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§1. Infinite-dimensional Morse Theory
applied to geodesics
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sign(g) = n4(g) — n—(g)

v € T,M is spacelike if g(v,v) >0
lightlike if g(v,v) =0
timelike if g(v,v) <0

b
Enery functional E(v) = / g(%,7) ds

» Not bounded from below

» Critical points may have infinite Morse index

[K. Uhlenbeck, 1975] Morse theory for (some) Lorentzian geodesics
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> lIssue: L} (A) is not smooth
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Replaces completeness in Riemannian case
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q_
where ¢, = #{/ightrays Jommg p and -y of index q}, and
S(r) € R[[r]] has nonnegative coefficients. In particular, c; > by.
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Conjugate points along geodesics

v(t2)
v(a)

Y(t)
Theorem (Morse Index Theorem)
Given a Riemannian geodesic v: [a, b] — M with fixed endpoints,

Morse Index of ~ as critical point of E = # conjugate points along
(counted w/ multiplicity)
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Conjugate points along geodesics

Theorem (Morse Index Theorem)
Given a Riemannian geodesic v: [a, b] = M with~y(a) e P C M

Morse Index of y as critical point of E = #P-focal points along ~
(counted w/ multiplicity)

Also holds if g is Lorentzian and ~ is not spacelike!
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>
» ~v,: [a, b] = M timelike geodesics

V(@) = Yoo(@), Fn(a) = Yoo(@),  8(5msYn) = — 7%
» Does #{conjugate points} pass to the limit ~, — .7

[\

> Issue: index form I (-,-) = d?E(~,) degenerates as n — oo!
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Theorem (Mercuri, Piccione, Tausk [PJM 2002])

If all conjugate points along ~ are nondegenerate, then

Maslov index of v = > sign(t)
te(a,b)



Francesco Mercuri (7 Jul 1946 — 5 Aug 2024)
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If all conjugate points along ~ are nondegenerate, then
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Homological invariant, stable under C° perturbations of
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Degeneracies happen

Theorem (Piccione, Tausk [CAG, 2003])

Given a closed subset F C R such that F C (a, b], there is a
Lorentzian manifold (M, g) and a spacelike geodesic v: [a, b] — M
such that y(t) is conjugate to v(a) if and only if t € F.
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Semi-Riemannian Index Theorem

v: [a, b] = M semi-Riemannian geodesic

I, =d?E: H x H — R index form

D, C T, M maximal distribution along v where g < 0
S={veMn|v(a)=0,v(t) € D, forall t € [a,b]}

K = {v € H | v Jacobi in the directions of D}
I,(S,K) =0 and generically H =S & K

ny(B) = sup{dim W | £B|w > 0}

Theorem (Piccione, Tausk [Topology, 2002])
Maslov Index of v = n_(I,|x) — n(1,]s)
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Other index theorems with Maslov index

Piccione, Tausk [Proc. LMS, 2001]

Index theorem for non-periodic solutions of Hamiltonian systems

it (o) = (o o) (2)

€sp(2n,R)

Piccione, Tausk [J. Math. Pures Appl., 2002]

Index theorem for solutions of constrained variational problems
e.g., sub-Riemannian geodesics
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Bifurcation of geodesics

Vn

Theorem (Morse-Littauer, PNAS 1932)

If y(t.) = exp, t.v is conjugate to p, then exp,: T,M — M is not
radially injective on any neighborhood of t,v.

v, = v, t, \ L, such that v, # £,v and exp, v, = exp, t,v

Bifurcation: ‘jump of Maslov index‘ = ‘Iocal nonuniqueness

Piccione, Portaluri, Tausk [AGAG 2004]

Semi-Riemannian Morse—Littauer theorem
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v:[0,L] = M, ~(t) =exp,tv, geodesic in Hilbert manifold

t € K C (0, L) conjugate instant <= d(exp,)s noninvertible
t € Km monoconjugate instant <= d(exp,): noninjective
t € (0,L) epiconjugate instant <= d(exp,)n nonsurjective

[Grossman, 1965]: Every conjugate instant is epiconjugate.

