
MATH71000, Spring 2024 Renato Ghini Bettiol

Final Exam

Due: May 17, 2024

1. Consider the Lie group

G =


x y z

0 1 0
0 0 1

 ∈ GL(3,R) : x > 0, y, z ∈ R

 ,

whose Lie algebra, endowed with the Lie bracket [A,B] = AB −BA from gl(3,R), is

g = span

X =

1 0 0
0 0 0
0 0 0

 , Y =

0 1 0
0 0 0
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

 ⊂ gl(3,R).

a) Compute the Lie brackets [X,Y ], [Y,Z], [X,Z] of the basis elements of g, and
write them in terms of X,Y, Z.

b) Let g be the left-invariant Riemannian metric on G that at Id ∈ G coincides with
the inner product on g for which {X,Y, Z} is an orthonormal basis. Denote by
X,Y, Z ∈ X(G) the left-invariant vector fields corresponding to X,Y, Z ∈ g. Use
the Koszul formula and a) to compute the the Levi-Civita connection ∇ of (G, g),

∇XX = ∇XY = ∇XZ =

∇YX = ∇Y Y = ∇Y Z =

∇ZX = ∇ZY = ∇ZZ =

(To avoid unnecessary computations, recall that ∇AB −∇BA = [A,B].)

c) Show that the curvature operator R : ∧2 g→ ∧2g is R = −Id. Conclude that g is
not a bi-invariant metric, and that (G, g) is isometric to hyperbolic 3-space.

d) On a matrix Lie group, such as G, the adjoint action is given by conjugation, i.e.,
Ad(A)B = ABA−1, for all A ∈ G and B ∈ g. Show that

if A =

x y z
0 1 0
0 0 1

 , then
Ad(A)X = X − yY − zZ,
Ad(A)Y = xY,
Ad(A)Z = xZ,

and use the matrix that represents Ad(A) : g→ g in the basis {X,Y, Z} to compute
the eigenvalues of Ad(A). Conclude that G does not admit bi-invariant metrics.

a) The Lie brackets (given by commutators) can be computed as follows:

[X,Y ] = Y, [X,Z] = Z, [Y, Z] = 0



b) Since X,Y, Z and g are left-invariant, terms of the form X(g(Y,Z)) vanish. Thus,
Koszul’s formula simplifies to the last three terms, which are determined by the
above brackets. Moreover, since {X,Y, Z} is orthonormal, we can skip computing
some instances of Koszul’s formula, e.g.,

0 = X(g(X,X)) = 2g(∇XX,X), hence ∇XX = aY + bZ

0 = X(g(X,Y )) = g(∇XX,Y ) + g(X,∇XY ) hence a = −g(X,∇XY )

0 = X(g(X,Z)) = g(∇XX,Z) + g(X,∇XZ) hence b = −g(X,∇XZ).

Altogether, we find:

∇XX = 0 ∇XY = 0 ∇XZ = 0
∇YX = −Y ∇Y Y = X ∇Y Z = 0
∇ZX = −Z ∇ZY = 0 ∇ZZ = X

c) The curvature operator R : ∧2g→ ∧2g is diagonal on the basis {X∧Y,X∧Z, Y ∧Z}
and all eigenvalues are equal to −1. For instance, we compute:

〈R(X ∧ Y ), X ∧ Y 〉 = 〈∇X∇Y Y −∇Y∇XY −∇[X,Y ]Y,X〉
= 〈∇XX −∇Y Y,X〉
= −1

〈R(X ∧ Y ), X ∧ Z〉 = 〈∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,X〉
= 〈−∇Y Z,X〉
= 0

〈R(X ∧ Y ), Y ∧ Z〉 = 〈∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, Y 〉
= 〈−∇Y Z, Y 〉
= 0,

the remaining (similar) computations needed are:

〈R(X ∧ Z), X ∧ Z〉 = −1

〈R(Y ∧ Z), Y ∧ Z〉 = −1

〈R(X ∧ Z), Y ∧ Z〉 = 0.

