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§1. Infinite-dimensional Morse Theory
applied to geodesics



Geodesics

(Mn, g) Lorentzian manifold: g ∼


−

+
. . .

+
+



sign(g) = n+(g)− n−(g)

v ∈ TpM is spacelike if g(v , v) > 0
lightlike if g(v , v) = 0
timelike if g(v , v) < 0

Enery functional E (γ) =

∫ b

a

g(γ̇, γ̇) ds

I Not bounded from below
I Critical points may have infinite Morse index

[K. Uhlenbeck, 1975] Morse theory for (some) Lorentzian geodesics
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γ : R→ M timelike curve
worldline of light source

p ∈ M event (observation)
z lightlike geodesic (lightray)
Multiple images?

Gravitational Lensing

Galaxy PSZ1 G311.65-18.48

γ

γ
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p

Λ

T
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e

T
im

e

γ(R) ⊂ Λ light-convex,
∂Λ smooth, timelike
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Giannoni, Masiello, Piccione
[CMP, 1997], [AIHP, 1998],
[CVPDE, 1998]

I M stably causal: ∃T : M → R time function, g(∇T ,∇T ) = −1

I 〈v , v〉R := g(v , v) + 2 g(v ,∇T )2 is a Riemannian metric

I H1,2([a, b],Λ) =
{
z : [a, b]→ Λ |

∫ b

a
〈ż , ż〉R < +∞

}
I γ : R→ M timelike curve w/o endpoints,

I L+
p,γ(Λ) :=

{
z ∈ H1,2([a, b],Λ) | z(a) = p, z(b) ∈ γ(R),

z lightlike, g(ż ,∇T ) ≥ 0 a.e.

}
I

F : L+
p,γ(Λ) −→ R

F (z) = −
∫ b

a
g(ż ,∇T ) ds

I Fermat Principle: dF (z) = 0 ⇐⇒ z lightray from p to γ
(geodesic)

I Issue: L+
p,γ(Λ) is not smooth
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g(ż ,∇T ) ds

I Fermat Principle: dF (z) = 0 ⇐⇒ z lightray from p to γ
(geodesic)

I Issue: L+
p,γ(Λ) is not smooth



Giannoni, Masiello, Piccione
[CMP, 1997], [AIHP, 1998],
[CVPDE, 1998]

I M stably causal: ∃T : M → R time function, g(∇T ,∇T ) = −1
I 〈v , v〉R := g(v , v) + 2 g(v ,∇T )2 is a Riemannian metric

I H1,2([a, b],Λ) =
{
z : [a, b]→ Λ |

∫ b

a
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I “Energy” Q : L+
p,γ(Λ) −→ R, Q(z) =

∫ b

a
g(ż ,∇T )2 ds

I dQ(z) = 0 ⇐⇒ z ∈ L+
p,γ(Λ) geodesic and g(ż ,∇T ) = const

I Regularized domains: L+
p,γ,ε(Λ), where g(ż , ż) = −ε2

I Penalized energy (to stay in Λ): Qδ(z) := Q(z) + δ
∫ b

a
ds

dist(z,∂Λ)

I Carefully let ε↘ 0 and δ ↘ 0 to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997])
If L+

p,γ(Λ) 6= ∅ and c-precompact for all c > 0, then there are at least
cat(L+

p,γ(Λ)) lightrays joining p and γ within Λ.

hi
The Morse inequalities hold for Q, i.e., for any field K,

∞∑
q=0

cqr
q =

∞∑
q=0

bq(L+
p,γ(Λ),K)rq + (1 + r)S(r)

where cq = #{lightrays joining p and γ of index q}, and
S(r) ∈ R[[r ]] has nonnegative coefficients. In particular, cq ≥ bq.
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I Penalized energy (to stay in Λ): Qδ(z) := Q(z) + δ
∫ b

a
ds

dist(z,∂Λ)

I Carefully let ε↘ 0 and δ ↘ 0 to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997])
If L+

p,γ(Λ) 6= ∅ and c-precompact for all c > 0, then there are at least
cat(L+

p,γ(Λ)) lightrays joining p and γ within Λ.

hi
The Morse inequalities hold for Q, i.e., for any field K,

∞∑
q=0

cqr
q =

∞∑
q=0

bq(L+
p,γ(Λ),K)rq + (1 + r)S(r)

where cq = #{lightrays joining p and γ of index q}, and
S(r) ∈ R[[r ]] has nonnegative coefficients. In particular, cq ≥ bq.



I “Energy” Q : L+
p,γ(Λ) −→ R, Q(z) =

∫ b

a
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I Regularized domains: L+
p,γ,ε(Λ), where g(ż , ż) = −ε2
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Theorem (Morse Index Theorem)
Given a Riemannian geodesic γ : [a, b]→ M with γ(a) ∈ P ⊂ M

Morse Index of γ as critical point of E = #P-focal points along γ
(counted w/ multiplicity)

Also holds if g is Lorentzian and γ is not spacelike!
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Morse theory in the limit?
I γ∞ : [a, b]→ M lightlike geodesic

I γn : [a, b]→ M timelike geodesics
γn(a)→ γ∞(a), γ̇n(a)→ γ̇∞(a), g(γ̇n, γ̇n) = − 1

n2

I Does #{conjugate points} pass to the limit γn → γ∞?

