A 60-minute overview of the first 60 years of Paolo Piccione's mathematical career

Rettiol **Bettiol** Supported by NSF CAREER Award DMS-2142575

Life in academia

\blacktriangleright Teaching

Life in academia

\blacktriangleright Research

\blacktriangleright Teaching

§1. Infinite-dimensional Morse Theory applied to geodesics

 (M^n, g) Lorentzian manifold:

 $(\mathsf{M}^n,\mathrm{g})$ semi-Riemannian manifold: $\mathrm{g}\sim$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

− −

...

+ $+$

 $\begin{matrix} \end{matrix}$

 $(\mathsf{M}^n,\mathrm{g})$ *semi-Riemannian* manifold: $\mathrm{g}\sim$

$$
\text{ifold: } g \sim \begin{pmatrix} - & & & \\ & - & & & \\ & & & & \\ & & & & + \\ & & & & + \end{pmatrix}
$$
\n
$$
\text{sign}(g) = n_{+}(g) - n_{-}(g)
$$

 $(\mathsf{M}^n,\mathrm{g})$ *semi-Riemannian* manifold: $\mathrm{g}\sim$ $\sqrt{ }$ $\overline{}$ − − . . . + $+$ \ $\begin{array}{c} \hline \end{array}$

$$
sign(g) = n_{+}(g) - n_{-}(g)
$$

$$
v \in T_{p}M \text{ is spacelike if } g(v, v) > 0
$$

lightlike if $g(v, v) = 0$
timelike if $g(v, v) < 0$

a

Not bounded from below

Enery functional $E(\gamma) = \int^b$ a $\mathrm{g}(\dot\gamma,\dot\gamma)$ ds

- \blacktriangleright Not bounded from below
- \triangleright Critical points may have infinite Morse index

Enery functional $E(\gamma) = \int^b$ a $\mathrm{g}(\dot\gamma,\dot\gamma)$ ds

- \blacktriangleright Not bounded from below
- \triangleright Critical points may have infinite Morse index

[K. Uhlenbeck, 1975] Morse theory for (some) Lorentzian geodesics

 $\gamma: \mathbb{R} \to M$ timelike curve worldline of light source

 $\gamma: \mathbb{R} \to M$ timelike curve worldline of light source $p \in M$ event (observation)

p

 $\gamma\colon \mathbb{R}\to M$ timelike curve worldline of light source $p \in M$ event (observation)

z lightlike geodesic (lightray)

 $\gamma\colon \mathbb{R}\to M$ timelike curve worldline of light source $p \in M$ event (observation)

z lightlike geodesic (lightray)

Gravitational Lensing

Galaxy PSZ1 G311.65-18.48

Gravitational Lensing

Galaxy PSZ1 G311.65-18.48

 $\gamma(\mathbb{R}) \subset \Lambda$ light-convex, ∂Λ smooth, timelike

Gravitational Lensing

Galaxy PSZ1 G311.65-18.48

 $\gamma(\mathbb{R}) \subset \Lambda$ light-convex, ∂Λ smooth, timelike

Gravitational Lensing

Galaxy PSZ1 G311.65-18.48

 $\gamma(\mathbb{R}) \subset \Lambda$ light-convex, ∂Λ smooth, timelike

 \triangleright *M stably causal*: $\exists T: M \rightarrow \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$

 \triangleright *M* stably causal: $\exists T: M \rightarrow \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$ $\blacktriangleright \langle v, v \rangle_R := g(v, v) + 2\,g(v, \nabla T)^2$ is a Riemannian metric

 \triangleright *M stably causal*: $\exists T: M \rightarrow \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$ $\blacktriangleright \langle v, v \rangle_R := g(v, v) + 2\,g(v, \nabla T)^2$ is a Riemannian metric

 $\blacktriangleright \; H^{1,2}([a,b],\Lambda) = \left\{ z \colon [a,b] \to \Lambda \; | \; \int_a^b \langle \dot{z}, \dot{z} \rangle_{\rm R} < + \infty \right\}$

 \triangleright *M stably causal*: $\exists T: M \rightarrow \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$ $\blacktriangleright \langle v, v \rangle_R := g(v, v) + 2\,g(v, \nabla T)^2$ is a Riemannian metric $\blacktriangleright \; H^{1,2}([a,b],\Lambda) = \left\{ z \colon [a,b] \to \Lambda \; | \; \int_a^b \langle \dot{z}, \dot{z} \rangle_{\rm R} < + \infty \right\}$ $\triangleright \gamma: \mathbb{R} \to M$ timelike curve w/o endpoints, $s \mapsto \mathcal{T}(\gamma(s))$ increasing

 \triangleright *M stably causal*: $\exists T: M \rightarrow \mathbb{R}$ time function, $g(\nabla T, \nabla T) = -1$ $\blacktriangleright \langle v, v \rangle_R := g(v, v) + 2\,g(v, \nabla T)^2$ is a Riemannian metric $\blacktriangleright \; H^{1,2}([a,b],\Lambda) = \left\{ z \colon [a,b] \to \Lambda \; | \; \int_a^b \langle \dot{z}, \dot{z} \rangle_{\rm R} < + \infty \right\}$ $\triangleright \gamma: \mathbb{R} \to M$ timelike curve w/o endpoints, future-pointing

\n- ▶ M stably causal:
$$
\exists T : M \rightarrow \mathbb{R}
$$
 time function, $g(\nabla T, \nabla T) = -1$
\n- ▶ $\langle v, v \rangle_{\mathbb{R}} := g(v, v) + 2g(v, \nabla T)^2$ is a Riemannian metric
\n- ▶ $H^{1,2}([a, b], \Lambda) = \left\{ z : [a, b] \rightarrow \Lambda \mid \int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbb{R}} < +\infty \right\}$
\n- ▶ $\gamma : \mathbb{R} \rightarrow M$ timelike curve w/o endpoints, future-pointing
\n- ▶ $\mathcal{L}_{p,\gamma}^+(\Lambda) := \left\{ z \in H^{1,2}([a, b], \Lambda) \mid \begin{array}{l} z(a) = p, \ z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z}, \nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$
\n

\n- ✓ *M stably causal*:
$$
\exists T: M \rightarrow \mathbb{R}
$$
 time function, $g(\nabla T, \nabla T) = -1$
\n- ✓ $\langle v, v \rangle_{\mathbb{R}} := g(v, v) + 2g(v, \nabla T)^2$ is a Riemannian metric
\n- ✓ $H^{1,2}([a, b], \Lambda) = \left\{ z : [a, b] \rightarrow \Lambda \mid \int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbb{R}} < +\infty \right\}$
\n- ✓ $\gamma: \mathbb{R} \rightarrow M$ timelike curve w/o endpoints, future-pointing
\n- ✓ $\mathcal{L}_{p,\gamma}^+(\Lambda) := \left\{ z \in H^{1,2}([a, b], \Lambda) \mid \begin{array}{l} z(a) = p, \ z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z}, \nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$
\n- ✓ $F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$
\n- ✓ $F(z) = -\int_a^b g(\dot{z}, \nabla T) \, ds$
\n