Thus, (G, g) has sec ≡ −1, so g is not bi-invariant (for otherwise it would have
sec ≥ 0). As G is simply-connected, it follows that (G, g) is isometric to H3.

d) Since Ad(A)B = ABA−1, we compute

Ad(A)X =

x y z
0 1 0
0 0 1

1 0 0
0 0 0
0 0 0

 1
x − y

x − z
x

0 1 0
0 0 1


=

1 −y −z
0 0 0
0 0 0

 = X − yY − zZ
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Ad(A)Y =

x y z
0 1 0
0 0 1

0 1 0
0 0 0
0 0 0

 1
x − y

x − z
x

0 1 0
0 0 1


=

0 x 0
0 0 0
0 0 0

 = xY

Ad(A)Z =

x y z
0 1 0
0 0 1

0 0 1
0 0 0
0 0 0

 1
x − y

x − z
x

0 1 0
0 0 1


=

0 0 x
0 0 0
0 0 0

 = xZ.

Thus, Ad(A) is represented in the basis {X,Y, Z} by the upper triangular matrix

Ad(A) =

 1 0 0
−y x 0
−z 0 x

 ,

whose eigenvalues are 1, x, x. All inner products on g are of the form g(P ·, ·)
where P : g → g is positive-definite and g-symmetric (P T = P ), so Ad(A) is a
linear isometry of such an inner product if and only if (Ad(A))T P Ad(A) = P ,
i.e., Ad(A)−1 = P−1(Ad(A))TP . If this is case, Ad(A)−1 has the same eigenvalues
as Ad(A), but that is only possible if x = 1. Thus, Ad(A) cannot be a linear
isometry of g for all x > 0, regardless of the inner product chosen on g, so G does
not admit a bi-invariant metric.

2. Let (M4, g) be a closed Riemannian 4-manifold. The conformal metric h = u2 g, where
u : M4 → R is a positive smooth function, has scalar curvature given by:

scalh =
(
− 6 ∆u+ u scalg

)
u−3,

where ∆u = tr Hessu. Suppose scalg ≡ κ and scalh ≡ κ are both constant and equal.

a) Prove that if κ 6= 0, then either u ≡ 1, or there exist points p, q ∈ M such that
u(p) < 1 < u(q).

b) Prove that if κ < 0, then h = g. What happens if κ = 0?

a) As scalg ≡ κ and scalh ≡ κ, we have that u : M → R solves the PDE

∆u = κ
6 u (1− u2).
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Note that if a positive solution u : M → R is constant, then ∆u = 0, so u ≡ 1.
Since M is closed, by Stokes’ Theorem, we have that integrating both sides

0 =

∫
M

∆u volg = κ
6

∫
M
u (1− u2) volg.

Thus, 1− u2 has zero weighted average on M with respect to the measure u volg,
so either u(x) ≥ 1 for all x ∈M or u(x) ≤ 1 for all x ∈M imply u ≡ 1. Therefore,
if u 6≡ 1, then there exist p, q ∈M such that u(p) < 1 < u(q).

b) Since M is closed, u : M → R achieves a minimum p0 and a maximum q0. At the
minimum, 0 ≤ ∆u(p0) = κ

6 u(p0) (1− u(p0)
2). By a), if u 6≡ 1, then 0 < u(p0) < 1,

so the previous inequality would imply that κ ≥ 0. Since we have κ < 0, it follows
that u ≡ 1, hence h = g.

If κ = 0, then the PDE becomes ∆u = 0, whose only (positive) solutions on the
closed manifold M are (positive) constants u ≡ c. Thus, in that case, instead of
h = g, the conclusion becomes h = c2 g for some constant c > 0, i.e., h and g are
homothetic.

3. Let K2 be the Klein bottle, and recall that it is double-covered by the 2-torus T 2.
Provide either a construction (just a brief outline of the curvature computations is fine)
or a topological obstruction (quoting a theorem) as answer to the following questions:

a) Does K2 × S1 admit a Riemannian metric with sec ≤ 0? How about sec < 0?

b) Does K2 ×RP 2 admit a Riemannian metric with Ric > 0? How about Ric ≥ 0?

c) Does CPn admit a Riemannian metric with sec ≤ 0? How about sec ≥ 10?

d) Does S3/Z3 × S3/Z5 admit a metric with sec > 0? How about scal ≡ k > 0?

