Final Exam

DUE: MAY 17, 2024

1. Consider the Lie group

$$\mathsf{G} = \left\{ \begin{pmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathsf{GL}(3, \mathbb{R}) : x > 0, \, y, z \in \mathbb{R} \right\},\$$

whose Lie algebra, endowed with the Lie bracket [A, B] = AB - BA from $\mathfrak{gl}(3, \mathbb{R})$, is

$$\mathfrak{g} = \operatorname{span} \left\{ X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \subset \mathfrak{gl}(3, \mathbb{R}).$$

- a) Compute the Lie brackets [X, Y], [Y, Z], [X, Z] of the basis elements of \mathfrak{g} , and write them in terms of X, Y, Z.
- b) Let g be the left-invariant Riemannian metric on G that at Id \in G coincides with the inner product on g for which $\{X, Y, Z\}$ is an orthonormal basis. Denote by $X, Y, Z \in \mathfrak{X}(G)$ the left-invariant vector fields corresponding to $X, Y, Z \in \mathfrak{g}$. Use the Koszul formula and a) to compute the the Levi-Civita connection ∇ of (G, g),

$$\begin{aligned}
\nabla_X X &= & \nabla_X Y = & \nabla_X Z = \\
\nabla_Y X &= & \nabla_Y Y = & \nabla_Y Z = \\
\nabla_Z X &= & \nabla_Z Y = & \nabla_Z Z =
\end{aligned}$$

(To avoid unnecessary computations, recall that $\nabla_A B - \nabla_B A = [A, B]$.)

- c) Show that the curvature operator $R: \wedge^2 \mathfrak{g} \to \wedge^2 \mathfrak{g}$ is R = -Id. Conclude that g is not a bi-invariant metric, and that (G, g) is isometric to hyperbolic 3-space.
- d) On a matrix Lie group, such as G, the adjoint action is given by conjugation, i.e., Ad $(A)B = ABA^{-1}$, for all $A \in G$ and $B \in \mathfrak{g}$. Show that

if
$$A = \begin{pmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, then $Ad(A)X = X - yY - zZ$,
Ad $(A)Y = xY$,
Ad $(A)Z = xZ$,

and use the matrix that represents $\operatorname{Ad}(A): \mathfrak{g} \to \mathfrak{g}$ in the basis $\{X, Y, Z\}$ to compute the eigenvalues of $\operatorname{Ad}(A)$. Conclude that G does not admit bi-invariant metrics.

a) The Lie brackets (given by commutators) can be computed as follows:

 $[X, Y] = Y, \quad [X, Z] = Z, \quad [Y, Z] = 0$

b) Since X, Y, Z and g are left-invariant, terms of the form X(g(Y, Z)) vanish. Thus, Koszul's formula simplifies to the last three terms, which are determined by the above brackets. Moreover, since $\{X, Y, Z\}$ is orthonormal, we can skip computing some instances of Koszul's formula, e.g.,

$$0 = X(g(X, X)) = 2g(\nabla_X X, X), \quad \text{hence} \quad \nabla_X X = aY + bZ$$

$$0 = X(g(X, Y)) = g(\nabla_X X, Y) + g(X, \nabla_X Y) \quad \text{hence} \quad a = -g(X, \nabla_X Y)$$

$$0 = X(g(X, Z)) = g(\nabla_X X, Z) + g(X, \nabla_X Z) \quad \text{hence} \quad b = -g(X, \nabla_X Z).$$

Altogether, we find:

$$\nabla_X X = 0 \qquad \nabla_X Y = 0 \qquad \nabla_X Z = 0$$

$$\nabla_Y X = -Y \qquad \nabla_Y Y = X \qquad \nabla_Y Z = 0$$

$$\nabla_Z X = -Z \qquad \nabla_Z Y = 0 \qquad \nabla_Z Z = X$$

c) The curvature operator $R: \wedge^2 \mathfrak{g} \to \wedge^2 \mathfrak{g}$ is diagonal on the basis $\{X \wedge Y, X \wedge Z, Y \wedge Z\}$ and all eigenvalues are equal to -1. For instance, we compute:

$$\langle R(X \wedge Y), X \wedge Y \rangle = \langle \nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y - \nabla_{[X,Y]} Y, X \rangle$$