γ1 γ2 γn · · ·

γ∞

I Issue: index form Iγn(·, ·) = d2E (γn) degenerates as n→∞!
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Something is preserved in the limit

I γ : [a, b]→ M semi-Riemannian geodesic

I J [t] =
{
J(t) | J : [a, b]→ TM Jacobi field along γ, J(a) = 0

}
I γ(t∗) is conjugate to γ(a) if dimJ [t∗]

⊥ > 0
nondegenerate if g|J [t∗]⊥ is nondegenerate

I sign(t∗) := sign
(
g|J [t∗]⊥

)
signature

I

Theorem (Mercuri, Piccione, Tausk [PJM 2002])
If all conjugate points along γ are nondegenerate, then

Maslov index of γ =
∑

t∈(a,b]

sign(t)

e.g., if g is Riemannian
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Degeneracies happen
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Theorem (Piccione, Tausk [CAG, 2003])
Given a closed subset F ⊂ R such that F ⊂ (a, b], there is a
Lorentzian manifold (M , g) and a spacelike geodesic γ : [a, b]→ M
such that γ(t) is conjugate to γ(a) if and only if t ∈ F .
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Semi-Riemannian Index Theorem

γ : [a, b]→ M semi-Riemannian geodesic
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Dt ⊂ Tγ(t)M maximal distribution along γ where g ≺ 0
S =

{
v ∈ H | v(a) = 0, v(t) ∈ Dt for all t ∈ [a, b]

}
K =

{
v ∈ H | v Jacobi in the directions of D

}
Iγ(S,K) = 0

and generically H = S ⊕ K

n±(B) = sup{dimW | ±B |W � 0}

Theorem (Piccione, Tausk [Topology, 2002])
Maslov Index of γ = n−(Iγ|K)− n+(Iγ|S)
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Other index theorems with Maslov index

Piccione, Tausk [Proc. LMS, 2001]
Index theorem for non-periodic solutions of Hamiltonian systems

d
dt

(
v
α

)
=

(
A(t) B(t)
C (t) −A∗(t)

)
︸ ︷︷ ︸

∈sp(2n,R)

(
v
α

)

Piccione, Tausk [J. Math. Pures Appl., 2002]
Index theorem for solutions of constrained variational problems
e.g., sub-Riemannian geodesics
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Bifurcation of geodesics

tnv

γ(t∗)
t∗v

vn

p

Theorem (Morse–Littauer, PNAS 1932)
If γ(t∗) = expp t∗v is conjugate to p,

then expp : TpM → M is not
injective on any neighborhood of t∗v .

∃vn → t∗v , tn ↘ t∗, such that vn 6= tnv and expp vn = expp tnv

Bifurcation: jump of Maslov index =⇒ local nonuniqueness

Piccione, Portaluri, Tausk [AGAG 2004]
Semi-Riemannian Morse–Littauer theorem
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Conjugate points on Hilbert manifolds

γ : [0, L]→M, γ(t) = expp tv , geodesic in Hilbert manifold

conjugate instant ⇐⇒ d(expp)tv noninvertible
monoconjugate instant ⇐⇒ d(expp)tv noninjective

epiconjugate instant ⇐⇒ d(expp)tv nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

1. K is closed in [0, L)

2. Strictly epiconjugate instants are limit points of K
3. IfM is separable, then Km is countable

Given K, Km, etc. as above, there is a conformally flat Hilbert
manifold with a geodesic γ having these conjugate points.
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then K is finite.

Morse Index Thm X Morse–Littauer Thm X
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If 6 ∃ strictly epiconjugate instants (e.g., if expp is Fredholm),
then K is finite. Morse Index Thm X Morse–Littauer Thm X
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Bifurcation

Setup
I X = {“shapes”}

,
e.g., X = {x : Σ ↪→ M} embeddings, x(Σ) = ∂Ωx

I ft : X → R, 1-parameter family of functionals

I ft(x) = energy (with parameter t) of shape x ∈ X

,
e.g., ft(x) = Area(x) + t Vol(Ωx)

I Euler-Lagrange equation: dft(x) = 0

, e.g.,
dft(x) = 0 ⇐⇒ x(Σ) ⊂ M has constant mean curvature t

I xt trivial branch of solutions, dft(xt) = 0

I Typically minimizer; “Ground state”
I Observed in nature (Principle of Least Action)
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Bifurcation

xt trivial branch
dft(xt) = 0

Definition
Bifurcation occurs at xt∗ if:
I ∃ tn, tn → t∗
I ∃ xn → xt∗ , dftn(xn) = 0,

xn 6= xtn

xt

xt∗

t∗ tn

xn

t

Equivalently, the Implicit Function Theorem fails at xt∗!

Thus, ker d2ft∗(xt∗) 6= {0} is a necessary condition
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Thus, ker d2ft∗(xt∗) 6= {0} is a necessary condition
but it is not sufficient...