\n- ▶ M stably causal:
$$
\exists T: M \rightarrow \mathbb{R}
$$
 time function, $g(\nabla T, \nabla T) = -1$
\n- ▶ $\langle v, v \rangle_{\mathbb{R}} := g(v, v) + 2g(v, \nabla T)^2$ is a Riemannian metric
\n- ▶ $H^{1,2}([a, b], \Lambda) = \left\{ z : [a, b] \rightarrow \Lambda \mid \int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbb{R}} < +\infty \right\}$
\n- ▶ $\gamma: \mathbb{R} \rightarrow M$ timelike curve w/o endpoints, future-pointing
\n- ▶ $\mathcal{L}_{p,\gamma}^+(\Lambda) := \left\{ z \in H^{1,2}([a, b], \Lambda) \mid \begin{array}{l} z(a) = p, z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z}, \nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$
\n- ▶ $F: \mathcal{L}_{p,\gamma}^+(\Lambda) \rightarrow \mathbb{R}$
\n- ▶ $F(z) = -\int_a^b g(\dot{z}, \nabla T) \, ds$
\n

\n- ✓ *M stably causal*:
$$
\exists T: M \rightarrow \mathbb{R}
$$
 time function, $g(\nabla T, \nabla T) = -1$
\n- ✓ $\langle v, v \rangle_{\mathbb{R}} := g(v, v) + 2g(v, \nabla T)^2$ is a Riemannian metric
\n- ✓ $H^{1,2}([a, b], \Lambda) = \left\{ z : [a, b] \rightarrow \Lambda \mid \int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbb{R}} < +\infty \right\}$
\n- ✓ $\gamma: \mathbb{R} \rightarrow M$ timelike curve w/o endpoints, future-pointing
\n- ✓ $\mathcal{L}_{p,\gamma}^+(\Lambda) := \left\{ z \in H^{1,2}([a, b], \Lambda) \mid \begin{array}{l} z(a) = p, z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z}, \nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$
\n- ✓ $F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$
\n- ✓ $F(z) = -\int_a^b g(\dot{z}, \nabla T) \, ds$
\n

\n- ✓ *M stably causal*:
$$
\exists T: M \rightarrow \mathbb{R}
$$
 time function, $g(\nabla T, \nabla T) = -1$
\n- ✓ $\langle v, v \rangle_{\mathbb{R}} := g(v, v) + 2g(v, \nabla T)^2$ is a Riemannian metric
\n- ✓ $H^{1,2}([a, b], \Lambda) = \left\{ z : [a, b] \rightarrow \Lambda \mid \int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbb{R}} < +\infty \right\}$
\n- ✓ $\gamma: \mathbb{R} \rightarrow M$ timelike curve w/o endpoints, future-pointing
\n- ✓ $\mathcal{L}_{p,\gamma}^+(\Lambda) := \left\{ z \in H^{1,2}([a, b], \Lambda) \mid \begin{array}{l} z(a) = p, z(b) \in \gamma(\mathbb{R}), \\ z \text{ lightlike, } g(\dot{z}, \nabla T) \geq 0 \text{ a.e.} \end{array} \right\}$
\n- ✓ $F: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}$
\n- ✓ $F(z) = -\int_a^b g(\dot{z}, \nabla T) \, ds$
\n

\n- ✓ *M stably causal*:
$$
\exists T: M \rightarrow \mathbb{R}
$$
 time function, $g(\nabla T, \nabla T) = -1$
\n- ✓ *v*, *v*⟩_R := *g*(*v*, *v*) + 2*g*(*v*, ∇T)² is a Riemannian metric
\n- ✓ *H*^{1,2}([*a*, *b*], *A*) = {*z* : [*a*, *b*] → *A* | $\int_{a}^{b} \langle \dot{z}, \dot{z} \rangle_{\mathbb{R}} < +\infty$ }
\n- ✓ *Y*: $\mathbb{R} \rightarrow M$ timelike curve w/o endpoints, future-pointing
\n- ✓ $\mathcal{L}_{p,\gamma}^+(A) := \left\{ z \in H^{1,2}([a, b], A) \mid z(a) = p, z(b) \in \gamma(\mathbb{R}), z(a) = p, z(b) = \gamma(\mathbb{R}), z(a) = \$

\n- ✓ *M stably causal*:
$$
\exists T : M \rightarrow \mathbb{R}
$$
 time function, $g(\nabla T, \nabla T) = -1$
\n- ✓ *v*, *v*⟩_R := *g*(*v*, *v*) + 2*g*(*v*, ∇T)² is a Riemannian metric
\n- ✓ *H*^{1,2}([*a*, *b*], *A*) = {*z* : [*a*, *b*] → *A* | $\int_a^b \langle \dot{z}, \dot{z} \rangle_{\mathbb{R}} < +\infty$ }
\n- ✓ *γ*: *R* → *M* timelike curve w/o endpoints, future-pointing
\n- ✓ *L*_{p,γ}(*A*) := {*z* ∈ *H*^{1,2}([*a*, *b*], *A*) | *z*(*a*) = *p*, *z*(*b*) ∈ *γ*(*R*),
\n- ✓ *E*₁(*p*), *z* | *z* √ *T)* ≥ 0 a.e.}
\n- ✓ *F*: *L*_{p,γ}(*A*) → *R* // *z* | *z*

Similarity Islamic Interval is not smooth

• "Energy"
$$
Q: \mathcal{L}_{p,\gamma}^+(\Lambda) \longrightarrow \mathbb{R}, \ Q(z) = \int_a^b g(z, \nabla T)^2 ds
$$

\n- "Energy"
$$
Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}
$$
, $Q(z) = \int_a^b g(z, \nabla T)^2 \, ds$
\n- $dQ(z) = 0 \iff z \in \mathcal{L}^+_{p,\gamma}(\Lambda)$ geodesic and $g(z, \nabla T) = \text{const}$
\n
- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}_{\rho,\gamma}^{+}(\Lambda)$ geodesic and $g(z,\nabla T) = const$
- **•** Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}_{\rho,\gamma}^{+}(\Lambda)$ geodesic and $g(z,\nabla T) = const$
- Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ ds dist $(z,\partial \Lambda)$
- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}_{\rho,\gamma}^{+}(\Lambda)$ geodesic and $g(z,\nabla T) = const$
- **•** Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ ds dist $(z,\partial \Lambda)$
- **In Carefully let** $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:
- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}_{\rho,\gamma}^{+}(\Lambda)$ geodesic and $g(z,\nabla T) = const$
- **•** Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ ds dist $(z,\partial \Lambda)$
- **In Carefully let** $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997]) If $\mathcal L^+_{\rho,\gamma}(\Lambda)\neq\emptyset$ and c-precompact for all $c>0$, then there are at least $\mathrm{cat}(\mathcal{L}^+_{\rho,\gamma}(\Lambda))$ lightrays joining ρ and γ within $\Lambda.$

- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}_{\rho,\gamma}^{+}(\Lambda)$ geodesic and $\mathrm{g}(z,\nabla \mathcal{T}) = const$
- Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ ds dist(z,∂Λ)
- **In Carefully let** $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997]) If $\mathcal L^+_{\rho,\gamma}(\Lambda)\neq \emptyset$ and c-precompact for all $c>0,$ then there are at least $\mathrm{cat}(\mathcal{L}^+_{\rho,\gamma}(\Lambda))$ lightrays joining ρ and γ within $\Lambda.$

Replaces completeness in Riemannian case

- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}_{\rho,\gamma}^{+}(\Lambda)$ geodesic and $\mathrm{g}(z,\nabla \mathcal{T}) = const$
- Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ ds dist(z,∂Λ)
- **In Carefully let** $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997]) If $\mathcal L^+_{\rho,\gamma}(\Lambda)\neq\emptyset$ and c-precompact for all $c>0$, then there are at least $\mathrm{cat}(\mathcal{L}^+_{\rho,\gamma}(\mathsf{\Lambda}))$ lightrays joining ρ and γ within $\mathsf{\Lambda}.$