$$= \langle \nabla_X X - \nabla_Y Y, X \rangle$$

$$= -1$$

$$\langle R(X \wedge Y), X \wedge Z \rangle = \langle \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, X \rangle$$

$$= \langle -\nabla_Y Z, X \rangle$$

$$= 0$$

$$\langle R(X \wedge Y), Y \wedge Z \rangle = \langle \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, Y \rangle$$

$$= \langle -\nabla_Y Z, Y \rangle$$

$$= 0,$$

the remaining (similar) computations needed are:

$$\langle R(X \land Z), X \land Z \rangle = -1 \langle R(Y \land Z), Y \land Z \rangle = -1 \langle R(X \land Z), Y \land Z \rangle = 0.$$

Thus, (G,g) has sec ≡ -1, so g is not bi-invariant (for otherwise it would have sec ≥ 0). As G is simply-connected, it follows that (G,g) is isometric to H³.
d) Since Ad(A)B = ABA⁻¹, we compute

$$\begin{aligned} \operatorname{Ad}(A)X &= \begin{pmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{x} & -\frac{y}{x} & -\frac{z}{x} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -y & -z \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = X - yY - zZ \end{aligned}$$

$$Ad(A)Y = \begin{pmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{x} & -\frac{y}{x} & -\frac{z}{x} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = xY$$
$$\begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{x} & -\frac{y}{x} & -\frac{z}{x} \\ \frac{1}{x} & -\frac{y}{x} & -\frac{z}{x} \end{pmatrix}$$

$$Ad(A)Z = \begin{pmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{z}{x} & -\frac{z}{x} & -\frac{z}{x} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = xZ.$$

Thus, Ad(A) is represented in the basis $\{X, Y, Z\}$ by the upper triangular matrix

$$Ad(A) = \begin{pmatrix} 1 & 0 & 0 \\ -y & x & 0 \\ -z & 0 & x \end{pmatrix},$$

whose eigenvalues are 1, x, x. All inner products on \mathfrak{g} are of the form $\mathfrak{g}(P \cdot, \cdot)$ where $P: \mathfrak{g} \to \mathfrak{g}$ is positive-definite and g-symmetric $(P^T = P)$, so $\mathrm{Ad}(A)$ is a linear isometry of such an inner product if and only if $(\mathrm{Ad}(A))^T P \mathrm{Ad}(A) = P$, i.e., $\mathrm{Ad}(A)^{-1} = P^{-1}(\mathrm{Ad}(A))^T P$. If this is case, $\mathrm{Ad}(A)^{-1}$ has the same eigenvalues as $\mathrm{Ad}(A)$, but that is only possible if x = 1. Thus, $\mathrm{Ad}(A)$ cannot be a linear isometry of \mathfrak{g} for all x > 0, regardless of the inner product chosen on \mathfrak{g} , so \mathfrak{G} does not admit a bi-invariant metric.

2. Let (M^4, g) be a closed Riemannian 4-manifold. The conformal metric $h = u^2 g$, where $u: M^4 \to \mathbb{R}$ is a positive smooth function, has scalar curvature given by:

$$\operatorname{scal}_{h} = (-6\Delta u + u \operatorname{scal}_{g}) u^{-3}$$

where $\Delta u = \text{tr Hess } u$. Suppose $\text{scal}_{g} \equiv \kappa$ and $\text{scal}_{h} \equiv \kappa$ are both constant and equal.

- a) Prove that if $\kappa \neq 0$, then either $u \equiv 1$, or there exist points $p, q \in M$ such that u(p) < 1 < u(q).
- b) Prove that if $\kappa < 0$, then h = g. What happens if $\kappa = 0$?
- a) As $\operatorname{scal}_{\mathrm{g}} \equiv \kappa$ and $\operatorname{scal}_{\mathrm{h}} \equiv \kappa$, we have that $u: M \to \mathbb{R}$ solves the PDE

$$\Delta u = \frac{\kappa}{6} u \left(1 - u^2 \right).$$

Note that if a positive solution $u: M \to \mathbb{R}$ is constant, then $\Delta u = 0$, so $u \equiv 1$. Since M is closed, by Stokes' Theorem, we have that integrating both sides

$$0 = \int_M \Delta u \operatorname{vol}_g = \frac{\kappa}{6} \int_M u (1 - u^2) \operatorname{vol}_g.$$

