A 60-minute overview of the first 60 years of Paolo Piccione's mathematical career

Life in academia

- ► Research
- ► Teaching
- Service

Life in academia

- ► Research
- ► Teaching
- Service

§1. Infinite-dimensional Morse Theory applied to geodesics

 (M^n, g) Lorentzian manifold:

$$g \sim \begin{pmatrix} - & & & & \\ & + & & & \\ & & \ddots & & \\ & & & + \end{pmatrix}$$

Geodesics $(\mathit{M}^{n}, \mathrm{g}) \textit{ semi-Riemannian } \mathsf{manifold:} \ \mathrm{g} \sim \begin{pmatrix} - & & & \\ & - & & \\ & & \ddots & \\ & & & + \end{pmatrix}$

(M^n, g) semi-Riemannian manifold: $\mathrm{g} \sim$

$$sign(g) = n_+(g) - n_-(g)$$

(M^n, g) semi-Riemannian manifold: ${\rm g} \sim$

$$sign(g) = n_{+}(g) - n_{-}(g)$$
 $v \in T_{p}M$ is spacelike if $g(v, v) > 0$

$$lightlike \quad if \quad g(v, v) = 0$$

$$timelike \quad if \quad g(v, v) < 0$$

$$sign(g) = n_{+}(g) - n_{-}(g)$$

 $v \in T_{p}M$ is spacelike if $g(v, v) > 0$
 $lightlike$ if $g(v, v) = 0$
 $timelike$ if $g(v, v) < 0$

Enery functional
$$E(\gamma) = \int_a^b g(\dot{\gamma}, \dot{\gamma}) ds$$

 (M^n, g) semi-Riemannian manifold: $\mathrm{g} \sim \left| \begin{array}{cc} - & & & \\ & \ddots & & \\ & & + \end{array} \right|$

Enery functional
$$E(\gamma) = \int_a^b g(\dot{\gamma}, \dot{\gamma}) ds$$

► Not bounded from below

(
$$M^n, \mathrm{g}$$
) semi-Riemannian manifold: $\mathrm{g} \sim \begin{pmatrix} - & & & \\ & - & & \\ & & \ddots & \\ & & & + \end{pmatrix}$

$$sign(g) = n_{+}(g) - n_{-}(g)$$

 $v \in T_{p}M$ is spacelike if $g(v, v) > 0$
 $lightlike$ if $g(v, v) = 0$
 $timelike$ if $g(v, v) < 0$

Enery functional
$$E(\gamma) = \int_a^b g(\dot{\gamma}, \dot{\gamma}) ds$$

- Not bounded from below
- Critical points may have infinite Morse index

$$(M^n, \mathrm{g})$$
 semi-Riemannian manifold: $\mathrm{g} \sim \begin{pmatrix} & - & & & \\ & & \ddots & & \\ & & & + & \end{pmatrix}$

$$sign(g) = n_{+}(g) - n_{-}(g)$$

 $v \in T_{p}M$ is spacelike if $g(v, v) > 0$
 $lightlike$ if $g(v, v) = 0$
 $timelike$ if $g(v, v) < 0$

Enery functional
$$E(\gamma) = \int_{3}^{b} g(\dot{\gamma}, \dot{\gamma}) ds$$

- Not bounded from below
- Critical points may have infinite Morse index

[K. Uhlenbeck, 1975] Morse theory for (some) Lorentzian geodesics

 $\gamma \colon \mathbb{R} \to M$ timelike curve worldline of light source $p \in M$ event (observation)

z lightlike geodesic (*lightray*)

 $\gamma \colon \mathbb{R} \to M$ timelike curve worldline of light source $p \in M$ event (observation) z lightlike geodesic (*lightray*)

 $\gamma \colon \mathbb{R} \to M$ timelike curve worldline of light source $p \in M$ event (observation) z lightlike geodesic (lightray)

Multiple images?

 $\gamma \colon \mathbb{R} \to M$ timelike curve worldline of light source

 $p \in M$ event (observation)

z lightlike geodesic (*lightray*)

Multiple images?

Galaxy PSZ1 G311.65-18.48

 $\gamma \colon \mathbb{R} \to M$ timelike curve worldline of light source $p \in M$ event (observation)

z lightlike geodesic (*lightray*) Multiple images?

Galaxy PSZ1 G311.65-18.48

 $\gamma(\mathbb{R}) \subset \Lambda$ light-convex, $\partial \Lambda$ smooth, timelike

 $\gamma \colon \mathbb{R} \to M$ timelike curve worldline of light source $p \in M$ event (observation) z lightlike geodesic (*lightray*) Multiple images?

Galaxy PSZ1 G311.65-18.48

 $\gamma(\mathbb{R})\subset\Lambda$ light-convex, $\partial\Lambda$ smooth, timelike

 $p \in M$ event (observation)

z lightlike geodesic (*lightray*)

Multiple images?

Galaxy PSZ1 G311.65-18.48

 $\gamma(\mathbb{R})\subset\Lambda$ light-convex, $\partial\Lambda$ smooth, timelike

[CMP, 1997], [AIHP, 1998], [CVPDE, 1998]

▶ *M stably causal*: $\exists T : M \to \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$

[CMP, 1997], [AIHP, 1998], [CVPDE, 1998]

- ▶ *M stably causal*: $\exists T : M \to \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$
- $ightharpoonup \langle v,v
 angle_{
 m R} := {
 m g}(v,v) + 2\,{
 m g}(v,
 abla\,T)^2$ is a Riemannian metric

[CMP, 1997], [AIHP, 1998], [CVPDE, 1998]

- ▶ *M stably causal*: $\exists T : M \to \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$
- $ightharpoonup \langle v,v
 angle_{
 m R}:={
 m g}(v,v)+2\,{
 m g}(v,
 abla\,T)^2$ is a Riemannian metric

[CMP, 1997], [AIHP, 1998], [CVPDE, 1998]

- ▶ *M stably causal*: $\exists T : M \to \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$
- $\langle v, v \rangle_{\mathrm{R}} := \mathrm{g}(v, v) + 2\,\mathrm{g}(v, \nabla T)^2$ is a Riemannian metric
- $\blacktriangleright H^{1,2}([a,b],\Lambda) = \left\{z \colon [a,b] \to \Lambda \mid \int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbf{R}} < +\infty \right\}$
- $ightharpoonup \gamma \colon \mathbb{R} o M$ timelike curve w/o endpoints, $s \mapsto \mathcal{T}(\gamma(s))$ increasing

[CMP, 1997], [AIHP, 1998], [CVPDE, 1998]

- ▶ *M stably causal*: $\exists T : M \to \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$
- $ightharpoonup \langle v,v
 angle_{
 m R}:={
 m g}(v,v)+2\,{
 m g}(v,
 abla\,T)^2$ is a Riemannian metric
- lacksquare $\gamma\colon\mathbb{R} o M$ timelike curve w/o endpoints, future-pointing

Giannoni, Masiello, Piccione [CMP, 1997], [AIHP, 1998], [CVPDE, 1998]

▶ *M stably causal*:
$$\exists T : M \to \mathbb{R}$$
 time function, $g(\nabla T, \nabla T) = -1$

$$ightharpoonup \langle v,v
angle_{
m R}:={
m g}(v,v)+2\,{
m g}(v,
abla\,T)^2$$
 is a Riemannian metric

$$lacksquare$$
 $\gamma\colon\mathbb{R} o M$ timelike curve w/o endpoints, future-pointing

$$\blacktriangleright \ \mathcal{L}^+_{p,\gamma}(\Lambda) := \left\{ z \in H^{1,2}([a,b],\Lambda) \mid \begin{array}{c} z(a) = p, \ z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z}, \nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$$

[CMP, 1997], [AIHP, 1998],

▶ *M stably causal*:
$$\exists T : M \to \mathbb{R}$$
 time function, $g(\nabla T, \nabla T) = -1$

$$ightharpoonup \langle v,v
angle_{
m R}:={
m g}(v,v)+2\,{
m g}(v,
abla\,T)^2$$
 is a Riemannian metric

$$\blacktriangleright H^{1,2}([a,b],\Lambda) = \left\{z \colon [a,b] \to \Lambda \mid \int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbf{R}} < +\infty \right\}$$

$$\blacktriangleright \ \gamma \colon \mathbb{R} \to \textit{M} \ \text{timelike curve w/o endpoints, future-pointing}$$

$$\gamma: \mathbb{R} \to M$$
 timelike curve w/o endpoints, future-pointing

$$\mathcal{L}_{p,\gamma}^+(\Lambda) := \left\{ z \in H^{1,2}([a,b],\Lambda) \mid \begin{array}{l} z(a) = p, \ z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(z,\nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$$

$$F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$$
$$F(z) = -\int_a^b g(\dot{z}, \nabla T) ds$$