 $\text{cat}(X) = \text{min} \#$ of closed contractible subsets of X that cover X

- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}_{\rho,\gamma}^{+}(\Lambda)$ geodesic and $\mathrm{g}(z,\nabla \mathcal{T}) = const$
- Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ ds dist(z,∂Λ)
- **In Carefully let** $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997]) If $\mathcal L^+_{\rho,\gamma}(\Lambda)\neq\emptyset$ and c-precompact for all $c>0$, then there are at least $\mathrm{cat}(\mathcal{L}^+_{\rho,\gamma}(\mathsf{\Lambda}))$ lightrays joining ρ and γ within $\mathsf{\Lambda}.$

 $\text{cat}(X) = \text{min} \# \text{ of closed contractible subsets of } X \text{ that cover } X$ $\in \{1, 2, \ldots, +\infty\}$ if $X \neq \emptyset$

- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}^+_{\rho,\gamma}(\Lambda)$ geodesic and $\mathrm{g}(z,\nabla \mathcal{T}) = const$
- Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ <u>ds</u> dist(z,∂Λ)
- **In Carefully let** $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997]) If $\mathcal L^+_{\rho,\gamma}(\Lambda)\neq\emptyset$ and c-precompact for all $c>0,$ then there are at least $\mathrm{cat}(\mathcal{L}^+_{\rho,\gamma}(\Lambda))$ lightrays joining ρ and γ within $\Lambda.$

Theorem (Giannoni, Masiello, Piccione [AIHP, 1998]) The Morse inequalities hold for Q , i.e., for any field K , \sum^{∞} $q=0$ $c_q r^q = \sum_{q}^{\infty}$ $q=0$ $b_q(\mathcal{L}^+_{p,\gamma}(\Lambda), \mathbb{K})r^q + (1+r)S(r)$ where $c_q = \#\{$ lightrays joining p and γ of index q $\}$, and $S(r) \in \mathbb{R}[[r]]$ has nonnegative coefficients.

- ► "Energy" $Q: \mathcal{L}^+_{p,\gamma}(\Lambda) \longrightarrow \mathbb{R}, \ \ Q(z) = \int_a^b g(\dot{z}, \nabla \mathcal{T})^2 \mathrm{d}s$
- $\blacktriangleright \ \mathrm{d} Q(z) = 0 \Longleftrightarrow z \in \mathcal{L}^+_{\rho,\gamma}(\Lambda)$ geodesic and $\mathrm{g}(z,\nabla \mathcal{T}) = const$
- Regularized domains: $\mathcal{L}^+_{p,\gamma,\varepsilon}(\Lambda)$, where $g(z,\dot{z}) = -\varepsilon^2$
- **P** Penalized energy (to stay in Λ): $Q_{\delta}(z) := Q(z) + \delta \int_a^b$ <u>ds</u> dist(z,∂Λ)
- **In Carefully let** $\varepsilon \searrow 0$ and $\delta \searrow 0$ to prove:

Theorem (Giannoni, Masiello, Piccione [CMP, 1997]) If $\mathcal L^+_{\rho,\gamma}(\Lambda)\neq\emptyset$ and c-precompact for all $c>0,$ then there are at least $\mathrm{cat}(\mathcal{L}^+_{\rho,\gamma}(\Lambda))$ lightrays joining ρ and γ within $\Lambda.$

Theorem (Giannoni, Masiello, Piccione [AIHP, 1998]) The Morse inequalities hold for Q , i.e., for any field K , \sum^{∞} $q=0$ $c_q r^q = \sum_{q}^{\infty}$ $q=0$ $b_q(\mathcal{L}^+_{p,\gamma}(\Lambda), \mathbb{K})r^q + (1+r)S(r)$ where $c_q = \#\{$ lightrays joining p and γ of index q $\}$, and $S(r) \in \mathbb{R}[[r]]$ has nonnegative coefficients. In particular, $c_q > b_q$.

Theorem (Morse Index Theorem)

Given a Riemannian geodesic γ : [a, b] \rightarrow M with fixed endpoints,

Morse Index of γ as critical point of $E = #$ conjugate points along γ (counted w/ multiplicity)

Theorem (Morse Index Theorem)

Given a Riemannian geodesic γ : [a, b] \rightarrow M with $\gamma(a) \in \mathcal{P} \subset M$

Morse Index of γ as critical point of $E = \#P$ -focal points along γ (counted w/ multiplicity)

Theorem (Morse Index Theorem)

Given a Riemannian geodesic γ : [a, b] \rightarrow M with $\gamma(a) \in \mathcal{P} \subset M$

Morse Index of γ as critical point of $E = \#P$ -focal points along γ (counted w/ multiplicity)

Also holds if g is Lorentzian and γ is not spacelike!

 $\triangleright \ \gamma_{\infty} : [a, b] \rightarrow M$ lightlike geodesic

 γ_{∞}

$\triangleright \ \gamma_{\infty} : [a, b] \to M$ lightlike geodesic $\triangleright \gamma_n : [a, b] \to M$ timelike geodesics $\gamma_{n}(a)\rightarrow\gamma_{\infty}(a),\;\;\;\dot{\gamma}_{n}(a)\rightarrow\dot{\gamma}_{\infty}(a),\;\;\;\mathrm{g}(\dot{\gamma}_{n},\dot{\gamma}_{n})=-\frac{1}{n^{2}}$ n 2

- $\triangleright \ \gamma_{\infty} : [a, b] \to M$ lightlike geodesic
- $\triangleright \gamma_n : [a, b] \to M$ timelike geodesics $\gamma_{n}(a)\rightarrow\gamma_{\infty}(a),\;\;\;\dot{\gamma}_{n}(a)\rightarrow\dot{\gamma}_{\infty}(a),\;\;\;\mathrm{g}(\dot{\gamma}_{n},\dot{\gamma}_{n})=-\frac{1}{n^{2}}$ n 2
- Does # $\{conjugate points\}$ pass to the limit $\gamma_n \to \gamma_\infty$?

- $\triangleright \ \gamma_{\infty} : [a, b] \to M$ lightlike geodesic
- $\triangleright \gamma_n : [a, b] \to M$ timelike geodesics $\gamma_{n}(a)\rightarrow\gamma_{\infty}(a),\;\;\;\dot{\gamma}_{n}(a)\rightarrow\dot{\gamma}_{\infty}(a),\;\;\;\mathrm{g}(\dot{\gamma}_{n},\dot{\gamma}_{n})=-\frac{1}{n^{2}}$ n 2
- Does #{conjugate points} pass to the limit $\gamma_n \to \gamma_\infty$?