Thus, $1 - u^2$ has zero weighted average on M with respect to the measure $u \operatorname{vol}_g$, so either $u(x) \ge 1$ for all $x \in M$ or $u(x) \le 1$ for all $x \in M$ imply $u \equiv 1$. Therefore, if $u \not\equiv 1$, then there exist $p, q \in M$ such that u(p) < 1 < u(q).

b) Since M is closed, $u: M \to \mathbb{R}$ achieves a minimum p_0 and a maximum q_0 . At the minimum, $0 \leq \Delta u(p_0) = \frac{\kappa}{6} u(p_0) (1 - u(p_0)^2)$. By a), if $u \neq 1$, then $0 < u(p_0) < 1$, so the previous inequality would imply that $\kappa \geq 0$. Since we have $\kappa < 0$, it follows that $u \equiv 1$, hence h = g.

If $\kappa = 0$, then the PDE becomes $\Delta u = 0$, whose only (positive) solutions on the closed manifold M are (positive) constants $u \equiv c$. Thus, in that case, instead of h = g, the conclusion becomes $h = c^2 g$ for some constant c > 0, i.e., h and g are homothetic.

- 3. Let K^2 be the Klein bottle, and recall that it is double-covered by the 2-torus T^2 . Provide either a construction (just a brief outline of the curvature computations is fine) or a topological obstruction (quoting a theorem) as answer to the following questions:
 - a) Does $K^2 \times S^1$ admit a Riemannian metric with sec ≤ 0 ? How about sec < 0?
 - b) Does $K^2 \times \mathbb{R}P^2$ admit a Riemannian metric with Ric > 0? How about Ric ≥ 0 ?
 - c) Does $\mathbb{C}P^n$ admit a Riemannian metric with sec ≤ 0 ? How about sec ≥ 10 ?
 - d) Does $S^3/\mathbb{Z}_3 \times S^3/\mathbb{Z}_5$ admit a metric with sec > 0? How about scal $\equiv k > 0$?
 - a) The double covering $T^3 \to K^2 \times S^1$ can be endowed with a flat metric such that the group \mathbb{Z}_2 of deck transformations act as isometries, thus $K^2 \times S^1$ admits a flat metric; i.e., with sec $\equiv 0$, in particular, with sec ≤ 0 . By Preissmann's Theorem, it does not admit a metric with sec < 0, since $\pi_1(K^2 \times S^1) \cong (\mathbb{Z} \rtimes \mathbb{Z}) \times \mathbb{Z}$ contains Abelian subgroups nonisomorphic to \mathbb{Z} , e.g., $\mathbb{Z} \oplus \mathbb{Z}$.
 - b) By Myers' Theorem, $K^2 \times \mathbb{R}P^2$ does not admit a metric with Ric > 0, since, by compactness, it would have Ric > k > 0, while $\pi_1(K^2 \times \mathbb{R}P^2) \cong (\mathbb{Z} \rtimes \mathbb{Z}) \times \mathbb{Z}_2$ is not finite, or, equivalently, the universal covering $\mathbb{R}^2 \times \mathbb{S}^2$ is not compact. It does admit metrics with Ric ≥ 0 , e.g., the product metric of the flat metric on K^2 and the round metric on $\mathbb{R}P^2$ with sec $\equiv 1$ has sec ≥ 0 ; in particular, Ric ≥ 0 .
 - c) By the Cartan–Hadamard Theorem, there is no metric with $\sec \leq 0$ on $\mathbb{C}P^n$, since its universal covering is $\mathbb{C}P^n$ itself, which is not diffeomorphic to \mathbb{R}^{2n} . The Fubini–Study metric g on $\mathbb{C}P^n$ has $\sec_{g} \geq 1$, so $\frac{1}{10}$ g has $\sec_{\frac{1}{10}g} = 10 \sec_{g} \geq 10$.

