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Problems set # 8 Physics 303 October 28, 2014

1. A hypothetic velocity distribution of an ideal gas has the form G(v) = Ae−kv. (i) Does G(v)

satisfy the molecular chaos postulate? (ii) Find A from the normalization condition. (iii) Find the

most probable speed, average speed, and the rms speed. (iv) Find the distribution function g(vx).

Check if G factorizes as G(v) = g(vx)g(vy)g(vz).

Solution: (i) It is straightforward to see that G(v) satisfies the molecular chaos postulate be-

cause it does not depend on the directions of the velocities. (ii) The normalization condition for

the distribution function is 1 =
∫+∞
−∞

∫+∞
−∞

∫+∞
−∞ dvxdvydvzG(v) = 4π

∫∞
0 v2dvG(v) =

∫∞
0 dvf(v).

Substituting the explicit form of G(v), you obtain 1 = 4πA
∫∞

0 v2dve−kv = 4πAJ2(k), where

J2(k) =
∫∞

0 dvv2e−kv. Using J0(k) =
∫∞

0 dve−kv = k−1 it follows that J2(k) = d2

dk2
J0(k) = 2

k3
.

Therefore, A = 1
4πJ2(k) = k3

8π . (iii) The most probable speed vm is defined by the maximum of

f(v), that is, max[v2e−kv]. Taking the derivative over v you obtain 0 = 2ve−kv − kv2e−kv and

so vm = 2
k . The average speed is given by v̄ =

∫∞
0 dvvf(v) = 4πA

∫∞
0 dvv3e−kv = k3

2 J3(k). Us-

ing J3(k) = − d
dkJ2(k) = 6

k4
, you finally obtain v̄ = 3

k . The average square speed is given by

v2 =
∫∞

0 dvv2f(v) = 4πA
∫∞

0 dvv4e−kv = k3

2 J4(k). Using J4(k) = − d
dkJ3(k) = 24

k5
, it follows

that v2 = 12
k2

and so vrms =
√
v2 = 2

√
3

k . (iv) The distribution function for a single velocity

component can be obtained by integrating G(v) over the remaining velocity components g(vx) =∫+∞
−∞

∫+∞
−∞ dvydvzG(

√
v2
x + v2

y + v2
z) = 2πA

∫∞
0 v⊥dv⊥e

−k
√
v2x+v2⊥ , where v⊥ =

√
v2
y + v2

z . Changing

to the new variable u = v2
⊥, you obtain g(vx) = πA

∫∞
0 due−k

√
v2x+u = 2πA

k2
e−k|vx|(1 + k|vx|) or

finally g(vx) = k
4e
−k|vx|(1 + k|vx|). Obviously G(v) 6= g(vx)g(vy)g(vz), that is the distribution

is not factorizable, and hence it is not a good distribution function. Still, you could investigate

the properties of g(vx). Start with checking the normalization
∫+∞
−∞ dvxg(vx) = 2

∫∞
0 dvxg(vx) =

k
2

∫∞
0 dvxe

−kvx(1 + kvx) = k
2 [J0(k) + kJ1(k)] = k

2

(
1
k + k 1

k2

)
= 1, as it should be. The average

square velocity is v2
x =

∫+∞
−∞ dvxv

2
xg(vx) = k

2 [j2(k) +kJ3(k)] = k
2

(
2
k3

+ k 6
k4

)
= 4

k2
. This is in accord

with the result in (ii) as v2
x + v2

y + v2
z = v2.

2. Suppose you flip 1000 unbiased coins. (i) What is the probability of getting 500 heads and

500 tails? (Use Stirlings approximation.) (ii) What is the probability of getting 450 heads and 550

tails? (Use Stirling again.) (iii) Compute the above two probabilities using the Gaussian approxi-

mation. How do they compare? (iv) Compute ln Ω and lnωmax. How do they compare?

Solution: (i) Obtain an expression for the thermodynamic probability using Stirling’s approxi-

mation: ω(N1) = N !
N1!(N−N1)! '

√
2πN(N

e
)N

√
2πN1(

N1
e

)N1
√

2π(N−N1)(
N−N1

e
)N−N1

=
√

N
2πN1(N−N1)

NN

N
N1
1 (N−N1)N−N1

.

Evaluate this expression at N1 = 500 to obtain ω(500) = ωmax = 1000!
500!500! '

√
1

500π21000. Since,

Ω = 21000, it follows that p(500) ' 2.5%. (ii) ω(450) = 1000!
450!550! '

√
1000

2π450×550
10001000

450450550550
and

so p(450) ' 0.017%. (iii) The Gaussian approximation for the binomial distribution is P (N1) =



√
2
πN e

−2N(
N1
N
− 1

2
)2 , so P (500) =

√
2

1000πe
−2000( 1

2
− 1

2
)2 =

√
2

1000π and P (450) =
√

2
1000πe

−2000( 450
1000
− 1

2
)2 .

The ratio is P (450)
P (500) = e−5. (iv) For the Stirling’s approximation ln Ω − lnωmax = 1000 ln 2 +

1
2 ln(500π) − 1000 ln 2 = 1

2 ln(500π); for the Gaussian approximation ln Ω − lnωmax = − ln ωmax
Ω =

− lnP (500) = 1
2 ln(500π).

