have Ric > k > 0, while 71 (K2 x RP?) & (Z x Z) x Z is
not finite, or, equivalently, the universal covering R? x $? is not compact. It does
admit metrics with Ric > 0, e.g., the product metric of the flat metric on K? and
the round metric on RP? with sec = 1 has sec > 0; in particular, Ric > 0.

By the Cartan—-Hadamard Theorem, there is no metric with sec < 0 on CP",
since its universal covering is CP" itself, which is not diffeomorphic to R?*. The

Fubini-Study metric g on CP" has secg > 1, so %Og has sec1 = 10secy > 10.
10



d)

By Synge’s Theorem, the fundamental group of an even-dimensional closed mani-
fold with sec > 0 is either Zs or trivial, so $2/Zs3 x $3/Z5 does not admit a metric
with sec > 0, as it has 7 ($%/Z3 x $2/Z5) = Z15. Each of $3/Zs3 and $3/Zs5 admit
metrics with sec = 1, hence scal = 6, so the product metric has scal = 12 > 0.

4. Let (M, g) be a connected compact Riemannian manifold with secy; > 0 and compact
boundary OM # (). Suppose OM is convex, i.e., for all p € OM, the shape operator
(Si)p: T,0M — T,0M, given by Sz(X) = —Vx7i, is positive-definite, where 7 is the
inward-pointing unit normal of OM.

a)
b)

Does M have to be connected? If yes, give a proof; if no, give a counter-example.

Prove that m (M,90M) = {1}, hence the inclusion OM — M induces a surjective
homomorphism 71 (OM) — m1(M). You may use (without proof) the fact that
minimizing length in a nontrivial free homotopy class of curves in M with endpoints
in M yields a geodesic in M with endpoints in OM.

Give two examples of the above situation, to show that 71 (0M) — 71 (M) may or
may not be injective.

Yes, OM has to be connected.

Suppose OM = U;?:l N; has multiple connected components. As dM is compact,
let p,q € OM be the closest points among pairs of points in different connected
components of M, say p € N1 and ¢ € N,. Since (M, g) is complete, there exists
a minimizing unit speed geodesic v: [0, L] — M with v(0) = p and (L) = ¢ such
that dist(x,y) > L for all x € Ny and y € N.

Given v € T,Ny = T,0M, let V (t) = Py be the parallel transport of v along ().
Since v minimizes length from Nj to No, by the first variation of energy, we have
4(0) = 7 and §(L) = —7, so V(L) € T,N>. Let vs(t), t € [0, L], s € (—¢,€), be a
variation of v with endpoints in M and variational field V. In order to facilitate
the computation in the second variation formula, it is convenient to choose v, in
such way that a: (—g,e) = N1, a(s) =vs(0), and B: (—¢,e) = Na, B(s) = vs(L),
are geodesics in N7 and Ny respectively, i.e., Vévld =0 and V]B\f?ff = 0. Note this

choice is possible as we only prescribed the variational field V = %'ys| s=0, SO the
endpoints a(s) = v5(0) and B(s) = 7s(L) can be chosen as any curves tangent to
V(0) and V(L), e.g., a(s) = expévl(sV(O)) and 5(s) = expé\’?(sV(L)). Then,

g(BY,4)|,_y = &(VAa,4(0)) = g(VIMa + Tons (&, &), ) = g(S(d), &) >0

s(5v )|y = (VY B.A(L) = (VY S + Tons (B, B), —7i) = —g(Sa(B), B) <0,

since Sy is positive-definite. Thus, by the second variation formula,

L L
£y = 2 (BEA |+ [ 2 (BB — a1V de <0,



so for sufficiently small 0 < |s| < e, the curve s, is shorter than vy = 7 and joins
N1 to Na, contradicting the choice of «v. Thus, OM is connected.

Suppose 71 (M,0M) # {1}, and let v: [0,L] — M be a geodesic in M with
endpoints v(0),v(L) € OM obtained by minimizing length on a nontrivial free
homotopy class of curves in M with endpoints in M. As in the previous item,
by the first variation formula, ¥(0) = 7 and 4(L) = —7, and an identical compu-
tation with the second variation formula contradicts the minimality of . Thus,
m1(M,0M) = {1} and hence the long exact sequence

co = m(OM) = (M) = 7 (M, 0M) — mo(OM) = {1}

implies that the induced homomorphism 71 (OM) — 71 (M) is surjective.