- d) By Synge's Theorem, the fundamental group of an even-dimensional closed manifold with sec > 0 is either \mathbb{Z}_2 or trivial, so $\mathbb{S}^3/\mathbb{Z}_3 \times \mathbb{S}^3/\mathbb{Z}_5$ does not admit a metric with sec > 0, as it has $\pi_1(\mathbb{S}^3/\mathbb{Z}_3 \times \mathbb{S}^3/\mathbb{Z}_5) \cong \mathbb{Z}_{15}$. Each of $\mathbb{S}^3/\mathbb{Z}_3$ and $\mathbb{S}^3/\mathbb{Z}_5$ admit metrics with sec $\equiv 1$, hence scal $\equiv 6$, so the product metric has scal $\equiv 12 > 0$.
- 4. Let (M, g) be a connected compact Riemannian manifold with $\sec_M \ge 0$ and compact boundary $\partial M \ne \emptyset$. Suppose ∂M is convex, i.e., for all $p \in \partial M$, the shape operator $(S_{\vec{n}})_p: T_p \partial M \to T_p \partial M$, given by $S_{\vec{n}}(X) = -\nabla_X \vec{n}$, is positive-definite, where \vec{n} is the inward-pointing unit normal of ∂M .
 - a) Does ∂M have to be connected? If yes, give a proof; if no, give a counter-example.
 - b) Prove that $\pi_1(M, \partial M) = \{1\}$, hence the inclusion $\partial M \hookrightarrow M$ induces a surjective homomorphism $\pi_1(\partial M) \to \pi_1(M)$. You may use (without proof) the fact that minimizing length in a nontrivial free homotopy class of curves in M with endpoints in ∂M yields a geodesic in M with endpoints in ∂M .
 - c) Give two examples of the above situation, to show that $\pi_1(\partial M) \to \pi_1(M)$ may or may not be injective.
 - a) Yes, ∂M has to be connected.

Suppose $\partial M = \bigcup_{j=1}^{k} N_j$ has multiple connected components. As ∂M is compact, let $p, q \in \partial M$ be the closest points among pairs of points in different connected components of ∂M , say $p \in N_1$ and $q \in N_2$. Since (M, g) is complete, there exists a minimizing unit speed geodesic $\gamma \colon [0, L] \to M$ with $\gamma(0) = p$ and $\gamma(L) = q$ such that $\operatorname{dist}(x, y) \geq L$ for all $x \in N_1$ and $y \in N_2$.

Given $v \in T_p N_1 = T_p \partial M$, let $V(t) = P_t v$ be the parallel transport of v along $\gamma(t)$. Since γ minimizes length from N_1 to N_2 , by the first variation of energy, we have $\dot{\gamma}(0) = \vec{n}$ and $\dot{\gamma}(L) = -\vec{n}$, so $V(L) \in T_q N_2$. Let $\gamma_s(t), t \in [0, L], s \in (-\varepsilon, \varepsilon)$, be a variation of γ with endpoints in ∂M and variational field V. In order to facilitate the computation in the second variation formula, it is convenient to choose γ_s in such way that $\alpha : (-\varepsilon, \varepsilon) \to N_1, \alpha(s) = \gamma_s(0)$, and $\beta : (-\varepsilon, \varepsilon) \to N_2, \beta(s) = \gamma_s(L)$, are geodesics in N_1 and N_2 respectively, i.e., $\nabla_{\dot{\alpha}}^{N_1} \dot{\alpha} = 0$ and $\nabla_{\dot{\beta}}^{N_2} \dot{\beta} = 0$. Note this choice is possible as we only prescribed the variational field $V = \frac{d}{d}\gamma_s|_{s=0}$, so the endpoints $\alpha(s) = \gamma_s(0)$ and $\beta(s) = \gamma_s(L)$ can be chosen as any curves tangent to V(0) and V(L), e.g., $\alpha(s) = \exp_p^{N_1}(sV(0))$ and $\beta(s) = \exp_q^{N_2}(sV(L))$. Then,