3. A drunk person is walking along the x axis. He starts at x = 0, and his step size is L = 0.5

meters. For each step, he has chance 2/3 of walking forwards (positive x) and chance 1/3 of walking

backwards (negative x). What is his expected position, x, after 50 steps? What is the expected

RMS variation around x̄, ∆xrms =
√

(x− x̄)2 after 50 steps?

Solution: x = L(N1−N2) = L(2N1−N), x̄ = L× 50× (2
3 −

1
3), ∆xrms =

√
x2 − x̄2 = 2L

√
Npq.

4. Suppose that a system has allowed energy levels nε, with n = 0, 1, 2, 3, 4, · · ·. There are three

distinguishable particles, with total energy U = 4ε. (i) Tabulate all possible distributions of the

three particles among the energy levels, satisfying U = 4ε. (ii) Evaluate ωk for each of above distri-

butions, and also Ω =
∑
k ωk. (iii) Calculate the average occupation numbers N̄n =

∑
kN

(k)
n ωk/Ω

for the three particles in the energy states. Here N̄n is the average occupation number of the energy

level with energy nε. You should find N̄n for all n ≤ 4 (and find that N̄n > 4 = 0).

Solution: (i)

U = 4ε = 0ε× 2 + 1ε× 0 + 2ε× 0 + 3ε× 0 + 4ε× 1

= 0ε× 1 + 1ε× 1 + 2ε× 0 + 3ε× 1 + 4ε× 0

= 0ε× 0 + 1ε× 2 + 2ε× 1 + 3ε× 0 + 4ε× 0

= 0ε× 0 + 1ε× 0 + 2ε× 2 + 3ε× 0 + 4ε× 0

(ii) ω2,0,0,0,1
3!

2!1! = 3, ω1,1,0,1,0 = 3!
1!1!1! = 6, ω0,2,1,0,0 = 3!

2!1! = 3, ω = 3!
2!1! = 3, Ω =

∑
k ωk = 15. (iii)

N0 =
1

Ω
(2× ω2,0,0,0,1 + 1× ω1,1,0,1,0 + 0× ω0,2,1,0,0 + 1× ω1,0,2,0,0)

N1 =
1

Ω
(0× ω2,0,0,0,1 + 1× ω1,1,0,1,0 + 2× ω0,2,1,0,0 + 0× ω1,0,2,0,0)

N2 =
1

Ω
(0× ω2,0,0,0,1 + 0× ω1,1,0,1,0 + 1× ω0,2,1,0,0 + 2× ω1,0,2,0,0)

N3 =
1

Ω
(0× ω2,0,0,0,1 + 1× ω1,1,0,1,0 + 0× ω0,2,1,0,0 + 0× ω1,0,2,0,0)

N4 =
1

Ω
(1× ω2,0,0,0,1 + 0× ω1,1,0,1,0 + 0× ω0,2,1,0,0 + 0× ω1,0,2,0,0)

Nn>4 = 0

5. (i) Estimate the number of moles and molecules of water in all the Earth’s oceans. Assume

water covers 75% of the Earth to an average depth of 3 km. (ii) Estimate how many molecules of air

are in each 2.0 liters breath you inhale that were also in the last breath Julius Caesar took. [Hint:

Assume the atmosphere is about 10 km high and of constant density.] (iii) A space vehicle return-

ing from the Moon enters the Earth’s atmosphere at a speed of about 40, 000 km/h. Molecules



(assume nitrogen) striking the nose of the vehicle with this speed correspond to what temperature?

(Because of this high temperature, the nose of a space vehicle must be made of special materials,

indeed part of it vaporize, and this is seen as a bright blaze upon reentry.)

Solution: (i) Since the average depth of the ocean is very small compared to the radius of the

Earth, the ocean’s volume can be calculated as that of a spherical shell with surface area 4πR2
⊕

and a thickness ∆y. Then use the density of sea water to find the mass and the molecular weight

of water to find the number of moles. Volume = 0.754πR2
⊕∆y = 0.754π(6.38× 106 m)23× 103 m =

1.15× 1018 m3. Hence the number of moles = 1.15× 1018 m3
(

1025 kg
m3

) (
1 mol

18×10−3 kg

)
= 6.55× 1022,

and the number of molecules =6.55×1022 moles(6.02×1023 molecules
1 mol ) ≈ 4×1046. We assume that the

last breath that Julius Caesar took has been spread uniformly throughout the atmosphere since

his death. Calculate the number of molecules in JC last breath, and divide it by the volume of the

atmosphere to get JC molecules per m3. Multiply that factor times the size of a breath to find the

number of JC molecules in one of our breaths. PV = NkT ⇒ N = PV
kT = 1.01×105 Pa2.0×10−3 m3

1.38×10−23 J/K300 K
=

4.9 × 1022 molecules; atmospheric volume = 4πR2
⊕h = 4π(6.38 × 106 m)21.0 × 104 m = 5.1 ×

1018 m3, JC molecules
m3 = 4.9×1022 molecules

5.8×1018 m3 = 9.6 × 103 molecules/m3, and so #JC molecules
breath = 9.6 ×

103 molecules/m3 × 2.0 × 10−3 m3/breath = 19 molecules/breath. (iii) The temperature can

be found from vrms =
√

3kT/m, yielding T = (28)(1.66×10−27 kg)[4×104km/h(1 ms−1)/(3.6 kmh−1)]2

3 (1.38×10−23 J/K)
=

1.4× 105 K.