a) The double covering T 3 → K2 × S1 can be endowed with a flat metric such that
the group Z2 of deck transformations act as isometries, thus K2×S1 admits a flat
metric; i.e., with sec ≡ 0, in particular, with sec ≤ 0. By Preissmann’s Theorem,
it does not admit a metric with sec < 0, since π1(K

2×S1) ∼= (ZoZ)×Z contains
Abelian subgroups nonisomorphic to Z, e.g., Z⊕Z.

b) By Myers’ Theorem, K2 × RP 2 does not admit a metric with Ric > 0, since, by
compactness, it would have Ric > k > 0, while π1(K

2 ×RP 2) ∼= (Zo Z)× Z2 is
not finite, or, equivalently, the universal covering R2 × S2 is not compact. It does
admit metrics with Ric ≥ 0, e.g., the product metric of the flat metric on K2 and
the round metric on RP 2 with sec ≡ 1 has sec ≥ 0; in particular, Ric ≥ 0.

c) By the Cartan–Hadamard Theorem, there is no metric with sec ≤ 0 on CPn,
since its universal covering is CPn itself, which is not diffeomorphic to R2n. The
Fubini–Study metric g on CPn has secg ≥ 1, so 1

10g has sec 1
10g

= 10 secg ≥ 10.
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d) By Synge’s Theorem, the fundamental group of an even-dimensional closed mani-
fold with sec > 0 is either Z2 or trivial, so S3/Z3×S3/Z5 does not admit a metric
with sec > 0, as it has π1(S

3/Z3×S3/Z5) ∼= Z15. Each of S3/Z3 and S3/Z5 admit
metrics with sec ≡ 1, hence scal ≡ 6, so the product metric has scal ≡ 12 > 0.

4. Let (M, g) be a connected compact Riemannian manifold with secM ≥ 0 and compact
boundary ∂M 6= ∅. Suppose ∂M is convex, i.e., for all p ∈ ∂M , the shape operator
(S~n)p : Tp∂M → Tp∂M , given by S~n(X) = −∇X~n, is positive-definite, where ~n is the
inward-pointing unit normal of ∂M .

a) Does ∂M have to be connected? If yes, give a proof; if no, give a counter-example.

b) Prove that π1(M,∂M) = {1}, hence the inclusion ∂M ↪→ M induces a surjective
homomorphism π1(∂M) → π1(M). You may use (without proof) the fact that
minimizing length in a nontrivial free homotopy class of curves inM with endpoints
in ∂M yields a geodesic in M with endpoints in ∂M .

c) Give two examples of the above situation, to show that π1(∂M)→ π1(M) may or
may not be injective.

a) Yes, ∂M has to be connected.

Suppose ∂M =
⋃k
j=1Nj has multiple connected components. As ∂M is compact,

let p, q ∈ ∂M be the closest points among pairs of points in different connected
components of ∂M , say p ∈ N1 and q ∈ N2. Since (M, g) is complete, there exists
a minimizing unit speed geodesic γ : [0, L]→M with γ(0) = p and γ(L) = q such
that dist(x, y) ≥ L for all x ∈ N1 and y ∈ N2.

Given v ∈ TpN1 = Tp∂M , let V (t) = Ptv be the parallel transport of v along γ(t).
Since γ minimizes length from N1 to N2, by the first variation of energy, we have
γ̇(0) = ~n and γ̇(L) = −~n, so V (L) ∈ TqN2. Let γs(t), t ∈ [0, L], s ∈ (−ε, ε), be a
variation of γ with endpoints in ∂M and variational field V . In order to facilitate
the computation in the second variation formula, it is convenient to choose γs in
such way that α : (−ε, ε)→ N1, α(s) = γs(0), and β : (−ε, ε)→ N2, β(s) = γs(L),
are geodesics in N1 and N2 respectively, i.e., ∇N1

α̇ α̇ = 0 and ∇N2

β̇
β̇ = 0. Note this

choice is possible as we only prescribed the variational field V = d
dγs|s=0, so the

endpoints α(s) = γs(0) and β(s) = γs(L) can be chosen as any curves tangent to
V (0) and V (L), e.g., α(s) = expN1

p (sV (0)) and β(s) = expN2
q (sV (L)). Then,

g
(
DV
ds , γ̇

)∣∣
t=0

= g
(
∇Mα̇ α̇, γ̇(0)