 $\blacktriangleright \gamma: [a, b] \rightarrow M$ semi-Riemannian geodesic

 $\blacktriangleright \gamma : [a, b] \rightarrow M$ semi-Riemannian geodesic \triangleright $\mathcal{J}[t] = \{ J(t) | J: [a, b] \rightarrow TM \}$ Jacobi field along $\gamma, J(a) = 0 \}$

 $\triangleright \gamma$: [a, b] $\rightarrow M$ semi-Riemannian geodesic \triangleright $\mathcal{J}[t] = \{ J(t) | J: [a, b] \rightarrow TM \}$ Jacobi field along $\gamma, J(a) = 0 \}$ $\blacktriangleright \gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^\perp > 0$

\n- $$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- $\mathcal{J}[t] = \{ J(t) \mid J: [a, b] \rightarrow TM$ Jacobi field along $\gamma, J(a) = 0 \}$
\n- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n

\n- $$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- $\mathcal{J}[t] = \{ J(t) \mid J: [a, b] \rightarrow \mathcal{T}M$ Jacobi field along $\gamma, J(a) = 0 \}$
\n- $\gamma(t_*)$ is conjugate to $\gamma(a)$ if $\dim \mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- $\mathsf{sign}(t_*) := \text{sign}(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow TM \text{ Jacobi field along } \gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $\ell_{\gamma}(t) = \{(J(t), J'(t)^{\flat}) \in TM \oplus TM^* \mid J \in \mathcal{J}\}$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow TM$ Jacobi field along γ , $J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $\ell_{\gamma}(t) = \{(J(t), J'(t)^{\flat}) \in \mathbb{R}^{n} \oplus (\mathbb{R}^{n})^{\ast} \mid J \in \mathcal{J}\}$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $\ell_{\gamma}(t) = \{(J(t), J'(t)^{\flat}) \in \mathbb{R}^{n} \oplus (\mathbb{R}^{n})^{\ast} \mid J \in \mathcal{J}\}$ Lagrangian
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $\ell_{\gamma}: [a, b] \rightarrow \text{LGr}(\mathbb{R}^n \oplus (\mathbb{R}^n)^*)$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $\ell_{\gamma}: [a, b] \rightarrow \text{LGr}(\mathbb{R}^{2n})$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow TM$ Jacobi field along γ , $J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $\ell_{\gamma}: [a, b] \rightarrow \text{LGr}(\mathbb{R}^{2n}), \quad \ell(a + \varepsilon), \ell(b) \in L_0 = \{0\} \oplus (\mathbb{R}^n)^*$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{T}M$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_\gamma([a + \varepsilon, b]]) \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z})$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{T}M$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_\gamma([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z})$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_\gamma([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}, \text{Maslov index of } \gamma]$
\n

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along γ , $J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if $\dim \mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_{\gamma}([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ Theorem (Mercuri, Piccione, Tausk [PJM 2002])
\n- 16. If the sum of the form G is the sum of the form G is the sum of the form G for G is the sum of the form G for G is the sum of the form G for G is the sum of the form G for G is the sum of G for G for G is the sum of G for $$

If all conjugate points along γ are nondegenerate, then

$$
Maslov index of \gamma = \sum_{t \in (a,b]} sign(t)
$$

Francesco Mercuri (7 Jul 1946 – 5 Aug 2024)

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along γ , $J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if $\dim \mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_{\gamma}([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ Theorem (Mercuri, Piccione, Tausk [PJM 2002])
\n- 16. If the sum of the form G is the sum of the form G is the sum of the form G for G is the sum of the form G for G is the sum of the form G for G is the sum of the form G for G is the sum of G for G for G is the sum of G for $$

If all conjugate points along γ are nondegenerate, then

$$
Maslov index of \gamma = \sum_{t \in (a,b]} sign(t)
$$
\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along γ , $J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if $\dim \mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_\gamma([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ Theorem (Mercuri, Piccione, Tausk [PJM 2002])
\n- If all conjugate points along γ are nondegenerate, then
\n

$$
Maslov index of \gamma = \sum_{t \in (a,b]} sign(t)
$$

e.g., if g is Lorentzian and γ is not spacelike

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along γ , $J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_{\gamma}([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ Theorem (Mercuri, Piccione, Tausk [PJM 2002])
\n- If all conjugate points along γ are nondegenerate, then Maslov index of $\gamma = \sum sign(t)$
\n

 $t \in (a,b]$

e.g., if g is Riemannian

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_\gamma([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}$, Maslov index of γ Theorem (Mercuri, Piccione, Tausk [PJM 2002])
\n- If all conjugate points along γ are nondegenerate, then Maslov index of $\gamma = \sum_{t \in (a, b]} sign(t)$
\n

"algebraic count" of conjugate points

\n- ▶
$$
\gamma: [a, b] \rightarrow M
$$
 semi-Riemannian geodesic
\n- ▶ $\mathcal{J}[t] = \{J(t) \mid J: [a, b] \rightarrow \mathcal{TM}$ Jacobi field along $\gamma, J(a) = 0\}$
\n- ▶ $\gamma(t_*)$ is conjugate to $\gamma(a)$ if dim $\mathcal{J}[t_*]^{\perp} > 0$ nondegenerate if $g|_{\mathcal{J}[t_*]^{\perp}}$ is nondegenerate
\n- ▶ $sign(t_*) := sign(g|_{\mathcal{J}[t_*]^{\perp}})$ signature
\n- ▶ $[\ell_\gamma([a + \varepsilon, b])] \in H_1(\mathrm{LGr}(\mathbb{R}^{2n}), L_0; \mathbb{Z}) \cong \mathbb{Z}, \text{Maslov index of } \gamma]$
\n

Theorem (Mercuri, Piccione, Tausk [PJM 2002]) If all conjugate points along γ are nondegenerate, then

$$
Maslov index of \gamma = \sum_{t \in (a,b]} sign(t)
$$

Homological invariant, stable under C^0 perturbations of γ

Degeneracies happen

Degeneracies happen

Theorem (Piccione, Tausk [CAG, 2003])

Given a closed subset $F \subset \mathbb{R}$ such that $F \subset (a, b]$, there is a **Lorentzian** manifold (M, g) and a spacelike geodesic γ : [a, b] \rightarrow M such that $\gamma(t)$ is conjugate to $\gamma(a)$ if and only if $t \in F$.

 γ : [a, b] \rightarrow M semi-Riemannian geodesic

 γ : [a, b] \rightarrow M semi-Riemannian geodesic $I_{\gamma} = d^2 E \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ index form

 $\gamma: [a, b] \to M$ semi-Riemannian geodesic $I_{\gamma} = d^2 E \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ index form $D_t \subset T_{\gamma(t)}M$ maximal distribution along γ where $g \prec 0$

 γ : [a, b] \rightarrow M semi-Riemannian geodesic $I_{\gamma} = d^2 E \colon \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ index form $D_t \subset T_{\gamma(t)}M$ maximal distribution along γ where $g \prec 0$ $\mathcal{S} = \big\{ \textsf{v} \in \mathcal{H} \mid \textsf{v}(\textsf{a}) = \textsf{0}, \textsf{v}(\textsf{t}) \in \mathcal{D}_{\textsf{t}} \textsf{ for all } \textsf{t} \in \textsf{[a,b]} \big\}$

$$
\gamma: [a, b] \to M \text{ semi-Riemannian geodesic}
$$
\n
$$
I_{\gamma} = d^2 E: \mathcal{H} \times \mathcal{H} \to \mathbb{R} \text{ index form}
$$
\n
$$
\mathcal{D}_t \subset T_{\gamma(t)}M \text{ maximal distribution along } \gamma \text{ where } g \to 0
$$
\n
$$
\mathcal{S} = \{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a, b] \}
$$
\n
$$
\mathcal{K} = \{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \}
$$

$$
\gamma: [a, b] \to M \text{ semi-Riemannian geodesic}
$$
\n
$$
I_{\gamma} = d^2E: \mathcal{H} \times \mathcal{H} \to \mathbb{R} \text{ index form}
$$
\n
$$
\mathcal{D}_t \subset T_{\gamma(t)}M \text{ maximal distribution along } \gamma \text{ where } g \prec 0
$$
\n
$$
\mathcal{S} = \{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a, b] \}
$$
\n
$$
\mathcal{K} = \{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \}
$$
\n
$$
I_{\gamma}(\mathcal{S}, \mathcal{K}) = 0
$$