Theorem (Biliotti, Exel, Piccione, Tausk [Math. Ann. 2006])

1. K is closed in [0, L)
2. Strictly epiconjugate instants are limit points of K
3. If M is separable, then IC,, is countable

Given K, KC,,, etc. as above, there is a conformally flat Hilbert
manifold with a geodesic + having these conjugate points.
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v:[0,L] = M, ~(t) =exp,tv, geodesic in Hilbert manifold

t € K C (0, L) conjugate instant <= d(exp,)s noninvertible
t € Km monoconjugate instant <= d(exp,): noninjective
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Bifurcation

Setup
» X = {"shapes"},
e.g., X = {x: ¥ — M} embeddings, x(X) = 09,
» f,: X =+ R, 1-parameter family of functionals

» fi(x) = energy (with parameter t) of shape x € X,
e.g., f:(x) = Area(x) + t Vol(€)
» Euler-Lagrange equation: df;(x) =0, e.g.,
dfi(x) = 0 <= x(X) C M has constant mean curvature t

» X, trivial branch of solutions, df;(x;) =0

» Typically minimizer; “Ground state”
» Observed in nature (Principle of Least Action)
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X; trivial branch
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Definition
Bifurcation occurs at x,, if:
» dt,, t, = t
> Jx, — x.,,df, (x,) =0, t, t
Xn # Xt,

Equivalently, the Implicit Function Theorem fails at x., !

Thus, ker d*f, (x;,) # {0} is a necessary condition
but it is not sufficient...



Bifurcation

x; trivial branch
dfi(x;) =0

Definition

Bifurcation occurs at x;, if:
> dt,, t, — t.
» Ix, = x,,df, (x,) =0, t, t, t

Xn 7 X,

Equivalently, the Implicit Function Theorem fails at x;, !

Morse index jumps at x;, | = | bifurcation occurs at x;,
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» (M, g) Riemannian manifold

» X ={x: ¥ — M} embeddings, x(X) = 09,

» fy(x) = Area(x) + H Vol(,)

» dfy(x) =0 <= x(X) C M has constant mean curvature H

Example

Sk — 5n+1 N (]Rk+1 @ {0}) C ]Rn+2
Q: = {p € S"1 : dist(p, S¥) < t}
Y = Sk x §nk

() = 0Q,, te[0z

H(t) = ktant — (n — k) cot t
(E,x;g) = S*(cost) x §"*(sin t)
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Theorem (Alias, Piccione [JGA, 2013])

For each 1 < k < n, there exist sequences accumulating at 0 and 5
of bifurcations for the family x,: ¥ — S™! of CMC embeddings.

Morse index of x; = # Spec(—Ay,x)) N ( — 00, [|Axx)||? + Ric(ry,))
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Constant Mean Curvature, |l
Theorem (B., Piccione [IMRN, 2016])

On a cohomogeneity one manifold with a normal isotropy subgroup,
principal orbits bifurcate infinitely many times as they collapse to a
singular orbit.  “Delaunay-type hypersurfaces”

n

B., Lauret, Piccione [BLMS, 2022]
On CP", HP", CaP?:
Computation of Spec(—A,,(x)) = explicit bifurcation instants

CP", HP",
Kervaire spheres



Constant Mean Curvature, |V

Nodoid in R3

Koiso, Palmer, Piccione [ACV, 2014]

There are infinitely many families of CMC
surfaces in R® with boundary on two fixed
coaxial circles that bifurcate from portions of
nodoids as their conormal angle varies.
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Koiso, Piccione, Shoda [AIF, 2018]
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Minimal surfaces

Koiso, Piccione, Shoda [AIF, 2018]

Bifurcation of triply periodic minimal surfaces in R3.

B., Piccione [Pisa, 2024]

Bifurcation of minimal 2-spheres in elongated 3-ellipsoids.
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Yamabe problem, |
» (M" g.) Riemannian manifolds, n > 3

> Xt:{u:M—>]R|u>O,/un2—"2 volgtzl}
M

> ﬂ(U) = / ULgtU VOlgt’ Lgt = _Agt + Al(rly—fl)scalgt
M

n+2
> dfy(u) =0 <= Ly,u= Cur2 for some C € R
4
<= g, = ur—2g has constant scalar curvature C

Example

Suppose scaly, = s(t)

Let uy = 1/ Vol(M, g,) "=
e.g., S¥(cost) x S"k(sin t)
s(t) = HUSD) | (=knko)

cos2 t sin t
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Yamabe problem, |
» (M" g.) Riemannian manifolds, n > 3

> Xt:{u:M—>]R|u>O,/un2—"2 volgtzl}
M

> ﬂ(U) = / ULgtU VOlgt’ Lgt = _Agt + Al(rly—fl)scalgt
M

n+2
> dfy(u) =0 <= Ly,u= Cur2 for some C € R
4
<= g, = ur—2g has constant scalar curvature C

Example

Suppose scaly, = s(t)