)
= g
(
∇∂Mα̇ α̇+ II∂M (α̇, α̇), ~n

)
= g(S~n(α̇), α̇) > 0

g
(
DV
ds , γ̇

)∣∣
t=L

= g
(
∇M
β̇
β̇, γ̇(L)

)
= g
(
∇∂M
β̇

β̇ + II∂M (β̇, β̇),−~n
)

= −g(S~n(β̇), β̇) < 0,

since S~n is positive-definite. Thus, by the second variation formula,

d2

ds2
Eg(γs)

∣∣
s=0

= g
(
DV
ds , γ̇

) ∣∣∣L
0

+

∫ L

0
g
(
DV
dt ,

DV
dt

)
− g(R(V, γ̇)γ̇, V ) dt < 0,
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so for sufficiently small 0 < |s| < ε, the curve γs, is shorter than γ0 = γ and joins
N1 to N2, contradicting the choice of γ. Thus, ∂M is connected.

b) Suppose π1(M,∂M) 6= {1}, and let γ : [0, L] → M be a geodesic in M with
endpoints γ(0), γ(L) ∈ ∂M obtained by minimizing length on a nontrivial free
homotopy class of curves in M with endpoints in ∂M . As in the previous item,
by the first variation formula, γ̇(0) = ~n and γ̇(L) = −~n, and an identical compu-
tation with the second variation formula contradicts the minimality of γ. Thus,
π1(M,∂M) = {1} and hence the long exact sequence

· · · → π1(∂M)→ π1(M)→ π1(M,∂M)→ π0(∂M) = {1}

implies that the induced homomorphism π1(∂M)→ π1(M) is surjective.

c) Let Mn ⊂ Rn be a strictly convex body with smooth boundary. Endowed with
the flat metric induced from Rn, we have secM ≡ 0 and ∂M ∼= Sn−1 has S~n � 0,
cf. HW4 Prob. 2 and X. If n = 2, then π1(∂M) ∼= Z → π1(M) ∼= {1} is not
injective, while for n ≥ 3 it is trivially injective since π1(∂M) ∼= π1(M) ∼= {1}.

Note that the conclusions above remain valid if the hypotheses secM ≥ 0 and S~n � 0
are weakend to RicM � 0 and H∂M = trS~n > 0, by replacing v with an orthonormal
basis vi ∈ Tp∂M , and summing the second variation formula over 1 ≤ i ≤ n− 1.

5. Recall from Problem 6 in the Midterm that if (M, g) is a complete noncompact manifold
and p ∈M , then there exists a unit speed geodesic γ : R→M such that γ(0) = p and
dist(γ(t), γ(s)) = |t− s| for all t, s ≥ 0. Assume, moreover, that (Mn, g) has Ric ≥ 0.

a) Fix a > 0, and use Bishop Volume Comparison to show that, for all t > a,

Vol
(
Bt+a(γ(t))

)
Vol

(
Bt−a(γ(t))

) ≤ (t+ a)n

(t− a)n

b) Show that Ba(p) ⊂ Bt+a(γ(t)) \Bt−a(γ(t)), and conclude that, given t > t0 > a,

Vol
(
Bt−a(γ(t))

)
≥ c(n, t0) Vol(Ba(p)) t,

where c(n, t0) = inf
t∈[t0,+∞)

1
t

(t−a)n
(t+a)n−(t−a)n > 0.

c) Show that B r+a
2
−a
(
γ
(
r+a
2

))
⊂ Br(p) and conclude that, for all r > 2t0 − a,

c r ≤ Vol(Br(p)) ≤ C rn,

where c, C > 0 are constants. In particular, (Mn, g) has infinite volume.

d) For each 1 ≤ k ≤ n, give an example of a complete noncompact Riemannian
manifold (Mn, g) with Ric ≥ 0 for which Vol(Br(p)) = O(rk) as r ↗ +∞.
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a) Let Br ⊂ Rn be an Euclidean ball of radius r, and recall that Vol(Br) = Vol(B1)r
n.