$$
\gamma: [a, b] \to M \text{ semi-Riemannian geodesic}
$$
\n
$$
L_{\gamma} = d^2 E: \mathcal{H} \times \mathcal{H} \to \mathbb{R} \text{ index form}
$$
\n
$$
\mathcal{D}_t \subset T_{\gamma(t)}M \text{ maximal distribution along } \gamma \text{ where } g \prec 0
$$
\n
$$
\mathcal{S} = \{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a, b] \}
$$
\n
$$
\mathcal{K} = \{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \}
$$
\n
$$
L_{\gamma}(\mathcal{S}, \mathcal{K}) = 0 \text{ and generically } \mathcal{H} = \mathcal{S} \oplus \mathcal{K}
$$

$$
\gamma: [a, b] \to M \text{ semi-Riemannian geodesic}
$$
\n
$$
L_{\gamma} = d^2 E: \mathcal{H} \times \mathcal{H} \to \mathbb{R} \text{ index form}
$$
\n
$$
\mathcal{D}_t \subset T_{\gamma(t)}M \text{ maximal distribution along } \gamma \text{ where } g \prec 0
$$
\n
$$
\mathcal{S} = \{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a, b] \}
$$
\n
$$
\mathcal{K} = \{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \}
$$
\n
$$
L_{\gamma}(\mathcal{S}, \mathcal{K}) = 0 \text{ and generically } \mathcal{H} = \mathcal{S} \oplus \mathcal{K}
$$
\n
$$
n_{\pm}(B) = \sup \{ \dim W \mid \pm B |_{W} \succ 0 \}
$$

$$
\gamma: [a, b] \to M \text{ semi-Riemannian geodesic}
$$
\n
$$
L_{\gamma} = d^2 E: \mathcal{H} \times \mathcal{H} \to \mathbb{R} \text{ index form}
$$
\n
$$
\mathcal{D}_t \subset T_{\gamma(t)}M \text{ maximal distribution along } \gamma \text{ where } g \to 0
$$
\n
$$
\mathcal{S} = \{ v \in \mathcal{H} \mid v(a) = 0, v(t) \in \mathcal{D}_t \text{ for all } t \in [a, b] \}
$$
\n
$$
\mathcal{K} = \{ v \in \mathcal{H} \mid v \text{ Jacobi in the directions of } \mathcal{D} \}
$$
\n
$$
L_{\gamma}(\mathcal{S}, \mathcal{K}) = 0 \text{ and generically } \mathcal{H} = \mathcal{S} \oplus \mathcal{K}
$$
\n
$$
n_{\pm}(B) = \sup \{ \dim W \mid \pm B |_{W} \succ 0 \}
$$

Theorem (Piccione, Tausk [Topology, 2002]) Maslov Index of $\gamma = n_-(I_\gamma|_{\mathcal{K}}) - n_+(I_\gamma|_{\mathcal{S}})$ Other index theorems with Maslov index

Piccione, Tausk [Proc. LMS, 2001]

Index theorem for non-periodic solutions of Hamiltonian systems

$$
\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix} \mathbf{v} \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} A(t) & B(t) \\ C(t) & -A^*(t) \end{pmatrix}}_{\in \mathfrak{sp}(2n,\mathbb{R})} \begin{pmatrix} \mathbf{v} \\ \alpha \end{pmatrix}
$$

Other index theorems with Maslov index

Piccione, Tausk [Proc. LMS, 2001]

Index theorem for non-periodic solutions of Hamiltonian systems

$$
\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix} \mathbf{v} \\ \alpha \end{pmatrix} = \underbrace{\begin{pmatrix} A(t) & B(t) \\ C(t) & -A^*(t) \end{pmatrix}}_{\in \mathfrak{sp}(2n,\mathbb{R})} \begin{pmatrix} \mathbf{v} \\ \alpha \end{pmatrix}
$$

Piccione, Tausk [J. Math. Pures Appl., 2002]

Index theorem for solutions of constrained variational problems e.g., sub-Riemannian geodesics

Theorem (Morse–Littauer, PNAS 1932) If $\gamma(t_*) = \exp_p t_* v$ is conjugate to p,

Theorem (Morse–Littauer, PNAS 1932)

If $\gamma(t_*)=\exp_p t_*v$ is conjugate to p, then $\exp_p\colon T_pM\to M$ is not injective on any neighborhood of t_*v .

Theorem (Morse–Littauer, PNAS 1932)

If $\gamma(t_*)=\exp_p t_*v$ is conjugate to p, then $\exp_p\colon T_pM\to M$ is not radially injective on any neighborhood of t_*v .

Theorem (Morse–Littauer, PNAS 1932)

If $\gamma(t_*)=\exp_p t_*v$ is conjugate to p, then $\exp_p\colon T_pM\to M$ is not radially injective on any neighborhood of t_*v .

$$
\boxed{\exists v_n \to t_*v, t_n \searrow t_*}
$$
, such that $v_n \neq t_n v$ and $\exp_p v_n = \exp_p t_n v$

Theorem (Morse–Littauer, PNAS 1932)

If $\gamma(t_*)=\exp_p t_*v$ is conjugate to p, then $\exp_p\colon T_pM\to M$ is not radially injective on any neighborhood of t_*v .

$$
\boxed{\exists v_n \to t_* v, t_n \searrow t_*, \text{ such that } v_n \neq t_n v \text{ and } \exp_p v_n = \exp_p t_n v}
$$

Bifurcation:

$$
jump of Morse index \implies \boxed{local nonuniqueness}
$$

Theorem (Morse–Littauer, PNAS 1932)

If $\gamma(t_*)=\exp_p t_*v$ is conjugate to p, then $\exp_p\colon T_pM\to M$ is not radially injective on any neighborhood of t_*v .

$$
\boxed{\exists v_n \to t_*v, t_n \searrow t_*, \text{ such that } v_n \neq t_n v \text{ and } \exp_p v_n = \exp_p t_n v}
$$

Bifurcation: $|jump\$ of *Maslov* index $|\implies|$ local nonuniqueness

Piccione, Portaluri, Tausk [AGAG 2004]

Semi-Riemannian Morse–Littauer theorem

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $\gamma(t)$ conjugate to $\boldsymbol{\rho} \quad \Longleftrightarrow \quad \mathrm{d}(\exp_{\boldsymbol{\rho}})_{t\mathcal{v}}$ noninvertible

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t\in (0,L)$ conjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ noninvertible

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t\in (0,L)$ conjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ noninvertible $t\in (0,L)$ monoconjugate instant $\quad\Longleftrightarrow\quad \mathrm{d}(\exp_p)_{t\vee}$ noninjective

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t\in (0,L)$ conjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ noninvertible $t\in (0,L)$ monoconjugate instant $\quad\Longleftrightarrow\quad \mathrm{d}(\exp_p)_{t\vee}$ noninjective $t\in (0,L)$ epiconjugate instant $\quad\Longleftrightarrow\quad \mathrm{d}(\exp_p)_{t\vee}$ nonsurjective

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t\in (0,L)$ conjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ noninvertible $t\in (0,L)$ monoconjugate instant $\quad\Longleftrightarrow\quad \mathrm{d}(\exp_p)_{t\vee}$ noninjective $t\in (0,L)$ epiconjugate instant $\quad\Longleftrightarrow\quad \mathrm{d}(\exp_p)_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective [Grossman, 1965]: Every conjugate instant is epiconjugate. Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006]) 1. K is closed in [0, L)

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. K is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of K

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. K is closed in $[0, L)$
- 2. Strictly epiconjugate instants are limit points of K
- 3. If M is separable, then \mathcal{K}_m is countable

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. K is closed in [0, L)
- 2. Strictly epiconjugate instants are limit points of K
- 3. If M is separable, then \mathcal{K}_m is countable

Given K, K_m , etc. as above, there is a conformally flat Hilbert manifold with a geodesic γ having these conjugate points.