$$\begin{split} g\left(\frac{DV}{\mathrm{d}s},\dot{\gamma}\right)\big|_{t=0} &= g\left(\nabla^{M}_{\dot{\alpha}}\dot{\alpha},\dot{\gamma}(0)\right) = g\left(\nabla^{\partial M}_{\dot{\alpha}}\dot{\alpha} + \mathbb{I}_{\partial M}(\dot{\alpha},\dot{\alpha}),\vec{n}\right) = g(S_{\vec{n}}(\dot{\alpha}),\dot{\alpha}) > 0\\ g\left(\frac{DV}{\mathrm{d}s},\dot{\gamma}\right)\big|_{t=L} &= g\left(\nabla^{M}_{\dot{\beta}}\dot{\beta},\dot{\gamma}(L)\right) = g\left(\nabla^{\partial M}_{\dot{\beta}}\dot{\beta} + \mathbb{I}_{\partial M}(\dot{\beta},\dot{\beta}),-\vec{n}\right) = -g(S_{\vec{n}}(\dot{\beta}),\dot{\beta}) < 0, \end{split}$$

since $S_{\vec{n}}$ is positive-definite. Thus, by the second variation formula,

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} E_{\mathrm{g}}(\gamma_s) \Big|_{s=0} = \mathrm{g}\left(\frac{DV}{\mathrm{d}s}, \dot{\gamma}\right) \Big|_0^L + \int_0^L \mathrm{g}\left(\frac{DV}{\mathrm{d}t}, \frac{DV}{\mathrm{d}t}\right) - \mathrm{g}(R(V, \dot{\gamma})\dot{\gamma}, V) \,\mathrm{d}t < 0,$$

so for sufficiently small $0 < |s| < \varepsilon$, the curve γ_s , is shorter than $\gamma_0 = \gamma$ and joins N_1 to N_2 , contradicting the choice of γ . Thus, ∂M is connected.

b) Suppose $\pi_1(M, \partial M) \neq \{1\}$, and let $\gamma: [0, L] \to M$ be a geodesic in M with endpoints $\gamma(0), \gamma(L) \in \partial M$ obtained by minimizing length on a nontrivial free homotopy class of curves in M with endpoints in ∂M . As in the previous item, by the first variation formula, $\dot{\gamma}(0) = \vec{n}$ and $\dot{\gamma}(L) = -\vec{n}$, and an identical computation with the second variation formula contradicts the minimality of γ . Thus, $\pi_1(M, \partial M) = \{1\}$ and hence the long exact sequence

$$\cdots \to \pi_1(\partial M) \to \pi_1(M) \to \pi_1(M, \partial M) \to \pi_0(\partial M) = \{1\}$$

implies that the induced homomorphism $\pi_1(\partial M) \to \pi_1(M)$ is surjective.

c) Let $M^n \subset \mathbb{R}^n$ be a strictly convex body with smooth boundary. Endowed with the flat metric induced from \mathbb{R}^n , we have $\sec_M \equiv 0$ and $\partial M \cong \mathbb{S}^{n-1}$ has $S_{\vec{n}} \succ 0$, cf. HW4 Prob. 2 and X. If n = 2, then $\pi_1(\partial M) \cong \mathbb{Z} \to \pi_1(M) \cong \{1\}$ is not injective, while for $n \geq 3$ it is trivially injective since $\pi_1(\partial M) \cong \pi_1(M) \cong \{1\}$.

Note that the conclusions above remain valid if the hypotheses $\sec_M \geq 0$ and $S_{\vec{n}} \succ 0$ are weakend to $\operatorname{Ric}_M \succeq 0$ and $H_{\partial M} = \operatorname{tr} S_{\vec{n}} > 0$, by replacing v with an orthonormal basis $v_i \in T_p \partial M$, and summing the second variation formula over $1 \leq i \leq n-1$.

- 5. Recall from Problem 6 in the Midterm that if (M, g) is a complete noncompact manifold and $p \in M$, then there exists a unit speed geodesic $\gamma \colon \mathbb{R} \to M$ such that $\gamma(0) = p$ and $\operatorname{dist}(\gamma(t), \gamma(s)) = |t - s|$ for all $t, s \geq 0$. Assume, moreover, that (M^n, g) has $\operatorname{Ric} \geq 0$.
 - a) Fix a > 0, and use Bishop Volume Comparison to show that, for all t > a,

$$\frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} \le \frac{(t+a)^n}{(t-a)^n}$$

b) Show that $B_a(p) \subset B_{t+a}(\gamma(t)) \setminus B_{t-a}(\gamma(t))$, and conclude that, given $t > t_0 > a$,

$$\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right) \ge c(n, t_0) \operatorname{Vol}(B_a(p)) t,$$

where $c(n, t_0) = \inf_{t \in [t_0, +\infty)} \frac{1}{t} \frac{(t-a)^n}{(t+a)^n - (t-a)^n} > 0.$

c) Show that $B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right) \subset B_r(p)$ and conclude that, for all $r > 2t_0 - a$,

$$c r \leq \operatorname{Vol}(B_r(p)) \leq C r^n,$$

where c, C > 0 are constants. In particular, (M^n, g) has infinite volume.

