- 1. Consider a simple harmonic oscillator. Calculate the time averages of the kinetic and potential energies over one cycle and show that these quantities are equal.
- 2. A body of uniform cross sectional area $A=1~\rm cm^2$ and of mass density $\rho=0.8~\rm g/cm^3$ floates in a liquid of density $\rho=1~\rm g/cm^3$ and at equilibrium displaces a volume $V=0.8~\rm cm^3$. Show that the period of small oscillations about the equilibrium point is given by $\tau=2\pi\sqrt{V/gA}$, where g is the gravitational field strength. Determine the value of τ .
- 3. A simple pendulum consists of a mass m suspended from a fixed point by a weightless, extensionless rod of length l. Obtain the equation of motion and, in the approximation that $\sin \theta = \theta$, show that the natural frequency is $\omega_0 = \sqrt{g/l}$, where g is the gravitational field strength. Discuss the motion in the event that the motion takes place in a viscous medium with retarding force $2m\sqrt{gl\dot{\theta}}$.
- 4. A particle of mass m is at rest at the end of a spring (force constant = k). At t = 0 a constant force is applied to the mass and acts for a time t_0 . Show that after the force is removed, the displacement of the mass from its equilibrium position $x = x_0$, is: $x x_0 = F/k [\cos \omega_0(t t_0) \cos \omega_0 t]$, where $\omega_0^2 = k/m$. Neglect friction effects!
- 5. If the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately $[1-(8\pi^2n^2)^{-1}]$ times the frequency of the corresponding undamped oscillator.
- 6. For a lightly damped oscillator, show that $Q \approx \omega_0/\Delta\omega$, where $\Delta\omega$ represents the frequency interval between the points on the amplitude resonance curve that are $1/\sqrt{2}$ of the maximum amplitude.
- 7. An electrical circuit consists of a resitor R a capacitor C conected in series to a source of alternating emf. Find the expression for the current as a function of time and show that it decreases to zero as the frequency of the alternating emf approaches zero.