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. K is closed in $[0, L)$
- 2. Strictly epiconjugate instants are limit points of K
- 3. If M is separable, then \mathcal{K}_m is countable

If $\not\exists$ strictly epiconjugate instants (e.g., if exp_p is <code>Fredholm</code>), then K is finite.

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. K is closed in $[0, L)$
- 2. Strictly epiconjugate instants are limit points of K
- 3. If M is separable, then \mathcal{K}_m is countable

If $\not\exists$ strictly epiconjugate instants (e.g., if exp_p is <code>Fredholm</code>), then K is finite. Morse Index Thm \checkmark
Conjugate points on Hilbert manifolds

 $\gamma\colon [0,L]\to \mathcal{M}, \quad \gamma(t)=\exp_{\rho}t\mathsf{v}, \quad \text{geodesic in Hilbert manifold}$

 $t \in \mathcal{K} \subset (0,L)$ conjugate instant $\iff \mathrm{d}(\exp_p)_{tv}$ noninvertible $t \in \mathcal{K}_m$ monoconjugate instant $\iff\;\; \mathrm{d}(\exp_p)_{t v}$ noninjective $t\in (0,L)$ epiconjugate instant $\iff\;\;{\rm d}({\rm exp}_{\rho})_{t\vee}$ nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

- 1. K is closed in $[0, L)$
- 2. Strictly epiconjugate instants are limit points of K
- 3. If M is separable, then \mathcal{K}_m is countable

If $\not\exists$ strictly epiconjugate instants (e.g., if exp_p is <code>Fredholm</code>), then K is finite. Morse Index Thm \checkmark Morse–Littauer Thm \checkmark

§2. Bifurcation theory in Geometric Analysis

§2. Bifurcation theory in Geometric Analysis

Setup

 $X = \{$ "shapes"}

Setup

$X = \{$ "shapes"}, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$

- $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals

Setup

 \blacktriangleright $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals \blacktriangleright $f_t(x) =$ energy (with parameter t) of shape $x \in X$

- \blacktriangleright $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals
- \blacktriangleright $f_t(x) =$ energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$

- \blacktriangleright $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals
- \blacktriangleright $f_t(x) =$ energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$
- Euler-Lagrange equation: $df_t(x) = 0$

- \blacktriangleright $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals
- \blacktriangleright $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$
- Euler-Lagrange equation: $df_t(x) = 0$, e.g., $df_t(x) = 0 \Longleftrightarrow x(\Sigma) \subset M$ has constant mean curvature t

Setup

- \blacktriangleright $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals
- \blacktriangleright $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$
- Euler-Lagrange equation: $df_t(x) = 0$, e.g., $df_t(x) = 0 \Longleftrightarrow x(\Sigma) \subset M$ has constant mean curvature t

 \triangleright x_t trivial branch of solutions, $df_t(x_t) = 0$

- \blacktriangleright $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals
- \blacktriangleright $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$
- Euler-Lagrange equation: $df_t(x) = 0$, e.g., $df_t(x) = 0 \Longleftrightarrow x(\Sigma) \subset M$ has constant mean curvature t
- \triangleright x_t trivial branch of solutions, $df_t(x_t) = 0$
	- **Typically minimizer; "Ground state"**

- \blacktriangleright $X = \{$ "shapes" }, e.g., $X = \{x : \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$
- \blacktriangleright $f_t: X \to \mathbb{R}$, 1-parameter family of functionals
- \blacktriangleright $f_t(x)$ = energy (with parameter t) of shape $x \in X$, e.g., $f_t(x) = \text{Area}(x) + t \text{ Vol}(\Omega_x)$
- Euler-Lagrange equation: $df_t(x) = 0$, e.g., $df_t(x) = 0 \iff x(\Sigma) \subset M$ has constant mean curvature t
- \triangleright x_t trivial branch of solutions, $df_t(x_t) = 0$
	- **Typically minimizer; "Ground state"**
	- \triangleright Observed in nature (Principle of Least Action)

 x_t trivial branch $df_t(x_t) = 0$

 x_t trivial branch $df_t(x_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

 x_t trivial branch $df_t(x_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

$$
\blacktriangleright \exists t_n, t_n \rightarrow t_*
$$

 x_t trivial branch $df_t(x_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

 $\blacktriangleright \exists t_n, t_n \rightarrow t_*$

$$
\triangleright \exists x_n \to x_{t_*}, \mathrm{d}f_{t_n}(x_n) = 0,
$$

$$
x_n \neq x_{t_n}
$$

 x_t trivial branch $df_t(x_t) = 0$

Definition

Bifurcation occurs at x_{t_*} if:

 $\blacktriangleright \exists t_n, t_n \rightarrow t_*$

$$
\triangleright \exists x_n \to x_{t_*}, \mathrm{d}f_{t_n}(x_n) = 0,
$$

$$
x_n \neq x_{t_n}
$$

Equivalently, the Implicit Function Theorem fails at x_{t_*} !

Equivalently, the Implicit Function Theorem fails at x_{t_*} ! Thus, ker $\mathrm{d}^2 f_{t_*}(x_{t_*}) \neq \{0\}$ is a necessary condition

Equivalently, the Implicit Function Theorem fails at x_{t_*} ! Thus, ker $\mathrm{d}^2 f_{t_*}(x_{t_*}) \neq \{0\}$ is a necessary condition but it is not sufficient...

 x_t trivial branch $df_t(x_t) = 0$ Definition

Bifurcation occurs at x_{t_*} if:

 $\blacktriangleright \exists t_n, t_n \rightarrow t_*$

$$
\triangleright \exists x_n \to x_{t_*}, \mathrm{d}f_{t_n}(x_n) = 0,
$$

$$
x_n \neq x_{t_n}
$$

Equivalently, the Implicit Function Theorem fails at x_{t_*} !

Morse index jumps at x_{t*} \Longrightarrow bifurcation occurs at x_{t*}

- \blacktriangleright (*M*, g) Riemannian manifold
- \triangleright $X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$

 \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$

 \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_{x}$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$ \blacktriangleright df_H(x) = 0 \Longleftrightarrow x(Σ) \subset M has constant mean curvature H

- \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$ \blacktriangleright df_H(x) = 0 \Longleftrightarrow x(Σ) \subset M has constant mean curvature H
- Example $\mathcal{S}^k = \mathcal{S}^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$

- \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$
- \blacktriangleright df_H(x) = 0 \Longleftrightarrow x(Σ) \subset M has constant mean curvature H

Example $\mathcal{S}^k = \mathcal{S}^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$ $\Omega_t=\{\rho\in\mathcal{S}^{n+1}:\text{\sf dist}(\rho,\mathcal{S}^k)< t\}$

- \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$
- \blacktriangleright df_H(x) = 0 \Longleftrightarrow x(Σ) \subset M has constant mean curvature H

Example $\mathcal{S}^k = \mathcal{S}^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$ $\Omega_t=\{\rho\in\mathcal{S}^{n+1}:\text{\sf dist}(\rho,\mathcal{S}^k)< t\}$ $\Sigma = \mathcal{S}^k \times \mathcal{S}^{n-k}$