[CMP, 1997], [AIHP, 1998], [CVPDE, 1998]

▶ *M stably causal*:
$$\exists T : M \to \mathbb{R}$$
 time function, $g(\nabla T, \nabla T) = -1$

$$ightharpoonup \langle v,v
angle_{
m R} := {
m g}(v,v) + 2\,{
m g}(v,\nabla\,T)^2$$
 is a Riemannian metric

$$lackbox{}{} \gamma\colon\mathbb{R} o M$$
 timelike curve w/o endpoints, future-pointing

$$F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$$

$$F(z) = -\int_a^b g(\dot{z}, \nabla T) ds \qquad F(z) = T(z(b)) - T(z(a))$$

[CMP, 1997], [AIHP, 1998],

▶ *M stably causal*:
$$\exists T : M \to \mathbb{R}$$
 time function, $g(\nabla T, \nabla T) = -1$

$$ightharpoonup \langle v,v
angle_{
m R} := {
m g}(v,v) + 2\,{
m g}(v,\nabla\,T)^2$$
 is a Riemannian metric

$$\blacktriangleright \ \gamma \colon \mathbb{R} \to \textit{M} \ \text{timelike curve w/o endpoints, future-pointing}$$

$$\int_{a}^{+} (\Lambda) := \int_{a}^{+} z \in H^{1,2}([a,b],\Lambda) \mid z(a) = p, \ z(b) \in \gamma(\mathbb{R}),$$

$$\mathcal{L}_{p,\gamma}^{+}(\Lambda) := \left\{ z \in H^{1,2}([a,b],\Lambda) \mid \begin{array}{l} z(a) = p, \ z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z},\nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$$

$$F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$$

$$F(z) = -\int_{a}^{b} g(\dot{z}, \nabla T) ds \qquad F(z) = T(z(b)) - T(p)$$

[CMP, 1997], [AIHP, 1998],

▶ *M stably causal*:
$$\exists T : M \to \mathbb{R}$$
 time function, $g(\nabla T, \nabla T) = -1$

$$ightharpoonup \langle v,v
angle_{
m R}:={
m g}(v,v)+2\,{
m g}(v,
abla\,T)^2$$
 is a Riemannian metric

$$lackbox{}\gamma\colon\mathbb{R} o M$$
 timelike curve w/o endpoints, future-pointing

$$\gamma \colon \mathbb{R} \to M$$
 timelike curve w/o endpoints, tuture-pointing

$$\longrightarrow \mathbb{R}$$

$$\longrightarrow \mathbb{R}$$

 $F: \mathcal{L}_{\rho,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$ $F(z) = -\int_{2}^{b} g(\dot{z}, \nabla T) ds$ arrival time

- ▶ M stably causal: $\exists T : M \to \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$
- $\langle v, v \rangle_{\rm R} := {\rm g}(v, v) + 2 {\rm g}(v, \nabla T)^2$ is a Riemannian metric
- $ightharpoonup \gamma \colon \mathbb{R} \to M$ timelike curve w/o endpoints, future-pointing
- $\mathcal{L}^+_{p,\gamma}(\Lambda) := \left\{ z \in H^{1,2}([a,b],\Lambda) \mid \begin{array}{c} z(a) = p, \ z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(z,\nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$

$$F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$$
$$F(z) = -\int_a^b g(\dot{z}, \nabla T) ds$$

arrival time

► Fermat Principle:
$$dF(z) = 0$$
 \iff z lightray from p to γ (geodesic)

- ▶ *M stably causal*: $\exists T : M \to \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$
- $\langle v, v \rangle_{\rm R} := {\rm g}(v, v) + 2 {\rm g}(v, \nabla T)^2$ is a Riemannian metric
- $ightharpoonup \gamma \colon \mathbb{R} \to M$ timelike curve w/o endpoints, future-pointing
- $\mathcal{L}^+_{p,\gamma}(\Lambda) := \left\{ z \in H^{1,2}([a,b],\Lambda) \mid \begin{array}{c} z(a) = p, \ z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z},\nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$

$$F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$$

$$F(z) = -\int_a^b g(\dot{z}, \nabla T) ds$$

arrival time

- z lightray from p to γ ▶ Fermat Principle: |dF(z) = 0| \iff (geodesic)
- lssue: $\mathcal{L}_{n,\gamma}^+(\Lambda)$ is not smooth

- ▶ "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b \mathrm{g}(\dot{z}, \nabla T)^2 \, \mathrm{d}s$

- ► "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \quad Q(z) = \int_a^b g(\dot{z}, \nabla T)^2 ds$
- $ightharpoonup dQ(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda) \text{ geodesic and } g(\dot{z}, \nabla T) = const$

- "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \ Q(z) = \int_z^b g(\dot{z}, \nabla T)^2 ds$
- ▶ $dQ(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda)$ geodesic and $g(\dot{z}, \nabla T) = const$
- ► Regularized domains: $\mathcal{L}_{p,\gamma,\varepsilon}^+(\Lambda)$, where $g(\dot{z},\dot{z}) = -\varepsilon^2$

- "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \ Q(z) = \int_z^b g(\dot{z}, \nabla T)^2 ds$
- $ightharpoonup dQ(z) = 0 \iff z \in \mathcal{L}_{n,\gamma}^+(\Lambda) \text{ geodesic and } g(z, \nabla T) = const$
- ► Regularized domains: $\mathcal{L}_{p,\gamma,\varepsilon}^+(\Lambda)$, where $g(\dot{z},\dot{z}) = -\varepsilon^2$

▶ Penalized energy (to stay in Λ): $Q_\delta(z) := Q(z) + \delta \int_a^b \frac{\mathrm{d}s}{\operatorname{dist}(z,\partial\Lambda)}$

• "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \ Q(z) = \int_z^b g(\dot{z}, \nabla T)^2 ds$ $ightharpoonup dQ(z) = 0 \iff z \in \mathcal{L}_{n,\gamma}^+(\Lambda) \text{ geodesic and } g(z, \nabla T) = const$

►
$$dQ(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda)$$
 geodesic and $g(z, \nabla I) = const$
► Regularized domains: $\mathcal{L}_{p,\gamma,\varepsilon}^+(\Lambda)$, where $g(\dot{z},\dot{z}) = -\varepsilon^2$

▶ Penalized energy (to stay in Λ): $Q_\delta(z) := Q(z) + \delta \int_a^b \frac{\mathrm{d}s}{\operatorname{dist}(z,\partial\Lambda)}$

► "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \quad Q(z) = \int_a^b \mathrm{g}(\dot{z}, \nabla T)^2 \, \mathrm{d}s$ ► $\mathrm{d}Q(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda)$ geodesic and $\mathrm{g}(\dot{z}, \nabla T) = const$

$$Regularized\ domains:\ \mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda),\ \text{where}\ \mathrm{g}(\dot{z},\dot{z})=-\varepsilon^2$$

Penalized energy (to stay in
$$\Lambda$$
): $Q_{\delta}(z) := Q(z) + \delta \int_a^b \frac{\mathrm{d}s}{\mathsf{dist}(z,\partial\Lambda)}$

Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_{a}^{\infty} \frac{dist(z,\partial \Lambda)}{dist(z,\partial \Lambda)}$ Carefully let $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997])

If $\mathcal{L}^+_{p,\gamma}(\Lambda) \neq \emptyset$ and c-precompact for all c > 0, then there are at least $\operatorname{cat}(\mathcal{L}^+_{p,\gamma}(\Lambda))$ lightrays joining p and γ within Λ .