Let M™ C R™ be a strictly convex body with smooth boundary. Endowed with
the flat metric induced from R”, we have secy; = 0 and OM =2 $"~! has S; > 0,
cf. HW4 Prob. 2 and X. If n = 2, then m(0M) =2 Z — m (M) = {1} is not
injective, while for n > 3 it is trivially injective since m1(OM) = m (M) = {1}.

Note that the conclusions above remain valid if the hypotheses secy; > 0 and Sz = 0
are weakend to Ricys = 0 and Hgpr = tr Sz > 0, by replacing v with an orthonormal
basis v; € T,0M, and summing the second variation formula over 1 <7 <n — 1.

. Recall from Problem 6 in the Midterm that if (M, g) is a complete noncompact manifold
and p € M, then there exists a unit speed geodesic 7v: R — M such that v(0) = p and
dist(y(t),v(s)) = |t — s| for all ¢,s > 0. Assume, moreover, that (M",g) has Ric > 0.

a)

b)

c)

)

Fix a > 0, and use Bishop Volume Comparison to show that, for all ¢ > a,

Vol (Biya(7(1))) < (t+a)"
Vol (Bt_a (’y(t))) ~(t—a)”

Show that By (p) C Biya(7(t)) \ Bi—a((t)), and conclude that, given ¢t > ¢ty > a,

Vol (B;—q(7(t))) > ¢(n, to) Vol(Ba(p)) t,

. 1 t—a)”
where ¢(n, ty) = te[tlon4f~00) ;W > 0.

Show that B'FI—Ta_a (’Y(HTQ)) C B,(p) and conclude that, for all r > 2ty — a,
cr < Vol(B,(p)) < Cr",

where ¢,C > 0 are constants. In particular, (M™,g) has infinite volume.

For each 1 < k < n, give an example of a complete noncompact Riemannian
manifold (M™,g) with Ric > 0 for which Vol(B,(p)) = O(r*) as r / +o0.



a) Let B, C R" be an Euclidean ball of radius 7, and recall that Vol(B,.) = Vol(Bj)r™.
By Bishop Volume Comparison, since (M", g) has Ric > 0, the function
_, Vol (B,(+(1)))
Vol (E)
is nonincreasing, thus, for ¢t > a, we have

Vol (Bi—a(1(1))) _ Vol (Bia(7(1))
Vol (Bi—a) Vol (Bita)

* Vol (Biya(7(1))) _ Vol (Biya)  VOl(By)(t+a)*  (t+a)"

Vol (Bi—a(7(t))) = Vol (Bi—a)  Vol(By)(t—a)*  (t—a)"
b) Using the triangle inequality, we have that if x € B,(p), i.e., dist(z, p) < a, then
dist(z,v(t)) < dist(x, p) + dist(p,y(t)) < a + ¢,
80 T € Bitq(y(t)). However, if x € By_4(v(t)), then dist(x,v(t)) <t — a, so
t = dist(p,v(t)) < dist(p, z) + dist(z,v(t)) < a+ (t —a) =1t,

which is a contradiction. Thus, we must have x ¢ B;_,(7(t)), hence proving that
Ba(p) C Biia(v(t)) \ Bi—a(7(t)), see figure below. Thus, for all ¢ > a, using the

inequality from a), we have that

Vol(Ba(p)) _ Vol (Beya(1(1))) = Vol (Bi-a(2(1)))
Vol(Bi—a(v(t))) — Vol(Bi—q(7(t)))

_ Vol (Buya(0(1))

Vol (Bi—a(7(t)))  — (t—a)"




and hence

1 t—a)"
Vol (Be-1 (1) = Vol(Ba o) (e = VollBao) G s~ o
(a1
Given t >ty > a, setting c(n,ty) = inf %% > 0, we obtain

telto,+o0)

Vol (By—a(7(t))) > Vol(Ba(p)) c(n, to) t.

If dist (z,7(™5%)) < “£% — a, then by the triangle inequality,
dist(z, p) < dist (,7(42)) + dist (7(52),p) < (552 — ) + 752 = 1.

so x € By(p), which proves that Bria_,(v(™5%)) C By(p). Setting t = “£% in the
2
inequality obtained in b), we have that if ¢ > tg, i.e., r > 2ty — a,

Vol(B,(p)) > Vol (B’”Jga—a (,-)/(7’42-(1))> > Vol(Ba(p)) c(n, to) "% > cr

where ¢ = 1 Vol(B,(p)) c(n, t9). So there exist constants ¢, C > 0 such that
cr < Vol(B,(p)) < Cr",

where C' = Vol(B7), once again by Bishop Volume Comparison. Since the above
lower bound for Vol(B,(p)) holds for all » > 2ty — a, taking r ,* +00 we conclude
that (M™,g) has infinite volume.