- \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$
- \blacktriangleright df_H(x) = 0 \Longleftrightarrow x(Σ) \subset M has constant mean curvature H

Example $\mathcal{S}^k = \mathcal{S}^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$ $\Omega_t=\{\rho\in\mathcal{S}^{n+1}:\text{\sf dist}(\rho,\mathcal{S}^k)< t\}$ $\Sigma = \mathcal{S}^k \times \mathcal{S}^{n-k}$ $x_t(\Sigma) = \partial \Omega_t, \quad t \in [0, \frac{\pi}{2}]$ $\frac{\pi}{2}$]

- \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$
- \blacktriangleright df_H(x) = 0 \Longleftrightarrow x(Σ) \subset M has constant mean curvature H

Example $\mathcal{S}^k = \mathcal{S}^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$ $\Omega_t=\{\rho\in\mathcal{S}^{n+1}:\text{\sf dist}(\rho,\mathcal{S}^k)< t\}$ $\Sigma = \mathcal{S}^k \times \mathcal{S}^{n-k}$ $x_t(\Sigma) = \partial \Omega_t, \quad t \in [0, \frac{\pi}{2}]$ $\frac{\pi}{2}$] $H(t) = k \tan t - (n - k) \cot t$

- \blacktriangleright (*M*, g) Riemannian manifold $\triangleright X = \{x: \Sigma \hookrightarrow M\}$ embeddings, $x(\Sigma) = \partial \Omega_x$ \blacktriangleright $f_H(x) = \text{Area}(x) + H \text{ Vol}(\Omega_x)$
	- \blacktriangleright df_H(x) = 0 \Longleftrightarrow x(Σ) \subset M has constant mean curvature H

Example $\mathcal{S}^k = \mathcal{S}^{n+1} \cap (\mathbb{R}^{k+1} \oplus \{0\}) \subset \mathbb{R}^{n+2}$ $\Omega_t=\{\rho\in\mathcal{S}^{n+1}:\text{\sf dist}(\rho,\mathcal{S}^k)< t\}$ $\Sigma = \mathcal{S}^k \times \mathcal{S}^{n-k}$ $x_t(\Sigma) = \partial \Omega_t, \quad t \in [0, \frac{\pi}{2}]$ $\frac{\pi}{2}$] $H(t) = k \tan t - (n - k) \cot t$ $(\Sigma, x_t^* g) = S^k(\cos t) \times S^{n-k}(\sin t)$

Theorem (Alías, Piccione [JGA, 2013])

For each $1 \leq k < n$, there exist sequences accumulating at 0 and $\frac{\pi}{2}$ of bifurcations for the family $x_t: \Sigma \hookrightarrow S^{n+1}$ of CMC embeddings.

Theorem (Alías, Piccione [JGA, 2013]) For each $1 \leq k < n$, there exist sequences accumulating at 0 and $\frac{\pi}{2}$ of bifurcations for the family $x_t: \Sigma \hookrightarrow S^{n+1}$ of CMC embeddings.

Theorem (Alías, Piccione [JGA, 2013]) For each $1 \leq k < n$, there exist sequences accumulating at 0 and $\frac{\pi}{2}$ of bifurcations for the family $x_t: \Sigma \hookrightarrow S^{n+1}$ of CMC embeddings.

Theorem (Alías, Piccione [JGA, 2013]) For each $1 \leq k < n$, there exist sequences accumulating at 0 and $\frac{\pi}{2}$ of bifurcations for the family $x_t: \Sigma \hookrightarrow S^{n+1}$ of CMC embeddings.

Theorem (Alías, Piccione [JGA, 2013])

For each $1 \leq k < n$, there exist sequences accumulating at 0 and $\frac{\pi}{2}$ of bifurcations for the family $x_t: \Sigma \hookrightarrow S^{n+1}$ of CMC embeddings.

Theorem (Alías, Piccione [JGA, 2013])

For each $1 \leq k < n$, there exist sequences accumulating at 0 and $\frac{\pi}{2}$ of bifurcations for the family $x_t: \Sigma \hookrightarrow S^{n+1}$ of CMC embeddings.

Morse index of $x_t = #$ Spec $(-\Delta_{x_t(\Sigma)}) \cap (-\infty, ||A_{x_t(\Sigma)}||^2 + \text{Ric}(\vec{n}_{x_t}))$
Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit.

Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit. "Delaunay-type hypersurfaces"

Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit. "Delaunay-type hypersurfaces"

...

 $\mathbb{C}P^n$, $\mathbb{H}P^n$, Kervaire spheres

Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup, principal orbits bifurcate infinitely many times as they collapse to a singular orbit. "Delaunay-type hypersurfaces"

 $\mathbb{C}P^n$, $\mathbb{H}P^n$, Kervaire spheres

B., Lauret, Piccione [BLMS, 2022] On $\mathbb{C}P^n$, $\mathbb{H}P^n$, $\mathbb{C}aP^2$:

Computation of Spec($-\Delta_{x_t(\Sigma)}$) \implies explicit bifurcation instants

...

Koiso, Palmer, Piccione [ACV, 2014]

There are infinitely many families of CMC surfaces in \mathbb{R}^3 with boundary on two fixed coaxial circles that bifurcate from portions of nodoids as their conormal angle varies.

Minimal surfaces

Koiso, Piccione, Shoda [AIF, 2018] Bifurcation of triply periodic minimal surfaces in \mathbb{R}^3 .

Minimal surfaces

Koiso, Piccione, Shoda [AIF, 2018]

Bifurcation of triply periodic minimal surfaces in \mathbb{R}^3 .

B., Piccione [Pisa, 2024]

Bifurcation of minimal 2-spheres in elongated 3-ellipsoids.

 \blacktriangleright (M^n, g_t) Riemannian manifolds, $n \geq 3$

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $X_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{vol}_{g_t} = 1 \right\}$
\n

\n- \n
$$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$ \n
\n- \n $X_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{vol}_{g_t} = 1 \right\}$ \n
\n- \n $f_t(u) = \int_M u \, L_{g_t} u \text{ vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \text{scal}_{g_t}$ \n
\n

\n- \n
$$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$ \n
\n- \n $X_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{ vol}_{g_t} = 1 \right\}$ \n
\n- \n $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \text{scal}_{g_t}$ \n
\n- \n $df_t(u) = 0 \iff L_{g_t} u = C \, u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$ \n
\n

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $X_t = \left\{ u : M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \, \text{vol}_{g_t} = 1 \right\}$
\n- $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \, \text{scal}_{g_t}$
\n- $df_t(u) = 0 \iff L_{g_t} u = C u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$ $\iff g_u = u^{\frac{4}{n-2}} g$ has constant scalar curvature C
\n

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $\mathcal{X}_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{ vol}_{g_t} = 1 \right\}$
\n- $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \text{scal}_{g_t}$
\n- $df_t(u) = 0 \iff L_{g_t} u = C u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$
\n- $\iff g_u = u^{\frac{4}{n-2}} g$ has constant scalar curvature C
\n

Example

Suppose $\text{scal}_{g_t} = s(t)$

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $\mathcal{X}_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{ vol}_{g_t} = 1 \right\}$
\n- $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \text{scal}_{g_t}$
\n- $df_t(u) = 0 \iff L_{g_t} u = C u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$ $\iff g_u = u^{\frac{4}{n-2}} g$ has constant scalar curvature C
\n

Example

Suppose $\text{scal}_{g_t} = s(t)$ Let $u_t \equiv 1/\text{Vol}(M, g_t)^{\frac{n-2}{2n}}$