► "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \quad Q(z) = \int_a^b \mathrm{g}(\dot{z}, \nabla T)^2 \, \mathrm{d}s$ ► $\mathrm{d}Q(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda)$ geodesic and $\mathrm{g}(\dot{z}, \nabla T) = const$

Regularized domains:
$$\mathcal{L}_{p,\gamma,\varepsilon}^+(\Lambda)$$
, where $g(\dot{z},\dot{z})=-\varepsilon^2$

Penalized energy (to stay in Λ):
$$Q_{\delta}(z) := Q(z) + \delta \int_{a}^{b} \frac{ds}{\operatorname{dist}(z,\partial\Lambda)}$$

► Carefully let $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997]) If $\mathcal{L}_{p,\gamma}^+(\Lambda) \neq \emptyset$ and c-precompact for all c > 0, then there are at least $\operatorname{cat}(\mathcal{L}_{p,\gamma}^+(\Lambda))$ lightrays joining p and γ within Λ .

Replaces completeness in Riemannian case

- ► "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b \mathrm{g}(\dot{z}, \nabla T)^2 \, \mathrm{d}s$
- ▶ $dQ(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda)$ geodesic and $g(\dot{z}, \nabla T) = const$
- ► Regularized domains: $\mathcal{L}_{p,\gamma,\varepsilon}^+(\Lambda)$, where $g(\dot{z},\dot{z}) = -\varepsilon^2$
- Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b \frac{\mathrm{d}s}{\mathsf{dist}(z,\partial\Lambda)}$
- ▶ Carefully let $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997])

If
$$\mathcal{L}_{p,\gamma}^+(\Lambda) \neq \emptyset$$
 and c-precompact for all $c > 0$, then there are at least $\operatorname{cat}(\mathcal{L}_{p,\gamma}^+(\Lambda))$ lightrays joining p and γ within Λ .

cat(X) = min # of closed contractible subsets of X that cover X

- ► "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b \mathrm{g}(\dot{z}, \nabla T)^2 \, \mathrm{d}s$
- $ightharpoonup dQ(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda) \text{ geodesic and } g(\dot{z}, \nabla T) = const$
- ► Regularized domains: $\mathcal{L}_{p,\gamma,\varepsilon}^+(\Lambda)$, where $g(\dot{z},\dot{z}) = -\varepsilon^2$
- Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b \frac{\mathrm{d}s}{\mathsf{dist}(z,\partial\Lambda)}$
- ▶ Carefully let $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997])

If $\mathcal{L}_{p,\gamma}^+(\Lambda) \neq \emptyset$ and c-precompact for all c > 0, then there are at least $\operatorname{cat}(\mathcal{L}_{p,\gamma}^+(\Lambda))$ lightrays joining p and γ within Λ .

$$\operatorname{cat}(X) = \min \# \text{ of closed contractible subsets of } X \text{ that cover } X \in \{1, 2, \dots, +\infty\} \text{ if } X \neq \emptyset$$

► "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \quad Q(z) = \int_a^b \mathrm{g}(\dot{z}, \nabla T)^2 \, \mathrm{d}s$ ► $\mathrm{d}Q(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda)$ geodesic and $\mathrm{g}(\dot{z}, \nabla T) = const$

• Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(\dot{z},\dot{z})=-\varepsilon^2$

Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_{a}^{b} \frac{\mathrm{d}s}{\mathsf{dist}(z,\partial \Lambda)}$

▶ Carefully let $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997])

If $\mathcal{L}^+_{p,\gamma}(\Lambda) \neq \emptyset$ and c-precompact for all c > 0, then there are at least $\operatorname{cat}(\mathcal{L}^+_{p,\gamma}(\Lambda))$ lightrays joining p and γ within Λ .

Theorem (Giannoni, Masiello, Piccione [AIHP, 1998])

The Morse inequalities hold for Q, i.e., for any field \mathbb{K} ,

$$\sum_{q=0}^{\infty} c_q r^q = \sum_{q=0}^{\infty} b_q(\mathcal{L}^+_{oldsymbol{
ho},\gamma}(lacksquare), \mathbb{K}) r^q + (1+r) \mathcal{S}(r)$$

where $c_q = \#\{\text{lightrays joining p and } \gamma \text{ of index q}\}$, and $S(r) \in \mathbb{R}[[r]]$ has nonnegative coefficients.

► "Energy" $Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \quad Q(z) = \int_a^b \mathrm{g}(\dot{z}, \nabla T)^2 \, \mathrm{d}s$ ► $\mathrm{d}Q(z) = 0 \iff z \in \mathcal{L}_{p,\gamma}^+(\Lambda)$ geodesic and $\mathrm{g}(\dot{z}, \nabla T) = const$

• Regularized domains: $\mathcal{L}_{p,\gamma,\varepsilon}^+(\Lambda)$, where $g(\dot{z},\dot{z})=-\varepsilon^2$

▶ Penalized energy (to stay in Λ): $Q_\delta(z) := Q(z) + \delta \int_a^b \frac{\mathrm{d}s}{\mathsf{dist}(z,\partial\Lambda)}$

ightharpoonup Carefully let $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997])

If $\mathcal{L}^+_{p,\gamma}(\Lambda) \neq \emptyset$ and c-precompact for all c > 0, then there are at least $\operatorname{cat}(\mathcal{L}^+_{p,\gamma}(\Lambda))$ lightrays joining p and γ within Λ .

Theorem (Giannoni, Masiello, Piccione [AIHP, 1998])

The Morse inequalities hold for Q, i.e., for any field \mathbb{K} ,

$$\sum_{q=0}^{\infty} c_q r^q = \sum_{q=0}^{\infty} b_q(\mathcal{L}^+_{p,\gamma}(\mathsf{\Lambda}),\mathbb{K}) r^q + (1+r) \mathcal{S}(r)$$

where $c_q = \#\{\text{lightrays joining p and } \gamma \text{ of index q}\}$, and $S(r) \in \mathbb{R}[[r]]$ has nonnegative coefficients. In particular, $c_q \geq b_q$.

Theorem (Morse Index Theorem)

Given a Riemannian geodesic $\gamma \colon [a,b] \to M$ with fixed endpoints,

Morse Index of γ as critical point of ${\it E}=\#$ conjugate points along γ (counted w/ multiplicity)

Theorem (Morse Index Theorem)

Given a Riemannian geodesic γ : $[a, b] \to M$ with $\gamma(a) \in \mathcal{P} \subset M$

Morse Index of γ as critical point of $E=\#\mathcal{P}$ -focal points along γ (counted w/ multiplicity)

Theorem (Morse Index Theorem)

Given a Riemannian geodesic γ : $[a, b] \rightarrow M$ with $\gamma(a) \in \mathcal{P} \subset M$

Morse Index of γ as critical point of $E=\#\mathcal{P}$ -focal points along γ (counted w/ multiplicity)

Also holds if g is Lorentzian and γ is not spacelike!

▶ γ_{∞} : $[a, b] \rightarrow M$ lightlike geodesic

- ▶ γ_{∞} : $[a, b] \rightarrow M$ lightlike geodesic
- $\gamma_n \colon [a,b] \to M \text{ timelike geodesics}$ $\gamma_n(a) \to \gamma_\infty(a), \quad \dot{\gamma}_n(a) \to \dot{\gamma}_\infty(a), \quad g(\dot{\gamma}_n,\dot{\gamma}_n) = -\frac{1}{n^2}$

- $ightharpoonup \gamma_{\infty} \colon [a,b] \to M \ lightlike geodesic$
- $ho \gamma_n \colon [a,b] o M$ timelike geodesics $\gamma_n(a) o \gamma_\infty(a), \quad \dot{\gamma}_n(a) o \dot{\gamma}_\infty(a), \quad \mathrm{g}(\dot{\gamma}_n,\dot{\gamma}_n) = -\frac{1}{n^2}$
- ▶ Does #{conjugate points} pass to the limit $\gamma_n \to \gamma_\infty$?

- ▶ γ_{∞} : $[a, b] \rightarrow M$ lightlike geodesic
- $\begin{array}{c} \boldsymbol{\gamma}_n \colon [a,b] \to M \text{ timelike geodesics} \\ \boldsymbol{\gamma}_n(a) \to \boldsymbol{\gamma}_\infty(a), \quad \dot{\boldsymbol{\gamma}}_n(a) \to \dot{\boldsymbol{\gamma}}_\infty(a), \quad \mathrm{g}(\dot{\boldsymbol{\gamma}}_n, \dot{\boldsymbol{\gamma}}_n) = -\frac{1}{n^2} \end{array}$
- ▶ Does #{conjugate points} pass to the limit $\gamma_n \to \gamma_\infty$?