By Bishop Volume Comparison, since (Mn, g) has Ric ≥ 0, the function

r 7→
Vol

(
Br(γ(t))

)
Vol

(
Br
)

is nonincreasing, thus, for t > a, we have

Vol
(
Bt−a(γ(t))

)
Vol

(
Bt−a

) ≥
Vol

(
Bt+a(γ(t))

)
Vol

(
Bt+a

)
so

Vol
(
Bt+a(γ(t))

)
Vol

(
Bt−a(γ(t))

) ≤ Vol
(
Bt+a

)
Vol

(
Bt−a

) =
Vol(B1)(t+ a)n

Vol(B1)(t− a)n
=

(t+ a)n

(t− a)n
.

b) Using the triangle inequality, we have that if x ∈ Ba(p), i.e., dist(x, p) < a, then

dist(x, γ(t)) ≤ dist(x, p) + dist(p, γ(t)) < a+ t,

so x ∈ Bt+a(γ(t)). However, if x ∈ Bt−a(γ(t)), then dist(x, γ(t)) < t− a, so

t = dist(p, γ(t)) ≤ dist(p, x) + dist(x, γ(t)) < a+ (t− a) = t,

which is a contradiction. Thus, we must have x /∈ Bt−a(γ(t)), hence proving that
Ba(p) ⊂ Bt+a(γ(t)) \ Bt−a(γ(t)), see figure below. Thus, for all t > a, using the

γ(t)

Bt+a(γ(t))

Bt−a(γ(t))

Ba(p)
Bt(p)

p

inequality from a), we have that

Vol(Ba(p))

Vol(Bt−a(γ(t)))
≤

Vol
(
Bt+a(γ(t))

)
−Vol

(
Bt−a(γ(t))

)
Vol(Bt−a(γ(t)))

=
Vol

(
Bt+a(γ(t))

)
Vol

(
Bt−a(γ(t))

) − 1 ≤ (t+ a)n

(t− a)n
− 1,
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and hence

Vol
(
Bt−a(γ(t))

)
≥ Vol(Ba(p))

1
(t+a)n

(t−a)n − 1
= Vol(Ba(p))

(t− a)n

(t+ a)n − (t− a)n
.

Given t > t0 > a, setting c(n, t0) = inf
t∈[t0,+∞)

1
t

(t−a)n
(t+a)n−(t−a)n > 0, we obtain

Vol
(
Bt−a(γ(t))

)
≥ Vol(Ba(p)) c(n, t0) t.

c) If dist
(
x, γ

(
r+a
2

))
< r+a

2 − a, then by the triangle inequality,

dist(x, p) ≤ dist
(
x, γ

(
r+a
2

))
+ dist

(
γ
(
r+a
2

)
, p
)
<
(
r+a
2 − a

)
+ r+a

2 = r,

so x ∈ Br(p), which proves that B r+a
2
−a
(
γ
(
r+a
2

))
⊂ Br(p). Setting t = r+a

2 in the

inequality obtained in b), we have that if t > t0, i.e., r > 2t0 − a,

Vol(Br(p)) ≥ Vol

(
B r+a

2 −a

(
γ
(
r+a
2

)))
≥ Vol(Ba(p)) c(n, t0)

r+a
2 > c r

where c = 1
2 Vol(Ba(p)) c(n, t0). So there exist constants c, C > 0 such that

c r ≤ Vol(Br(p)) ≤ C rn,

where C = Vol(B1), once again by Bishop Volume Comparison. Since the above
lower bound for Vol(Br(p)) holds for all r > 2t0 − a, taking r ↗ +∞ we conclude
that (Mn, g) has infinite volume.

d) For each 1 ≤ k ≤ n, let Mn = Sn−k × Rk and g be the product metric, which
has sec ≥ 0 and hence Ric ≥ 0. By Fubini’s theorem, Vol(Br(p)) is asymptotic to
Vol(Sn−k) Vol(B1) r

k where B1 ⊂ Rk is the Euclidean unit ball.

Note: The above constant c = 1
2 Vol(Ba(p)) c(n, t0) cannot be made “universal”, i.e.,

independent of Vol(Ba(p)), as shown by examples of C. Croke of complete noncompact
manifolds with Ric ≥ 0 and infp∈M Vol(Ba(p)) = 0.