Bifurcation

xt trivial branch
dft(xt) = 0

Definition
Bifurcation occurs at xt∗ if:
I ∃ tn, tn → t∗
I ∃ xn → xt∗ , dftn(xn) = 0,

xn 6= xtn

xt

xt∗

t∗ tn

xn

t

Equivalently, the Implicit Function Theorem fails at xt∗!

Morse index jumps at xt∗ =⇒ bifurcation occurs at xt∗



Constant Mean Curvature, I
I (M , g) Riemannian manifold
I X = {x : Σ ↪→ M} embeddings, x(Σ) = ∂Ωx

I fH(x) = Area(x) + H Vol(Ωx)

I dfH(x) = 0 ⇐⇒ x(Σ) ⊂ M has constant mean curvature H

Example
Sk = Sn+1 ∩ (Rk+1 ⊕ {0}) ⊂ Rn+2

Ωt = {p ∈ Sn+1 : dist(p, Sk) < t}
Σ = Sk × Sn−k

xt(Σ) = ∂Ωt , t ∈ [0, π2 ]

H(t) = k tan t − (n − k) cot t(
Σ, x∗t g

)
= Sk(cos t)× Sn−k(sin t)
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Constant Mean Curvature, II

Theorem (Alías, Piccione [JGA, 2013])
For each 1 ≤ k < n, there exist sequences accumulating at 0 and π

2
of bifurcations for the family xt : Σ ↪→ Sn+1 of CMC embeddings.

Morse index of xt = # Spec(−∆xt(Σ))∩
(
−∞, ‖Axt(Σ)‖2 + Ric(~nxt )

)
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Constant Mean Curvature, III
Theorem (B., Piccione [IMRN, 2016])
On a cohomogeneity one manifold with a normal isotropy subgroup,
principal orbits bifurcate infinitely many times as they collapse to a
singular orbit.

“Delaunay-type hypersurfaces”

CPn, HPn,
Kervaire spheres
...

B., Lauret, Piccione [BLMS, 2022]
On CPn, HPn, CaP2:

Computation of Spec(−∆xt(Σ)) =⇒ explicit bifurcation instants
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Constant Mean Curvature, IV

Nodoid in R3

Koiso, Palmer, Piccione [ACV, 2014]
There are infinitely many families of CMC
surfaces in R3 with boundary on two fixed
coaxial circles that bifurcate from portions of
nodoids as their conormal angle varies.



Minimal surfaces

Koiso, Piccione, Shoda [AIF, 2018]
Bifurcation of triply periodic minimal surfaces in R3.

B., Piccione [Pisa, 2024]
Bifurcation of minimal 2-spheres in elongated 3-ellipsoids.
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Yamabe problem, I
I (Mn, gt) Riemannian manifolds, n ≥ 3

I Xt =

{
u : M → R | u > 0,

∫
M

u
2n
n−2 volgt = 1

}
I ft(u) =

∫
M

u Lgtu volgt , Lgt = −∆gt + n−2
4(n−1)

scalgt

I dft(u) = 0 ⇐⇒ Lgtu = C u
n+2
n−2 for some C ∈ R

⇐⇒ gu = u
4

n−2 g has constant scalar curvature C

Example
Suppose scalgt = s(t)

Let ut ≡ 1/Vol(M , gt)
n−2
2n

e.g., Sk(cos t)× Sn−k(sin t)

s(t) = k(k−1)
cos2 t

+ (n−k)(n−k−1)

sin2 t
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Yamabe problem, II

Theorem (Lima, Piccione, Zedda [AIHP, 2012])
If (Mi , hi) have constant positive scalar curvature (and at least
one is nondegenerate), then there are infinitely many bifurcation
instants accumulating at 0 and ∞ for the Yamabe problem on

(M1 ×M2, h1 ⊕ t h2)

Theorem (B., Piccione [PJM2013], [CVPDE, 2013])
If K/H→ G/H→ G/K is a homogeneous fibration and
scalK/H > 0, then there are infinitely many bifurcation instants
accumulating at 0 for the Yamabe on (G/H, gt),

gt = gG/K ⊕ t gK/H

e.g., Berger spheres S3 → S4n+3
t → HPn, and S7 → S15

t → S8(12)
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Yamabe problem, III

General principle
Collapse =⇒ Instability =⇒ Bifurcation

Singular Yamabe Problem
B., Piccione, Santoro [JDG 2016]: See Bianca’s talk tomorrow!

Higher-order versions of Yamabe problem
B., Piccione, Sire [IMRN, 2021]: 4th order Q-curvature

Andrade, Case, Piccione, Wei [2023]: GMJS operators
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Brake orbits
Giambò, Giannoni, Piccione [ARMA, 2011], [CAG, 2014],
[CVPDE, 2015]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

Spectral geometry

Isoperimetric problem, Allen–Cahn equation
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Brake orbits

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

Spectral geometry

Isoperimetric problem, Allen–Cahn equation
Benci, Nardulli, Piccione [CVPDE, 2020]
Andrade, Conrado, Nardulli, Piccione, Resende [JFA, 2024]







Happy birthday, Paolo!