▶ Issue: index form $I_{\gamma_n}(\cdot,\cdot) = d^2 E(\gamma_n)$ degenerates as $n \to \infty$!

 $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 ig\}$
- $ightharpoonup \gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 ig\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate

- $ightharpoonup \gamma \colon [a,b] o M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- lacksquare $\mathsf{sign}(t_*) := \mathsf{sign}\left(\mathrm{g}|_{\mathcal{J}[t_*]^\perp}
 ight)$ $\mathsf{signature}$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\operatorname{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$
- $\blacktriangleright \ \ell_{\gamma}(t) = \{ (J(t), J'(t)^{\flat}) \in TM \oplus TM^* \mid J \in \mathcal{J} \}$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{\mathsf{sign}}(t_*) := \operatorname{\mathsf{sign}}\left(\operatorname{\mathsf{g}}|_{\mathcal{J}[t_*]^\perp}\right) \operatorname{\mathsf{signature}}$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\mathrm{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$
- lacksquare $\ell_{\gamma}(t)=\{(J(t),J'(t)^{lap})\in\mathbb{R}^n\oplus(\mathbb{R}^n)^*\mid J\in\mathcal{J}\}$ Lagrangian

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- lacksquare $\mathsf{sign}(t_*) := \mathsf{sign}\left(\mathrm{g}|_{\mathcal{J}[t_*]^\perp}
 ight)$ $\mathsf{signature}$

- $ightharpoonup \gamma \colon [a,b] o M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- lacksquare $\operatorname{\mathsf{sign}}(t_*) := \operatorname{\mathsf{sign}}\left(\mathrm{g}|_{\mathcal{J}[t_*]^\perp}
 ight)$ $\operatorname{\mathsf{signature}}$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\operatorname{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ \mathit{J}(t) \mid \mathit{J} \colon [\mathit{a},\mathit{b}]
 ightarrow \mathit{TM} \; \mathsf{Jacobi \; field \; along} \; \gamma, \mathit{J}(\mathit{a}) = 0 ig\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\mathrm{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$
- $\qquad \qquad [\ell_{\gamma}([a+\varepsilon,b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}),L_0;\mathbb{Z})$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ \mathit{J}(t) \mid \mathit{J} \colon [\mathit{a},\mathit{b}]
 ightarrow \mathit{TM} \; \mathsf{Jacobi \; field \; along} \; \gamma, \mathit{J}(\mathit{a}) = 0 ig\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\operatorname{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$
- $\blacktriangleright \ [\ell_{\gamma}([a+\varepsilon,b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}),L_0;\mathbb{Z}) \cong \mathbb{Z}$

- $ightharpoonup \gamma \colon [a,b] \to M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ \mathit{J}(t) \mid \mathit{J} \colon [\mathit{a},\mathit{b}]
 ightarrow \mathit{TM} \; \mathsf{Jacobi \; field \; along} \; \gamma, \mathit{J}(\mathit{a}) = 0 ig\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}(g|_{\mathcal{J}[t_*]^{\perp}}) \operatorname{signature}$
- ▶ $[\ell_{\gamma}([a+\varepsilon,b])] \in H_1(LGr(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ

- ▶ γ : $[a, b] \rightarrow M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}(g|_{\mathcal{J}[t_*]^{\perp}}) \operatorname{signature}$
- ▶ $[\ell_{\gamma}([a+\varepsilon,b])] \in H_1(LGr(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ

Theorem (Mercuri, Piccione, Tausk [PJM 2002])

If all conjugate points along γ are nondegenerate, then

Maslov index of
$$\gamma = \sum_{t \in (a,b]} sign(t)$$

Francesco Mercuri (7 Jul 1946 – 5 Aug 2024)

- ▶ γ : $[a, b] \rightarrow M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}(g|_{\mathcal{J}[t_*]^{\perp}}) \operatorname{signature}$
- ▶ $[\ell_{\gamma}([a+\varepsilon,b])] \in H_1(LGr(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ

Theorem (Mercuri, Piccione, Tausk [PJM 2002])

If all conjugate points along γ are nondegenerate, then

Maslov index of
$$\gamma = \sum_{t \in (a,b]} sign(t)$$

- ▶ γ : $[a, b] \rightarrow M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 ig\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\operatorname{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$
- ▶ $[\ell_{\gamma}([a+\varepsilon,b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}),L_0;\mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ

Theorem (Mercuri, Piccione, Tausk [PJM 2002])

If all conjugate points along γ are nondegenerate, then

Maslov index of
$$\gamma = \sum_{t \in (a,b]} sign(t)$$

e.g., if g is Lorentzian and γ is not spacelike

- ▶ γ : $[a, b] \rightarrow M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ \mathit{J}(t) \mid \mathit{J} \colon [\mathit{a},\mathit{b}]
 ightarrow \mathit{TM} \; \mathsf{Jacobi \; field \; along } \gamma, \mathit{J}(\mathit{a}) = 0 ig\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\operatorname{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$
- ▶ $[\ell_{\gamma}([a+\varepsilon,b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}),L_0;\mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ

Theorem (Mercuri, Piccione, Tausk [PJM 2002])

If all conjugate points along γ are nondegenerate, then

Maslov index of
$$\gamma = \sum_{t \in (a,b]} sign(t)$$

e.g., if g is Riemannian

- ▶ γ : $[a, b] \rightarrow M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = \left\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 \right\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{\mathsf{sign}}(t_*) := \operatorname{\mathsf{sign}}\left(\operatorname{\mathsf{g}}|_{\mathcal{J}[t_*]^\perp}\right) \operatorname{\mathsf{signature}}$
- ▶ $[\ell_{\gamma}([a+\varepsilon,b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}),L_0;\mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ

Theorem (Mercuri, Piccione, Tausk [PJM 2002])

If all conjugate points along γ are nondegenerate, then

Maslov index of
$$\gamma = \sum_{t \in (a,b]} sign(t)$$

"algebraic count" of conjugate points

- ▶ γ : $[a, b] \rightarrow M$ semi-Riemannian geodesic
- $ightharpoonup \mathcal{J}[t] = ig\{ J(t) \mid J \colon [a,b] o TM \text{ Jacobi field along } \gamma, J(a) = 0 ig\}$
- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
- $ightharpoonup \operatorname{sign}(t_*) := \operatorname{sign}\left(\operatorname{g}|_{\mathcal{J}[t_*]^{\perp}}\right) \operatorname{signature}$
- ▶ $[\ell_{\gamma}([a+\varepsilon,b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}),L_0;\mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ

Theorem (Mercuri, Piccione, Tausk [PJM 2002])

If all conjugate points along γ are nondegenerate, then

Maslov index of
$$\gamma = \sum_{t \in (a,b]} sign(t)$$

Homological invariant, stable under C^0 perturbations of γ

Degeneracies happen

Degeneracies happen

Theorem (Piccione, Tausk [CAG, 2003])

Given a closed subset $F \subset \mathbb{R}$ such that $F \subset (a, b]$, there is a **Lorentzian** manifold (M, g) and a spacelike geodesic $\gamma \colon [a, b] \to M$ such that $\gamma(t)$ is conjugate to $\gamma(a)$ if and only if $t \in F$.