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $X_t = \left\{ u : M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \, \text{vol}_{g_t} = 1 \right\}$
\n- $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \, \text{scal}_{g_t}$
\n- $\text{d} f_t(u) = 0 \iff L_{g_t} u = C \, u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$
\n- $\iff g_u = u^{\frac{4}{n-2}} g$ has constant scalar curvature C
\n

Example

Suppose $\text{scal}_{g_t} = s(t)$ Let $u_t \equiv 1/\text{Vol}(M, g_t)^{\frac{n-2}{2n}}$ e.g., $S^k(\cos t) \times S^{n-k}(\sin t)$

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $X_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{ vol}_{g_t} = 1 \right\}$
\n- $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \text{scal}_{g_t}$
\n- $df_t(u) = 0 \iff L_{g_t} u = C u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$
\n- $\iff g_u = u^{\frac{4}{n-2}} g$ has constant scalar curvature C
\n

Example

Suppose $\text{scal}_{g_t} = s(t)$ Let $u_t \equiv 1/\text{Vol}(M, g_t)^{\frac{n-2}{2n}}$ e.g., $S^k(\cos t) \times S^{n-k}(\sin t)$ $s(t) = \frac{k(k-1)}{\cos^2 t} + \frac{(n-k)(n-k-1)}{\sin^2 t}$ $\sin^2 t$

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $X_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{ vol}_{g_t} = 1 \right\}$
\n- $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \text{scal}_{g_t}$
\n- $df_t(u) = 0 \iff L_{g_t} u = C u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$
\n- $\iff g_u = u^{\frac{4}{n-2}} g$ has constant scalar curvature C
\n

Example

Suppose $\text{scal}_{g_t} = s(t)$ Let $u_t \equiv 1/\text{Vol}(M, g_t)^{\frac{n-2}{2n}}$ e.g., $(M_1 \times M_2, h_1 \oplus t h_2)$

\n- $$
(M^n, g_t)
$$
 Riemannian manifolds, $n \geq 3$
\n- $X_t = \left\{ u \colon M \to \mathbb{R} \mid u > 0, \int_M u^{\frac{2n}{n-2}} \text{ vol}_{g_t} = 1 \right\}$
\n- $f_t(u) = \int_M u \, L_{g_t} u \, \text{vol}_{g_t}, \quad L_{g_t} = -\Delta_{g_t} + \frac{n-2}{4(n-1)} \text{scal}_{g_t}$
\n- $df_t(u) = 0 \iff L_{g_t} u = C u^{\frac{n+2}{n-2}}$ for some $C \in \mathbb{R}$
\n- $\iff g_u = u^{\frac{4}{n-2}} g$ has constant scalar curvature C
\n

Example

Suppose $\text{scal}_{g_t} = s(t)$ Let $u_t \equiv 1/\text{Vol}(M,\mathrm{g}_t)^{\frac{n-2}{2n}}$ e.g., $(M_1 \times M_2, h_1 \oplus t h_2)$ $\mathsf{s}(t)=\mathsf{scal_{\mathrm{h}_{1}}}\!+\!\frac{1}{t}$ $\frac{1}{t}$ scal $_{\text{h}_2}$

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

 $(M_1 \times M_2, h_1 \oplus t h_2)$

Theorem (Lima, Piccione, Zedda [AIHP, 2012]) If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

 $(M_1 \times M_2, h_1 \oplus t h_2)$

Theorem (B., Piccione [PJM2013], [CVPDE, 2013]) If K/H \rightarrow G/H \rightarrow G/K is a homogeneous fibration and scal_{K/H} $>$ 0, then there are infinitely many bifurcation instants accumulating at 0 for the Yamabe on $(G/H, g_t)$,

$$
g_t = g_{\mathsf{G}/\mathsf{K}} \oplus t \, g_{\mathsf{K}/\mathsf{H}}
$$

Theorem (Lima, Piccione, Zedda [AIHP, 2012]) If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

 $(M_1 \times M_2, h_1 \oplus t h_2)$

Theorem (B., Piccione [PJM2013], [CVPDE, 2013]) If K/H \rightarrow G/H \rightarrow G/K is a homogeneous fibration and scal_{K/H} $>$ 0, then there are infinitely many bifurcation instants accumulating at 0 for the Yamabe on $(G/H, g_t)$,

 $g_t = g_{G/K} \oplus t g_{K/H}$

e.g., Berger spheres $S^3\to S^{4n+3}_t\to \mathbb H P^n$, and $S^7\to S^{15}_t\to S^8(\frac{1}{2})$ $\frac{1}{2}$

Theorem (Lima, Piccione, Zedda [AIHP, 2012]) If (M_i, h_i) have constant positive scalar curvature (and at least one is nondegenerate), then there are infinitely many bifurcation instants accumulating at 0 and ∞ for the Yamabe problem on

 $(M_1 \times M_2, h_1 \oplus t h_2)$

Theorem (B., Piccione [PJM2013], [CVPDE, 2013]) If K/H \rightarrow G/H \rightarrow G/K is a homogeneous fibration and scal_{K/H} $>$ 0, then there are infinitely many bifurcation instants accumulating at 0 for the Yamabe on $(G/H, g_t)$,

 $g_t = g_{G/K} \oplus t g_{K/H}$

e.g., Berger spheres $S^3\to S^{4n+3}_t\to \mathbb H^{P^n}$, and $S^7\to S^{15}_t\to S^8(\frac{1}{2})$ $\frac{1}{2}$

General principle $Collapse \implies Instability \implies Bifurcation$

General principle $Collapse \implies$ Instability \implies Bifurcation

Singular Yamabe Problem B., Piccione, Santoro [JDG 2016]: See Bianca's talk tomorrow!

General principle $Collapse \implies Instability \implies Bifurcation$

Singular Yamabe Problem B., Piccione, Santoro [JDG 2016]: See Bianca's talk tomorrow! **Higher-order** versions of Yamabe problem

B., Piccione, Sire [IMRN, 2021]: 4th order Q-curvature

General principle $Collapse \implies Instability \implies Bifurcation$

Singular Yamabe Problem B., Piccione, Santoro [JDG 2016]: See Bianca's talk tomorrow!

Higher-order versions of Yamabe problem B., Piccione, Sire [IMRN, 2021]: 4th order Q-curvature Andrade, Case, Piccione, Wei [2023]: GMJS operators

§3. Everything else

§3. Everything else

Brake orbits Giambò, Giannoni, Piccione [ARMA, 2011], [CAG, 2014], [CVPDE, 2015]

Closed Lorentzian geodesics Biliotti, Mercuri, Piccione [CAG, 2008] Javaloyes, Lima, Piccione [Math Z, 2008]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow Giambò, Giannoni, Piccione [CMP, 2009] Biliotti, Javaloyes, Piccione [IUMJ, 2009], [JLMS, 2011]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory B., Piccione, Siciliano [TG, 2014], [PNDE, 2014]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds Piccione, Zeghib [ETDS, 2014]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

B., Derdzinski, Piccione [AMPA, 2018]

B., Derdzinski, Mossa, Piccione [MNach, 2022]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

Spectral geometry

B., Lauret, Piccione [JGA, 2022], [BLMS, 2022]

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmüller theory of flat manifolds

Spectral geometry

Isoperimetric problem, Allen–Cahn equation Benci, Nardulli, Piccione [CVPDE, 2020] Andrade, Conrado, Nardulli, Piccione, Resende [JFA, 2024]

Happy birthday, Paolo!

