- 1. A bucket of water is spinning about its symmetry axis. Determine the shape of the water in the bucket.
- 2. Find the horizontal deflection from the plumb line caused by the Coriolis force acting on a particle falling freely in the Earth's gravitational field from a height h above the Earth's surface.
- 3. If a particle is projected vertically upward to a height h above a point on the Earth's surface at northern latitude λ , show that it strikes the ground at a point

$$\frac{4}{3}\Omega\cos\lambda\sqrt{8h^3/g}$$

to the west (neglect air resistance and consider only small vertical heights.)

4. If a projectile is fired due east from a point on the surface of the Earth at a northern latitude λ with velocity of magnitude v_0 and at an angle of inclination to the horizontal of α , show that the lateral deflection when the projectile strikes the Earth is

$$d = \frac{4v_0^3}{g^2} \Omega \sin \lambda \sin^2 \alpha \cos \alpha ,$$

where Ω is the rotation frequency of the Earth.

5. In the preceding problem, if the range of the projectile is R_0 for the case $\Omega = 0$, show that the change of range due to the rotation of the Earth is

$$\Delta R = \sqrt{\frac{2R_0^3}{g}} \; \Omega \; \cos \lambda \; \left(\cot^{1/2}\alpha - \frac{1}{3} \; \tan^{3/2}\alpha\right) \; .$$