 $\gamma \colon [a,b] \to M$ semi-Riemannian geodesic

 $\gamma \colon [a,b] \to M$ semi-Riemannian geodesic

 $I_{\gamma}=\mathrm{d}^2 \mathit{E}\colon \mathcal{H} imes \mathcal{H} o \mathbb{R}$ index form

 $\gamma \colon [a,b] \to M$ semi-Riemannian geodesic

 $I_{\gamma}=\mathrm{d}^2 \mathit{E}\colon \mathcal{H} imes \mathcal{H} o \mathbb{R}$ index form

 $\mathcal{D}_t \subset \mathcal{T}_{\gamma(t)} M$ maximal distribution along γ where $\mathrm{g} \prec 0$

$$\begin{split} \gamma\colon [a,b] &\to \textit{M} \text{ semi-Riemannian geodesic} \\ I_{\gamma} &= \mathrm{d}^2 E\colon \mathcal{H} \times \mathcal{H} \to \mathbb{R} \text{ index form} \\ \mathcal{D}_t &\subset T_{\gamma(t)} \textit{M} \text{ maximal distribution along } \gamma \text{ where } \mathrm{g} \prec 0 \\ \mathcal{S} &= \big\{v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a,b] \big\} \end{split}$$

 $\gamma \colon [a,b] o M$ semi-Riemannian geodesic $I_{\gamma} = \mathrm{d}^2 E \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ index form $\mathcal{D}_t \subset T_{\gamma(t)} M$ maximal distribution along γ where $\mathrm{g} \prec 0$ $\mathcal{S} = \big\{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a,b] \big\}$ $\mathcal{K} = \big\{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \big\}$

$$\gamma \colon [a,b] o M$$
 semi-Riemannian geodesic $I_{\gamma} = \mathrm{d}^2 E \colon \mathcal{H} imes \mathcal{H} o \mathbb{R}$ index form $\mathcal{D}_t \subset T_{\gamma(t)} M$ maximal distribution along γ where $\mathrm{g} \prec 0$ $\mathcal{S} = \big\{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a,b] \big\}$ $\mathcal{K} = \big\{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \big\}$ $I_{\gamma}(\mathcal{S},\mathcal{K}) = 0$

$$\gamma\colon [a,b] o M$$
 semi-Riemannian geodesic $I_{\gamma}=\mathrm{d}^2 E\colon \mathcal{H} imes \mathcal{H} o \mathbb{R}$ index form $\mathcal{D}_t \subset T_{\gamma(t)} M$ maximal distribution along γ where $\mathrm{g} \prec 0$ $\mathcal{S}=\left\{v\in \mathcal{H} \mid v(a)=0, v(t)\in \mathcal{D}_t \text{ for all } t\in [a,b]\right\}$ $\mathcal{K}=\left\{v\in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D}\right\}$ $I_{\gamma}(\mathcal{S},\mathcal{K})=0$ and generically $\mathcal{H}=\mathcal{S}\oplus \mathcal{K}$

$$\gamma\colon [a,b] o M$$
 semi-Riemannian geodesic $I_{\gamma}=\mathrm{d}^2 E\colon \mathcal{H} imes \mathcal{H} o \mathbb{R}$ index form $\mathcal{D}_t \subset T_{\gamma(t)} M$ maximal distribution along γ where $\mathrm{g} \prec 0$ $\mathcal{S}=\left\{v\in \mathcal{H} \mid v(a)=0, v(t)\in \mathcal{D}_t \text{ for all } t\in [a,b]\right\}$ $\mathcal{K}=\left\{v\in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D}\right\}$ $I_{\gamma}(\mathcal{S},\mathcal{K})=0$ and generically $\mathcal{H}=\mathcal{S}\oplus \mathcal{K}$ $n_{\pm}(B)=\sup\{\dim W\mid \pm B|_W\succ 0\}$

$$\gamma\colon [a,b] o M$$
 semi-Riemannian geodesic $I_{\gamma} = \mathrm{d}^2 E\colon \mathcal{H} imes \mathcal{H} o \mathbb{R}$ index form $\mathcal{D}_t \subset T_{\gamma(t)} M$ maximal distribution along γ where $\mathrm{g} \prec 0$ $\mathcal{S} = \left\{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a,b] \right\}$ $\mathcal{K} = \left\{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \right\}$ $I_{\gamma}(\mathcal{S},\mathcal{K}) = 0$ and generically $\mathcal{H} = \mathcal{S} \oplus \mathcal{K}$ $n_{\pm}(B) = \sup\{\dim W \mid \pm B|_W \succ 0\}$

Theorem (Piccione, Tausk [Topology, 2002])

Maslov Index of
$$\gamma = n_{-}(I_{\gamma}|_{\mathcal{K}}) - n_{+}(I_{\gamma}|_{\mathcal{S}})$$

Other index theorems with Maslov index

Piccione, Tausk [Proc. LMS, 2001]

Index theorem for non-periodic solutions of Hamiltonian systems

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} v \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} A(t) & B(t) \\ C(t) & -A^*(t) \end{pmatrix}}_{\in \mathfrak{sp}(2n,\mathbb{R})} \begin{pmatrix} v \\ \alpha \end{pmatrix}$$

Other index theorems with Maslov index

Piccione, Tausk [Proc. LMS, 2001]

Index theorem for non-periodic solutions of Hamiltonian systems

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} v \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} A(t) & B(t) \\ C(t) & -A^*(t) \end{pmatrix}}_{\in \mathfrak{sp}(2n,\mathbb{R})} \begin{pmatrix} v \\ \alpha \end{pmatrix}$$

Piccione, Tausk [J. Math. Pures Appl., 2002]

Index theorem for solutions of **constrained** variational problems e.g., **sub-Riemannian** geodesics

Theorem (Morse–Littauer, PNAS 1932) If $\gamma(t_*) = \exp_p t_* v$ is conjugate to p,

Theorem (Morse-Littauer, PNAS 1932)

If $\gamma(t_*) = \exp_p t_* v$ is conjugate to p, then $\exp_p \colon T_p M \to M$ is not injective on any neighborhood of $t_* v$.

Theorem (Morse-Littauer, PNAS 1932)

If $\gamma(t_*) = \exp_p t_* v$ is conjugate to p, then $\exp_p \colon T_p M \to M$ is not radially injective on any neighborhood of $t_* v$.

Theorem (Morse-Littauer, PNAS 1932)

If $\gamma(t_*) = \exp_p t_* v$ is conjugate to p, then $\exp_p \colon T_p M \to M$ is not radially injective on any neighborhood of $t_* v$.

 $\exists v_n \to t_* v, \ t_n \searrow t_*$, such that $v_n \neq t_n v$ and $\exp_p v_n = \exp_p t_n v$

Theorem (Morse-Littauer, PNAS 1932)

If $\gamma(t_*) = \exp_p t_* v$ is conjugate to p, then $\exp_p \colon T_p M \to M$ is not radially injective on any neighborhood of $t_* v$.

$$\exists v_n \to t_* v, \ t_n \searrow t_*, \text{ such that } v_n \neq t_n v \text{ and } \exp_p v_n = \exp_p t_n v$$

Bifurcation: $[jump \ of \ Morse \ index] \Longrightarrow [local \ nonuniqueness]$

Theorem (Morse–Littauer, PNAS 1932)

If $\gamma(t_*) = \exp_p t_* v$ is conjugate to p, then $\exp_p \colon T_p M \to M$ is not radially injective on any neighborhood of $t_* v$.

$$\exists v_n \to t_* v, \ t_n \searrow t_*$$
, such that $v_n \neq t_n v$ and $\exp_p v_n = \exp_p t_n v$

Bifurcation: $\boxed{\text{jump of } \textit{Maslov index}} \Longrightarrow \boxed{\text{local nonuniqueness}}$

Piccione, Portaluri, Tausk [AGAG 2004]

Semi-Riemannian Morse-Littauer theorem

 $\gamma \colon [0, L] \to \mathcal{M}$, $\gamma(t) = \exp_{p} tv$, geodesic in Hilbert manifold

 $\gamma \colon [0, L] \to \mathcal{M}$, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

 $\gamma(t)$ conjugate to $p \iff d(\exp_p)_{tv}$ noninvertible

 $\gamma \colon [0, L] \to \mathcal{M}$, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

 $t \in (0, L)$ conjugate instant \iff $d(exp_p)_{tv}$ noninvertible

$$\gamma \colon [0, L] \to \mathcal{M}$$
, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

$$t \in (0, L)$$
 conjugate instant \iff $d(\exp_p)_{tv}$ noninvertible $t \in (0, L)$ monoconjugate instant \iff $d(\exp_p)_{tv}$ noninjective

$$\gamma \colon [0, L] \to \mathcal{M}$$
, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

$$t \in (0, L)$$
 conjugate instant \iff $d(\exp_p)_{tv}$ noninvertible $t \in (0, L)$ monoconjugate instant \iff $d(\exp_p)_{tv}$ noninjective $t \in (0, L)$ epiconjugate instant \iff $d(\exp_p)_{tv}$ nonsurjective

$$\gamma \colon [0, L] \to \mathcal{M}$$
, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

$$t \in (0,L)$$
 conjugate instant \iff $d(\exp_p)_{tv}$ noninvertible $t \in (0,L)$ monoconjugate instant \iff $d(\exp_p)_{tv}$ noninjective $t \in (0,L)$ epiconjugate instant \iff $d(\exp_p)_{tv}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

 $\gamma \colon [0, L] \to \mathcal{M}$, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

$$t \in \mathcal{K} \subset (0, L)$$
 conjugate instant \iff $\mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant \iff $\mathrm{d}(\exp_p)_{tv}$ noninjective $t \in (0, L)$ epiconjugate instant \iff $\mathrm{d}(\exp_p)_{tv}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

 $\gamma \colon [0, L] \to \mathcal{M}, \quad \gamma(t) = \exp_p t v, \quad \text{geodesic in Hilbert manifold}$

```
t \in \mathcal{K} \subset (0, L) conjugate instant \iff d(\exp_p)_{tv} noninvertible t \in \mathcal{K}_m monoconjugate instant \iff d(\exp_p)_{tv} noninjective t \in (0, L) epiconjugate instant \iff d(\exp_p)_{tv} nonsurjective
```

[Grossman, 1965]: Every conjugate instant is epiconjugate.