d) For each $1 \leq k \leq n$, give an example of a complete noncompact Riemannian manifold (M^n, g) with Ric ≥ 0 for which $\operatorname{Vol}(B_r(p)) = O(r^k)$ as $r \nearrow +\infty$.

a) Let $\overline{B_r} \subset \mathbb{R}^n$ be an Euclidean ball of radius r, and recall that $\operatorname{Vol}(\overline{B_r}) = \operatorname{Vol}(\overline{B_1})r^n$. By Bishop Volume Comparison, since (M^n, g) has Ric ≥ 0 , the function

$$r \mapsto \frac{\operatorname{Vol}\left(B_r(\gamma(t))\right)}{\operatorname{Vol}\left(\overline{B_r}\right)}$$

is nonincreasing, thus, for t > a, we have

$$\frac{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)}{\operatorname{Vol}\left(\overline{B_{t-a}}\right)} \geq \frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(\overline{B_{t+a}}\right)}$$

 \mathbf{SO}

$$\frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} \le \frac{\operatorname{Vol}\left(\overline{B_{t+a}}\right)}{\operatorname{Vol}\left(\overline{B_{t-a}}\right)} = \frac{\operatorname{Vol}(\overline{B_1})(t+a)^n}{\operatorname{Vol}(\overline{B_1})(t-a)^n} = \frac{(t+a)^n}{(t-a)^n}$$

b) Using the triangle inequality, we have that if $x \in B_a(p)$, i.e., dist(x, p) < a, then

$$\operatorname{dist}(x, \gamma(t)) \le \operatorname{dist}(x, p) + \operatorname{dist}(p, \gamma(t)) < a + t$$

so $x \in B_{t+a}(\gamma(t))$. However, if $x \in B_{t-a}(\gamma(t))$, then $dist(x, \gamma(t)) < t - a$, so

$$t = \operatorname{dist}(p, \gamma(t)) \le \operatorname{dist}(p, x) + \operatorname{dist}(x, \gamma(t)) < a + (t - a) = t,$$

which is a contradiction. Thus, we must have $x \notin B_{t-a}(\gamma(t))$, hence proving that $B_a(p) \subset B_{t+a}(\gamma(t)) \setminus B_{t-a}(\gamma(t))$, see figure below. Thus, for all t > a, using the

inequality from a), we have that

$$\frac{\operatorname{Vol}(B_{a}(p))}{\operatorname{Vol}(B_{t-a}(\gamma(t)))} \leq \frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right) - \operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)}{\operatorname{Vol}(B_{t-a}(\gamma(t)))} = \frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} - 1 \leq \frac{(t+a)^{n}}{(t-a)^{n}} - 1,$$

and hence

$$\operatorname{Vol}(B_{t-a}(\gamma(t))) \ge \operatorname{Vol}(B_{a}(p)) \frac{1}{\frac{(t+a)^{n}}{(t-a)^{n}} - 1} = \operatorname{Vol}(B_{a}(p)) \frac{(t-a)^{n}}{(t+a)^{n} - (t-a)^{n}}.$$