6. Consider the unit sphere S5 ⊂ R6 and let M = S5∩(R3⊕{0}) and N = S5∩({0}⊕R3),
which are isometric copies of the unit sphere S2 sitting in S5.

a) Verify that M and N are totally geodesic in S5.

b) Given a unit vector x ∈ R3, identify T(x,0)M with a subspace of T(x,0)S
5, and

let T(x,0)M
⊥ ⊂ T(x,0)S

5 be its orthogonal complement. If v ∈ T(x,0)M⊥ is a unit
vector, find an explicit formula for the geodesic γ(t) = exp(x,0) tv on S5 ⊂ R6.

c) Let TM⊥ =
⋃
x∈M T(x,0)M

⊥ be the normal bundle of M ⊂ S5, which is a trivial

bundle TM⊥ ∼= M ×R3. We write (x, t, v) ∈ TM⊥, where t ≥ 0 and v ∈ T(x,0)M⊥

is a unit vector. Show that the restriction of f : TM⊥ → S5, f(x, t, v) = exp(x,0) tv,

to {(x, t, v) ∈ TM⊥ : 0 ≤ t < π
2 } is a diffeomorphism onto its image S5 \N .
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d) Show that, for each (x, 0) ∈ M , the map φx : S2 ⊂ T(x,0)M
⊥ → N given by

φx(v) = f(x, π2 , v) is an isometry.

e) Show that M,N ⊂ S5 are subsets at maximal distance distg(M,N) = π/2, i.e., the
function M 3 x 7→ distg(x,N) = inf{distg(x, y) : y ∈ N} is constant and equal to
π/2, and for any subset P ⊂ S5, P 6⊂ N , one has distg(x, P ) < π

2 for some x ∈M .

a) The unique geodesic γ : R→ S5 ⊂ R6 with initial conditions γ(0) = p and γ̇(0) = v
is γ(t) = (cos t)p + (sin t)v. Thus, if either p ∈ M and v ∈ TpM , i.e., p = (p1, 0)
and v = (v1, 0), or if p ∈ N and v ∈ TpN , i.e., p = (0, p2) and v = (0, v2),
then γ(t) =

(
(cos t)p1 + (sin t)v1, 0

)
∈ M or γ(t) =

(
0, (cos t)p1 + (sin t)v1

)
∈ N ,

respectively, for all t ∈M , so M and N are totally geodesic.

b) By the same discussion above, the given geodesic γ(t) = exp(x,0) tv on S5 ⊂ R6 is

γ(t) =
(
(cos t)x, (sin t)v

)
.

c) By the above, f(x, t, v) = exp(x,0) tv =
(
(cos t)x, (sin t)v

)
, so its restriction to

M × Bπ
2
(0) = {(x, t, v) ∈ TM⊥ : 0 ≤ t < π

2 } is a diffeomorphism onto its image

S5 \ N , since cos t and sin t are diffeomorphisms from (0, π2 ) to (0, 1); namely, its
inverse is given by f−1(y, w) =

( y
‖y‖ , arccos ‖y‖, w

‖w‖
)

for all (y, w) ∈ S5 \ (M ∪N)

and f−1(y, 0) = (y, 0, 0) if (y, 0) ∈M .

d) Identifying T(x,0)M
⊥ ∼= ({0} ⊕R3) ⊂ R6, the map φx : S2 ⊂ T(x,0)M

⊥ → N given
by φx(v) = f(x, π2 , v) = (0, v) is the identity map, hence an isometry.

e) The geodesic γ(t) = exp(x,0) tv =
(
(cos t)x, (sin t)v

)
is minimizing for t ∈ (0, π2 ),

and γ(t) 6∈ N for t ∈ (0, π2 ), while exp(x,0)
π
2 v = (0, v) ∈ N , so for all x ∈ M , we

have distg(x,N) = π
2 and this distance is achieved along any geodesic normal to M .

Alternatively, note thatM andN are orbits of the isometric action of SO(3)×SO(3)
on S5 ⊂ R6 = R3 ⊕ R3, hence these submanifolds are equidistant. Moreover, if
p = (p1, p2) ∈ S5 \ (M ∪N) ⊂ R6, then dist(p,M) = arccos ‖p1‖ < π

2 is achieved
along a geodesic γ(t) = exp(x,0) tv, where x = p1

‖p1‖ and v = p2
‖p2‖ ∈ T(x,0)M

⊥, so N
is the set at maximal distance from M , and vice-versa.
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