1. \mathcal{K} is closed in [0, L)

$$\gamma \colon [0, L] \to \mathcal{M}$$
, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

```
t \in \mathcal{K} \subset (0, L) conjugate instant \iff d(\exp_p)_{tv} noninvertible t \in \mathcal{K}_m monoconjugate instant \iff d(\exp_p)_{tv} noninjective t \in (0, L) epiconjugate instant \iff d(\exp_p)_{tv} nonsurjective
```

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. \mathcal{K} is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of ${\cal K}$

$$\gamma \colon [0, L] \to \mathcal{M}$$
, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

```
t \in \mathcal{K} \subset (0, L) conjugate instant \iff d(\exp_p)_{tv} noninvertible t \in \mathcal{K}_m monoconjugate instant \iff d(\exp_p)_{tv} noninjective t \in (0, L) epiconjugate instant \iff d(\exp_p)_{tv} nonsurjective
```

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. \mathcal{K} is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of ${\cal K}$
- 3. If \mathcal{M} is separable, then \mathcal{K}_m is countable

$$\gamma \colon [0, L] \to \mathcal{M}$$
, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

```
t \in \mathcal{K} \subset (0, L) conjugate instant \iff d(\exp_p)_{tv} noninvertible t \in \mathcal{K}_m monoconjugate instant \iff d(\exp_p)_{tv} noninjective t \in (0, L) epiconjugate instant \iff d(\exp_p)_{tv} nonsurjective
```

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. \mathcal{K} is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of ${\cal K}$
- 3. If \mathcal{M} is separable, then \mathcal{K}_m is countable

Given K, K_m , etc. as above, there is a conformally flat Hilbert manifold with a geodesic γ having these conjugate points.

 $\gamma \colon [0, L] \to \mathcal{M}$, $\gamma(t) = \exp_p t v$, geodesic in Hilbert manifold

```
t \in \mathcal{K} \subset (0, L) conjugate instant \iff d(\exp_p)_{tv} noninvertible t \in \mathcal{K}_m monoconjugate instant \iff d(\exp_p)_{tv} noninjective t \in (0, L) epiconjugate instant \iff d(\exp_p)_{tv} nonsurjective
```

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. \mathcal{K} is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of ${\cal K}$
- 3. If \mathcal{M} is separable, then \mathcal{K}_m is countable If $\not\exists$ strictly epiconjugate instants (e.g., if \exp_p is **Fredholm**), then \mathcal{K} is **finite**.

$$\gamma \colon [0, L] \to \mathcal{M}$$
, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

```
t \in \mathcal{K} \subset (0, L) conjugate instant \iff d(\exp_p)_{tv} noninvertible t \in \mathcal{K}_m monoconjugate instant \iff d(\exp_p)_{tv} noninjective t \in (0, L) epiconjugate instant \iff d(\exp_p)_{tv} nonsurjective
```

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. \mathcal{K} is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of ${\cal K}$
- 3. If \mathcal{M} is separable, then \mathcal{K}_m is countable If $\not\exists$ strictly epiconjugate instants (e.g., if \exp_p is **Fredholm**), then \mathcal{K} is **finite**. Morse Index Thm \checkmark

Conjugate points on Hilbert manifolds

 $\gamma \colon [0, L] \to \mathcal{M}$, $\gamma(t) = \exp_p tv$, geodesic in Hilbert manifold

```
t \in \mathcal{K} \subset (0, L) conjugate instant \iff d(\exp_p)_{tv} noninvertible t \in \mathcal{K}_m monoconjugate instant \iff d(\exp_p)_{tv} noninjective t \in (0, L) epiconjugate instant \iff d(\exp_p)_{tv} nonsurjective
```

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. \mathcal{K} is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of ${\cal K}$
- 3. If \mathcal{M} is separable, then \mathcal{K}_m is countable If $\not\supseteq$ strictly epiconjugate instants (e.g., if \exp_p is **Fredholm**), then \mathcal{K} is **finite**. Morse Index Thm \checkmark Morse–Littauer Thm \checkmark

§2. Bifurcation theory in Geometric Analysis

§2. Bifurcation theory in Geometric Analysis

Setup

► *X* = {"shapes"}

```
► X = \{\text{"shapes"}\},\
e.g., X = \{x \colon \Sigma \hookrightarrow M\} embeddings, x(\Sigma) = \partial \Omega_x
```

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals
- ▶ $f_t(x)$ = energy (with parameter t) of shape $x \in X$

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals
- ► $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{Vol}(\Omega_x)$

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals
- ▶ $f_t(x) = \text{energy (with parameter } t) \text{ of shape } x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$
- ▶ Euler-Lagrange equation: $df_t(x) = 0$

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals
- ► $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{Vol}(\Omega_x)$
- ▶ Euler-Lagrange equation: $\mathrm{d} f_t(x) = 0$, e.g., $\mathrm{d} f_t(x) = 0 \Longleftrightarrow x(\Sigma) \subset M$ has constant mean curvature t

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals
- ► $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{Vol}(\Omega_x)$
- ▶ Euler-Lagrange equation: $\mathrm{d}f_t(x) = 0$, e.g., $\mathrm{d}f_t(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature t
- $ightharpoonup x_t$ trivial branch of solutions, $\mathrm{d}f_t(x_t) = 0$

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals
- ▶ $f_t(x) = \text{energy (with parameter } t) \text{ of shape } x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$
- ▶ Euler-Lagrange equation: $\mathrm{d}f_t(x) = 0$, e.g., $\mathrm{d}f_t(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature t
- $ightharpoonup x_t$ trivial branch of solutions, $\mathrm{d}f_t(x_t) = 0$
 - Typically minimizer; "Ground state"

- ► $X = \{\text{"shapes"}\},\$ e.g., $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_t \colon X \to \mathbb{R}$, 1-parameter family of functionals
- ► $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{Vol}(\Omega_x)$
- ▶ Euler-Lagrange equation: $\mathrm{d}f_t(x) = 0$, e.g., $\mathrm{d}f_t(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature t
- $ightharpoonup x_t$ trivial branch of solutions, $\mathrm{d}f_t(x_t) = 0$
 - Typically minimizer; "Ground state"
 - Observed in nature (Principle of Least Action)

 \mathbf{x}_t trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

$$\mathbf{x}_t$$
 trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

$$\mathbf{x}_t$$
 trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

 $ightharpoonup \exists t_n, t_n \rightarrow t_*$

$$\mathbf{x}_t$$
 trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

- $ightharpoonup \exists t_n, t_n \rightarrow t_*$
- $\exists x_n \to x_{t_n}, \mathrm{d} f_{t_n}(x_n) = 0,$ $x_n \neq x_{t_n}$

$$\mathbf{x}_t$$
 trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

- $ightharpoonup \exists t_n, t_n \rightarrow t_*$
- $\exists x_n \to x_{t_n}, \mathrm{d} f_{t_n}(x_n) = 0,$ $x_n \neq x_{t_n}$

Equivalently, the Implicit Function Theorem fails at x_{t_*} !

$$\mathbf{x}_t$$
 trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

- $ightharpoonup \exists t_n, t_n \rightarrow t_*$
- $\exists x_n \to x_{t_n}, \mathrm{d} f_{t_n}(x_n) = 0, \\ x_n \neq x_{t_n}$

Equivalently, the Implicit Function Theorem fails at x_{t_*} ! Thus, ker $d^2 f_{t_*}(x_{t_*}) \neq \{0\}$ is a necessary condition

$$\mathbf{x}_t$$
 trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

- $ightharpoonup \exists t_n, t_n \rightarrow t_*$
- $\exists x_n \to x_{t_n}, \mathrm{d} f_{t_n}(x_n) = 0,$ $x_n \neq x_{t_n}$

Equivalently, the Implicit Function Theorem fails at x_{t_*} ! Thus, $\ker d^2 f_{t_*}(x_{t_*}) \neq \{0\}$ is a necessary condition but it is not sufficient...