Given $t > t_0 > a$, setting $c(n, t_0) = \inf_{t \in [t_0, +\infty)} \frac{1}{t} \frac{(t-a)^n}{(t+a)^n - (t-a)^n} > 0$, we obtain

$$\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right) \geq \operatorname{Vol}(B_{a}(p)) c(n, t_{0}) t.$$

c) If dist $\left(x, \gamma\left(\frac{r+a}{2}\right)\right) < \frac{r+a}{2} - a$, then by the triangle inequality,

$$\operatorname{dist}(x,p) \le \operatorname{dist}\left(x,\gamma\left(\frac{r+a}{2}\right)\right) + \operatorname{dist}\left(\gamma\left(\frac{r+a}{2}\right),p\right) < \left(\frac{r+a}{2}-a\right) + \frac{r+a}{2} = r,$$

so $x \in B_r(p)$, which proves that $B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right) \subset B_r(p)$. Setting $t = \frac{r+a}{2}$ in the inequality obtained in b), we have that if $t > t_0$, i.e., $r > 2t_0 - a$,

$$\operatorname{Vol}(B_r(p)) \ge \operatorname{Vol}\left(B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right)\right) \ge \operatorname{Vol}(B_a(p)) c(n,t_0) \frac{r+a}{2} > c r$$

where $c = \frac{1}{2} \operatorname{Vol}(B_a(p)) c(n, t_0)$. So there exist constants c, C > 0 such that

$$c r \leq \operatorname{Vol}(B_r(p)) \leq C r^n$$

where $C = \operatorname{Vol}(\overline{B_1})$, once again by Bishop Volume Comparison. Since the above lower bound for $\operatorname{Vol}(B_r(p))$ holds for all $r > 2t_0 - a$, taking $r \nearrow +\infty$ we conclude that (M^n, g) has infinite volume.

d) For each $1 \leq k \leq n$, let $M^n = \mathbb{S}^{n-k} \times \mathbb{R}^k$ and g be the product metric, which has sec ≥ 0 and hence Ric ≥ 0 . By Fubini's theorem, $\operatorname{Vol}(B_r(p))$ is asymptotic to $\operatorname{Vol}(\mathbb{S}^{n-k}) \operatorname{Vol}(\overline{B_1}) r^k$ where $\overline{B_1} \subset \mathbb{R}^k$ is the Euclidean unit ball.

Note: The above constant $c = \frac{1}{2} \operatorname{Vol}(B_a(p)) c(n, t_0)$ cannot be made "universal", i.e., independent of $\operatorname{Vol}(B_a(p))$, as shown by examples of C. Croke of complete noncompact manifolds with $\operatorname{Ric} \geq 0$ and $\inf_{p \in M} \operatorname{Vol}(B_a(p)) = 0$.

- 6. Consider the unit sphere $\mathbb{S}^5 \subset \mathbb{R}^6$ and let $M = \mathbb{S}^5 \cap (\mathbb{R}^3 \oplus \{0\})$ and $N = \mathbb{S}^5 \cap (\{0\} \oplus \mathbb{R}^3)$, which are isometric copies of the unit sphere \mathbb{S}^2 sitting in \mathbb{S}^5 .
 - a) Verify that M and N are totally geodesic in \mathbb{S}^5 .
 - b) Given a unit vector $x \in \mathbb{R}^3$, identify $T_{(x,0)}M$ with a subspace of $T_{(x,0)}\mathbb{S}^5$, and let $T_{(x,0)}M^{\perp} \subset T_{(x,0)}\mathbb{S}^5$ be its orthogonal complement. If $v \in T_{(x,0)}M^{\perp}$ is a unit vector, find an explicit formula for the geodesic $\gamma(t) = \exp_{(x,0)}tv$ on $\mathbb{S}^5 \subset \mathbb{R}^6$.
 - c) Let $TM^{\perp} = \bigcup_{x \in M} T_{(x,0)}M^{\perp}$ be the normal bundle of $M \subset \mathbb{S}^5$, which is a trivial bundle $TM^{\perp} \cong M \times \mathbb{R}^3$. We write $(x, t, v) \in TM^{\perp}$, where $t \ge 0$ and $v \in T_{(x,0)}M^{\perp}$ is a unit vector. Show that the restriction of $f: TM^{\perp} \to \mathbb{S}^5$, $f(x, t, v) = \exp_{(x,0)} tv$, to $\{(x, t, v) \in TM^{\perp} : 0 \le t < \frac{\pi}{2}\}$ is a diffeomorphism onto its image $\mathbb{S}^5 \setminus N$.