Let u, = 1/ Vol(M, g,) =
e.g., (My x Mo, hy @ t hy)

s(t) = scalp, +1 scaly,




Yamabe problem, Il

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M;, h;) have constant positive scalar curvature (and at least
one is nondegenerate), then there are infinitely many bifurcation
instants accumulating at 0 and oo for the Yamabe problem on

(My x My, hy @ t hy)



Yamabe problem, Il

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M;, h;) have constant positive scalar curvature (and at least
one is nondegenerate), then there are infinitely many bifurcation
instants accumulating at 0 and oo for the Yamabe problem on

(My x My, hy @ t hy)

Theorem (B., Piccione [PJM2013], [CVPDE, 2013])

IfK/H — G/H — G/K is a homogeneous fibration and
scalk/q > 0, then there are infinitely many bifurcation instants
accumulating at O for the Yamabe on (G/H, g;),

gt = 8G/K D t 8k/H



Yamabe problem, Il

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M;, h;) have constant positive scalar curvature (and at least
one is nondegenerate), then there are infinitely many bifurcation
instants accumulating at 0 and oo for the Yamabe problem on

(My x My, hy @ t hy)

Theorem (B., Piccione [PJM2013], [CVPDE, 2013])

IfK/H — G/H — G/K is a homogeneous fibration and
scalk/q > 0, then there are infinitely many bifurcation instants
accumulating at O for the Yamabe on (G/H, g;),

gt = 8G/K D t 8k/H

e.g., Berger spheres S3 — Sf"+3 — HP", and S” — SI° — 58(%)



Yamabe problem, Il

Theorem (Lima, Piccione, Zedda [AIHP, 2012])

If (M;, h;) have constant positive scalar curvature (and at least
one is nondegenerate), then there are infinitely many bifurcation
instants accumulating at 0 and oo for the Yamabe problem on

(My x My, hy @ t hy)

Theorem (B., Piccione [PJM2013], [CVPDE, 2013])

IfK/H — G/H — G/K is a homogeneous fibration and
scalk/q > 0, then there are infinitely many bifurcation instants
accumulating at O for the Yamabe on (G/H, g;),

gt = 8G/K D t 8k/H

e.g., Berger spheres S3 — Sf"+3 — HP", and S” — SI° — 58(%)



Yamabe problem, Ill

General principle
Collapse = Instability = Bifurcation



Yamabe problem, Ill

General principle
Collapse = Instability = Bifurcation

Singular Yamabe Problem
B., Piccione, Santoro [JDG 2016]:  See Bianca's talk tomorrow!



Yamabe problem, Ill

General principle
Collapse = Instability = Bifurcation

Singular Yamabe Problem
B., Piccione, Santoro [JDG 2016]:  See Bianca's talk tomorrow!

Higher-order versions of Yamabe problem
B., Piccione, Sire [IMRN, 2021]: 4th order Q-curvature



Yamabe problem, Ill

General principle
Collapse = Instability = Bifurcation

Singular Yamabe Problem
B., Piccione, Santoro [JDG 2016]:  See Bianca's talk tomorrow!

Higher-order versions of Yamabe problem
B., Piccione, Sire [IMRN, 2021]: 4th order Q-curvature
Andrade, Case, Piccione, Wei [2023]: GMJS operators
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Brake orbits
Giambo, Giannoni, Piccione [ARMA, 2011], [CAG, 2014],
[CVPDE, 2015]



Brake orbits

Closed Lorentzian geodesics

Biliotti, Mercuri, Piccione [CAG, 2008]
Javaloyes, Lima, Piccione [Math Z, 2008]



Brake orbits
Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow

Giambo, Giannoni, Piccione [CMP, 2009]
Biliotti, Javaloyes, Piccione [ITUMJ, 2009], [JLMS, 2011]



Brake orbits
Closed Lorentzian geodesics
Generic properties of semi-Riemannian geodesic flow

Equivariant bifurcation theory
B., Piccione, Siciliano [TG, 2014], [PNDE, 2014]
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Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow
Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds

Teichmiiller theory of flat manifolds

B., Derdzinski, Piccione [AMPA, 2018]
B., Derdzinski, Mossa, Piccione [MNach, 2022]
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Brake orbits

Closed Lorentzian geodesics

Generic properties of semi-Riemannian geodesic flow
Equivariant bifurcation theory

Isometry groups of Lorentzian manifolds
Teichmiiller theory of flat manifolds

Spectral geometry

Isoperimetric problem, Allen—Cahn equation

Benci, Nardulli, Piccione [CVPDE, 2020]
Andrade, Conrado, Nardulli, Piccione, Resende [JFA, 2024]