 \mathbf{x}_t trivial branch $\mathrm{d}f_t(\mathbf{x}_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

- $ightharpoonup \exists t_n, t_n \rightarrow t_*$
- $\exists x_n \to x_{t_n}, \mathrm{d}f_{t_n}(x_n) = 0,$ $x_n \neq x_{t_n}$

Equivalently, the Implicit Function Theorem fails at x_{t_*} !

Morse index jumps at $x_{t_*} \Longrightarrow \boxed{\text{bifurcation occurs at } x_{t_*}}$

- ► (M, g) Riemannian manifold
- ▶ $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$

- ► (M, g) Riemannian manifold
- ► $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$

- ► (M, g) Riemannian manifold
- ► $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- ▶ $df_H(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature H

- ► (M, g) Riemannian manifold
- ► $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_H(x) = \operatorname{Area}(x) + H \operatorname{Vol}(\Omega_x)$
- ▶ $\mathrm{d}f_H(x) = 0 \Longleftrightarrow x(\Sigma) \subset M$ has constant mean curvature H

$$S^k = S^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$$

- ► (M, g) Riemannian manifold
- ► $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_H(x) = \operatorname{Area}(x) + H \operatorname{Vol}(\Omega_x)$
- ▶ $\mathrm{d}f_H(x) = 0 \Longleftrightarrow x(\Sigma) \subset M$ has constant mean curvature H

$$S^k = S^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$$

$$\Omega_t = \{ p \in S^{n+1} : \mathsf{dist}(p, S^k) < t \}$$

- ► (M, g) Riemannian manifold
- ► $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- $f_H(x) = \operatorname{Area}(x) + H \operatorname{Vol}(\Omega_x)$
- ▶ $\mathrm{d}f_H(x) = 0 \Longleftrightarrow x(\Sigma) \subset M$ has constant mean curvature H

$$S^k = S^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$$

$$\Omega_t = \{ p \in S^{n+1} : \mathsf{dist}(p, S^k) < t \}$$

$$\Sigma = S^k \times S^{n-k}$$

- ► (M, g) Riemannian manifold
- ► $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- ▶ $df_H(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature H

$$S^{k} = S^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$$

$$\Omega_{t} = \{p \in S^{n+1} : \operatorname{dist}(p, S^{k}) < t\}$$

$$\Sigma = S^{k} \times S^{n-k}$$

$$x_{t}(\Sigma) = \partial \Omega_{t}, \quad t \in [0, \frac{\pi}{2}]$$

- ► (M, g) Riemannian manifold
- ► $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- ▶ $df_H(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature H

$$S^k = S^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$$

 $\Omega_t = \{p \in S^{n+1} : \operatorname{dist}(p, S^k) < t\}$
 $\Sigma = S^k \times S^{n-k}$
 $x_t(\Sigma) = \partial \Omega_t, \quad t \in [0, \frac{\pi}{2}]$
 $H(t) = k \tan t - (n-k) \cot t$

- ► (M, g) Riemannian manifold
- ► $X = \{x \colon \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- ▶ $df_H(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature H

$$S^k = S^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$$

 $\Omega_t = \{p \in S^{n+1} : \operatorname{dist}(p, S^k) < t\}$
 $\Sigma = S^k \times S^{n-k}$
 $x_t(\Sigma) = \partial \Omega_t, \quad t \in [0, \frac{\pi}{2}]$
 $H(t) = k \tan t - (n-k) \cot t$
 $(\Sigma, x_t^* g) = S^k(\cos t) \times S^{n-k}(\sin t)$

Theorem (Alías, Piccione [JGA, 2013])

Theorem (Alías, Piccione [JGA, 2013])

Theorem (Alías, Piccione [JGA, 2013])

Theorem (Alías, Piccione [JGA, 2013])

Theorem (Alías, Piccione [JGA, 2013])

Theorem (Alías, Piccione [JGA, 2013])

For each $1 \le k < n$, there exist sequences accumulating at 0 and $\frac{\pi}{2}$ of bifurcations for the family $x_t \colon \Sigma \hookrightarrow S^{n+1}$ of CMC embeddings.

Morse index of $x_t = \#\operatorname{Spec}(-\Delta_{x_t(\Sigma)}) \cap (-\infty, \|A_{x_t(\Sigma)}\|^2 + \operatorname{Ric}(\vec{n}_{x_t}))$

Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit.

Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit. "Delaunay-type hypersurfaces"

Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit. "Delaunay-type hypersurfaces"

 $\mathbb{C}P^n$, $\mathbb{H}P^n$, Kervaire spheres

Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit. "Delaunay-type hypersurfaces"

 $\mathbb{C}P^n$, $\mathbb{H}P^n$, Kervaire spheres

2022]

B., Lauret, Piccione [BLMS, 2022]

On $\mathbb{C}P^n$, $\mathbb{H}P^n$, $\mathbb{C}aP^2$:

Computation of Spec $(-\Delta_{x_t(\Sigma)}) \Longrightarrow$ explicit bifurcation instants

Koiso, Palmer, Piccione [ACV, 2014]

There are infinitely many families of CMC surfaces in \mathbb{R}^3 with boundary on two fixed coaxial circles that bifurcate from portions of nodoids as their conormal angle varies.

Minimal surfaces

Koiso, Piccione, Shoda [AIF, 2018] Bifurcation of triply periodic minimal surfaces in \mathbb{R}^3 .

Minimal surfaces

Koiso, Piccione, Shoda [AIF, 2018]

Bifurcation of triply periodic minimal surfaces in \mathbb{R}^3 .

B., Piccione [Pisa, 2024]

Bifurcation of minimal 2-spheres in elongated 3-ellipsoids.

▶ (M^n, g_t) Riemannian manifolds, $n \ge 3$

- (M^n, g_t) Riemannian manifolds, $n \ge 3$
- $\blacktriangleright \ X_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \ \int_M u^{\frac{2n}{n-2}} \ \mathsf{vol}_{\mathsf{g}_t} = 1 \right\}$

$$ightharpoonup (M^n, g_t)$$
 Riemannian manifolds, $n \ge 3$

$$ightharpoonup (M^n, g_t)$$
 Riemannian manifolds, $n > 3$

$$ightharpoonup f_t(u) = \int_M u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$$

$$ightharpoonup \mathrm{d} f_t(u) = 0 \Longleftrightarrow L_{g_t} u = C \, u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$$

- $ightharpoonup (M^n, g_t)$ Riemannian manifolds, n > 3
- $ightharpoonup f_t(u) = \int_M u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$
- ▶ $\mathrm{d} f_t(u) = 0 \iff L_{\mathrm{g}_t} u = C \, u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$ $\iff \mathrm{g}_u = u^{\frac{4}{n-2}} \mathrm{g} \text{ has constant scalar curvature } C$

- (M^n, g_t) Riemannian manifolds, $n \ge 3$
- $lacksquare X_t = \left\{ u \colon M o \mathbb{R} \mid u > 0, \ \int_M u^{rac{2n}{n-2}} \ \mathsf{vol}_{\mathsf{g}_t} = 1
 ight\}$
- ho $f_t(u) = \int_M u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$
- ▶ $\mathrm{d}f_t(u) = 0 \iff L_{\mathrm{g}_t}u = C\,u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$ $\iff \mathrm{g}_u = u^{\frac{4}{n-2}}\mathrm{g} \text{ has constant scalar curvature } C$