For each 1 < k < n, let M™ = $" % x R* and g be the product metric, which
has sec > 0 and hence Ric > 0. By Fubini’s theorem, Vol(B;(p)) is asymptotic to
Vol($"%) Vol(By) r* where By C R” is the Euclidean unit ball.

Note: The above constant ¢ = £ Vol(Bq(p)) c(n, tg) cannot be made “universal”, i.e.,
independent of Vol(B,(p)), as shown by examples of C. Croke of complete noncompact
manifolds with Ric > 0 and inf,cps Vol(Bg(p)) = 0.

. Consider the unit sphere $> C R% and let M = $°N(R*®{0}) and N = $°N ({0} & R3),
which are isometric copies of the unit sphere $? sitting in $°.

a)
b)

c)

Verify that M and N are totally geodesic in $°.

Given a unit vector z € R3, identify T(z0)M with a subspace of T| (x70)$5, and
let T(‘,LO)Ml C T(x,O)S5 be its orthogonal complement. If v € T(LO)ML is a unit
vector, find an explicit formula for the geodesic v(t) = €XP(y,0) tV ON $° C RE.
Let TM* = U,cn T(‘,JD,O)ML be the normal bundle of M C $°, which is a trivial
bundle TM* = M x R3. We write (z,t,v) € TM", where t > 0 and v € T(gvyo)ML
is a unit vector. Show that the restriction of f: TM+ — 8% f(x,t,v) = exp(z,0) tV,
to {(z,t,v) € TM*:0 <t < %} is a diffeomorphism onto its image $° \ N.

8



d)

)

Show that, for each (z,0) € M, the map ¢,: $? C T(U,,:7())ML — N given by
¢z(v) = f(z, 5,v) is an isometry.

Show that M, N C $° are subsets at maximal distance disty(M, N) = 7/2, i.e., the
function M > x +— distg(z, N) = inf{distg(x,y) : y € N} is constant and equal to
7/2, and for any subset P C $°, P ¢ N, one has distg(x, P) < 5 for some x € M.

The unique geodesic v: R — $° C RS with initial conditions v(0) = p and 4(0) = v
is v(t) = (cost)p + (sint)v. Thus, if either p € M and v € T,M, i.e., p = (p1,0
and v = (v1,0), or if p € N and v € T,N, ie., p = (0,p2) and v = (0,v2)
then v(t) = ((cost)py + (sint)vy,0) € M or y(t) = (0, (cost)py + (sint)vy) € N,
respectively, for all ¢ € M, so M and N are totally geodesic.

By the same discussion above, the given geodesic 7(t) = €XP(;,0) tv On 8% C RS is
v(t) = ((cost)z, (sint)v).

By the above, f(z,t,v) = exp(, g tv = ((cost)z, (sint)v), so its restriction to
M x Bz (0) = {(z,t,v) € TM* :0<t< Z}is a diffeomorphism onto its image
$5\ NV, since cost and sint are diffeomorphisms from (0, 5) to (0,1); namely, its
inverse is given by f~1(y,w) = (ﬁ,arccog llyll, leTH) for all (y,w) € $°\ (M UN)
and f~1(y,0) = (y,0,0) if (y,0) € M.

Identifying T(%O)MJ- =~ ({0} @ R?) C RS, the map ¢,: $> C T(M))ML — N given
by ¢.(v) = f(x, 5,v) = (0,v) is the identity map, hence an isometry.

The geodesic (t) = exp(, o) tv = ((cost)z, (sint)v) is minimizing for ¢ € (0,%),
and y(t) ¢ N for t € (0, 3), while exp(, o) 5v = (0,v) € N, so for all z € M, we
have distg(z, N) = 5 and this distance is achieved along any geodesic normal to M.
Alternatively, note that M and N are orbits of the isometric action of SO(3)xSO(3)
on $° € R® = R? @ R3, hence these submanifolds are equidistant. Moreover, if
p = (p1,p2) € $°\ (M UN) C RE then dist(p, M) = arccos ||p1|| < 7 is achieved
along a geodesic () = exp, o) tv, where r = Hg—i” and v = H%II € Ty oM+, so N
is the set at maximal distance from M, and vice-versa.