- d) Show that, for each $(x,0) \in M$, the map $\phi_x \colon \mathbb{S}^2 \subset T_{(x,0)}M^{\perp} \to N$ given by $\phi_x(v) = f(x, \frac{\pi}{2}, v)$ is an isometry.
- e) Show that $M, N \subset \mathbb{S}^5$ are subsets at maximal distance $\operatorname{dist}_{g}(M, N) = \pi/2$, i.e., the function $M \ni x \mapsto \operatorname{dist}_{g}(x, N) = \inf \{ \operatorname{dist}_{g}(x, y) : y \in N \}$ is constant and equal to $\pi/2$, and for any subset $P \subset \mathbb{S}^5$, $P \not\subset N$, one has $\operatorname{dist}_{g}(x, P) < \frac{\pi}{2}$ for some $x \in M$.
- a) The unique geodesic $\gamma \colon \mathbb{R} \to \mathbb{S}^5 \subset \mathbb{R}^6$ with initial conditions $\gamma(0) = p$ and $\dot{\gamma}(0) = v$ is $\gamma(t) = (\cos t)p + (\sin t)v$. Thus, if either $p \in M$ and $v \in T_pM$, i.e., $p = (p_1, 0)$ and $v = (v_1, 0)$, or if $p \in N$ and $v \in T_pN$, i.e., $p = (0, p_2)$ and $v = (0, v_2)$, then $\gamma(t) = ((\cos t)p_1 + (\sin t)v_1, 0) \in M$ or $\gamma(t) = (0, (\cos t)p_1 + (\sin t)v_1) \in N$, respectively, for all $t \in M$, so M and N are totally geodesic.
- b) By the same discussion above, the given geodesic $\gamma(t) = \exp_{(x,0)} tv$ on $\mathbb{S}^5 \subset \mathbb{R}^6$ is $\gamma(t) = ((\cos t)x, (\sin t)v).$
- c) By the above, $f(x,t,v) = \exp_{(x,0)} tv = ((\cos t)x, (\sin t)v)$, so its restriction to $M \times B_{\frac{\pi}{2}}(0) = \{(x,t,v) \in TM^{\perp} : 0 \le t < \frac{\pi}{2}\}$ is a diffeomorphism onto its image $\mathbb{S}^5 \setminus N$, since $\cos t$ and $\sin t$ are diffeomorphisms from $(0, \frac{\pi}{2})$ to (0, 1); namely, its inverse is given by $f^{-1}(y,w) = (\frac{y}{\|y\|}, \arccos \|y\|, \frac{w}{\|w\|})$ for all $(y,w) \in \mathbb{S}^5 \setminus (M \cup N)$ and $f^{-1}(y,0) = (y,0,0)$ if $(y,0) \in M$.
- d) Identifying $T_{(x,0)}M^{\perp} \cong (\{0\} \oplus \mathbb{R}^3) \subset \mathbb{R}^6$, the map $\phi_x \colon \mathbb{S}^2 \subset T_{(x,0)}M^{\perp} \to N$ given by $\phi_x(v) = f(x, \frac{\pi}{2}, v) = (0, v)$ is the identity map, hence an isometry.
- e) The geodesic $\gamma(t) = \exp_{(x,0)} tv = ((\cos t)x, (\sin t)v)$ is minimizing for $t \in (0, \frac{\pi}{2})$, and $\gamma(t) \notin N$ for $t \in (0, \frac{\pi}{2})$, while $\exp_{(x,0)} \frac{\pi}{2}v = (0, v) \in N$, so for all $x \in M$, we have dist_g $(x, N) = \frac{\pi}{2}$ and this distance is achieved along any geodesic normal to M. Alternatively, note that M and N are orbits of the isometric action of $SO(3) \times SO(3)$ on $\mathbb{S}^5 \subset \mathbb{R}^6 = \mathbb{R}^3 \oplus \mathbb{R}^3$, hence these submanifolds are equidistant. Moreover, if $p = (p_1, p_2) \in \mathbb{S}^5 \setminus (M \cup N) \subset \mathbb{R}^6$, then dist $(p, M) = \arccos \|p_1\| < \frac{\pi}{2}$ is achieved along a geodesic $\gamma(t) = \exp_{(x,0)} tv$, where $x = \frac{p_1}{\|p_1\|}$ and $v = \frac{p_2}{\|p_2\|} \in T_{(x,0)}M^{\perp}$, so Nis the set at maximal distance from M, and vice-versa.