Example

 $\mathsf{Suppose}\;\mathsf{scal}_{\mathrm{g}_t} = s(t)$

- $ightharpoonup (M^n, g_t)$ Riemannian manifolds, $n \ge 3$
- ho $f_t(u) = \int_M u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$
- ▶ $\mathrm{d}f_t(u) = 0 \iff L_{\mathrm{g}_t}u = C\,u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$ $\iff \mathrm{g}_u = u^{\frac{4}{n-2}}\mathrm{g} \text{ has constant scalar curvature } C$

$$\mathsf{Suppose}\;\mathsf{scal}_{\mathrm{g}_t} = s(t)$$

Let
$$u_t \equiv 1/\operatorname{Vol}(M, g_t)^{\frac{n-2}{2n}}$$

- ▶ (M^n, g_t) Riemannian manifolds, $n \ge 3$
- $lacksquare X_t = \left\{ u \colon M o \mathbb{R} \mid u > 0, \ \int_M u^{rac{2n}{n-2}} \ \mathsf{vol}_{\mathsf{g}_t} = 1
 ight\}$
- ho $f_t(u) = \int_M u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$
- $df_t(u) = 0 \iff L_{g_t}u = C u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$ $\iff g_u = u^{\frac{4}{n-2}}g \text{ has constant scalar curvature } C$

Suppose
$$\operatorname{scal}_{\operatorname{g}_t} = s(t)$$

Let $u_t \equiv 1/\operatorname{Vol}(M, \operatorname{g}_t)^{\frac{n-2}{2n}}$
e.g., $S^k(\cos t) \times S^{n-k}(\sin t)$

- \blacktriangleright (M^n, g_t) Riemannian manifolds, n > 3
- $ightharpoonup f_t(u) = \int_{\mathbb{R}^d} u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$
- $ightharpoonup \mathrm{d} f_t(u) = 0 \Longleftrightarrow L_{g_*} u = C \, u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$ \iff g.. = $u^{\frac{4}{n-2}}$ g has constant scalar curvature C

$$\mathsf{Suppose}\;\mathsf{scal}_{\mathrm{g}_t} = s(t)$$

Let
$$u_t \equiv 1/\operatorname{Vol}(M, g_t)^{\frac{n-2}{2n}}$$

e.g.,
$$S^{k}(\cos t) \times S^{n-k}(\sin t)$$

$$s(t) = \frac{k(k-1)}{\cos^2 t} + \frac{(n-k)(n-k-1)}{\sin^2 t}$$

- ▶ (M^n, g_t) Riemannian manifolds, $n \ge 3$
- $ightharpoonup f_t(u) = \int_M u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$
- ▶ $\mathrm{d}f_t(u) = 0 \iff L_{\mathrm{g}_t}u = C\,u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$ $\iff \mathrm{g}_u = u^{\frac{4}{n-2}}\mathrm{g} \text{ has constant scalar curvature } C$

Suppose
$$\operatorname{scal}_{\operatorname{g}_t} = s(t)$$

Let $u_t \equiv 1/\operatorname{Vol}(M,\operatorname{g}_t)^{\frac{n-2}{2n}}$
e.g., $(M_1 \times M_2,\operatorname{h}_1 \oplus t \operatorname{h}_2)$

- ▶ (M^n, g_t) Riemannian manifolds, $n \ge 3$
- $ightharpoonup f_t(u) = \int_M u \, L_{\mathrm{g}_t} u \, \operatorname{vol}_{\mathrm{g}_t}, \quad L_{\mathrm{g}_t} = -\Delta_{\mathrm{g}_t} + rac{n-2}{4(n-1)} \operatorname{scal}_{\mathrm{g}_t}$
- ▶ $\mathrm{d} f_t(u) = 0 \iff L_{\mathrm{g}_t} u = C \, u^{\frac{n+2}{n-2}} \text{ for some } C \in \mathbb{R}$ $\iff \mathrm{g}_u = u^{\frac{4}{n-2}} \mathrm{g} \text{ has constant scalar curvature } C$

Suppose
$$\mathrm{scal}_{\mathrm{g}_t} = s(t)$$

Let $u_t \equiv 1/\operatorname{Vol}(M,\mathrm{g}_t)^{\frac{n-2}{2n}}$
e.g., $(M_1 \times M_2, \mathrm{h}_1 \oplus t \ \mathrm{h}_2)$

$$s(t) = \operatorname{\mathsf{scal}}_{\operatorname{h}_1} + \frac{1}{t} \operatorname{\mathsf{scal}}_{\operatorname{h}_2}$$

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

$$(M_1 \times M_2, h_1 \oplus t h_2)$$

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

$$(M_1 \times M_2, h_1 \oplus t h_2)$$

Theorem (B., Piccione [PJM2013], [CVPDE, 2013])

If K/H \rightarrow G/H \rightarrow G/K is a homogeneous fibration and scal_{K/H} > 0, then there are infinitely many bifurcation instants accumulating at 0 for the Yamabe on (G/H, g_t),

$$g_t = g_{\mathsf{G}/\mathsf{K}} \oplus t \, g_{\mathsf{K}/\mathsf{H}}$$

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

$$(M_1 \times M_2, h_1 \oplus t h_2)$$

Theorem (B., Piccione [PJM2013], [CVPDE, 2013])

If $K/H \to G/H \to G/K$ is a homogeneous fibration and $scal_{K/H} > 0$, then there are infinitely many bifurcation instants accumulating at 0 for the Yamabe on $(G/H, g_t)$,

$$g_t = g_{\mathsf{G}/\mathsf{K}} \oplus t \, g_{\mathsf{K}/\mathsf{H}}$$

e.g., Berger spheres $S^3 o S^{4n+3}_t o \mathbb{H} P^n$, and $S^7 o S^{15}_t o S^8(\frac{1}{2})$

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

$$(M_1 \times M_2, h_1 \oplus t h_2)$$

Theorem (B., Piccione [PJM2013], [CVPDE, 2013])

If K/H \rightarrow G/H \rightarrow G/K is a homogeneous fibration and scal_{K/H} > 0, then there are infinitely many bifurcation instants accumulating at 0 for the Yamabe on (G/H, g_t),

$$g_t = g_{\mathsf{G}/\mathsf{K}} \oplus t \, g_{\mathsf{K}/\mathsf{H}}$$

e.g., Berger spheres $S^3 o S^{4n+3}_t o \mathbb{H}P^n$, and $S^7 o S^{15}_t o S^8(\frac{1}{2})$

General principle
Collapse ⇒ Instability ⇒ Bifurcation

General principle

Collapse \Longrightarrow Instability \Longrightarrow Bifurcation

Singular Yamabe Problem

B., Piccione, Santoro [JDG 2016]: See Bianca's talk tomorrow!

General principle

Collapse \Longrightarrow Instability \Longrightarrow Bifurcation

Singular Yamabe Problem

B., Piccione, Santoro [JDG 2016]: See Bianca's talk tomorrow!

Higher-order versions of Yamabe problem

B., Piccione, Sire [IMRN, 2021]: 4th order *Q*-curvature

General principle

 $\mathsf{Collapse} \Longrightarrow \mathsf{Instability} \Longrightarrow \mathsf{Bifurcation}$

Singular Yamabe Problem

B., Piccione, Santoro [JDG 2016]: See Bianca's talk tomorrow!

Higher-order versions of Yamabe problem

B., Piccione, Sire [IMRN, 2021]: 4th order *Q*-curvature

Andrade, Case, Piccione, Wei [2023]: GMJS operators

§3. Everything else

§3. Everything else

Brake orbits Giambò, Giannoni, Piccione [ARMA, 2011], [CAG, 2014], [CVPDE, 2015]

Closed Lorentzian geodesics

Biliotti, Mercuri, Piccione [CAG, 2008] Javaloyes, Lima, Piccione [Math Z, 2008]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow Giambò, Giannoni, Piccione [CMP, 2009] Biliotti, Javaloyes, Piccione [IUMJ, 2009], [JLMS, 2011]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory B., Piccione, Siciliano [TG, 2014], [PNDE, 2014]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds Piccione, Zeghib [ETDS, 2014]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

B., Derdzinski, Piccione [AMPA, 2018]

B., Derdzinski, Mossa, Piccione [MNach, 2022]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

Spectral geometry B., Lauret, Piccione [JGA, 2022], [BLMS, 2022]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

Spectral geometry

Isoperimetric problem, Allen-Cahn equation Benci, Nardulli, Piccione [CVPDE, 2020] Andrade, Conrado, Nardulli, Piccione, Resende [JFA, 2024]

Happy birthday, Paolo!

