Prof. Anchordoqui

’Problems set # 5‘ Physics 303 October 7, 2014

1. (i) Show that the entropy change in the cyclic process of an ideal gas, that is represented by
a rectangle in the (P, V) diagram, is zero. (ii) Show that the entropy change in the cyclic process
of an ideal gas that include an isobar, an isochore, and an isotherm is zero. See Fig. 1.

Solution: (i) In the isobatic process of an ideal gas, the infinitesimal amount of heat is given
by 6Q = dU + PdV = CydT 4+ PdV. From the equation of state of the ideal gas, PV = nRT,

it follows that T = % and so dI' = %. Substitute these expressions into dS = 0Q/T, to ob-
tain dS = SvPAV/(nR)+PdV _

(Cy + nR)dVV = devv. In the isochoric process of the ideal gas,

PV/(nR)

the heat exchange is 6Q) = CydT = Cv%, and so dS = % = C’VC%P. For the cyclic process
in the left panel of Fig. 1, ASap = fP}? Cvd?P = Cvln% > 0, ASgp = Cvln% = —ASyp,
ASpe = [y2Cp% = Cplny? > 0, and ASpy = Cpln{l = —ASpc. The total entropy

change AS = ASsp + ASpc + AScp + ASpa = 0, as it should be. (i7) Using the results
of (i) it follows that ASpc = Cpln% > 0 and AScp = Cy ln% < 0. In the isothermal
process of an ideal gas dU = 0 thus 6@ = PdV and dS = % = Pr}ﬂ = nR%. This yields
ASpp = nRIn % < 0. Using the equation of state of the ideal gas, on the ends of the isotherm
you find Py/Py, = V1/Va = ASep = Cyln % The total entropy change over the cycle is
AS = ASpo + AScp + ASpp = (Cp — Cy —nR)In{2 = 0, as it should be.

2. Calculate the entropy of a perfect gas as a function of (V,T') by integration using S = 6Q/T.

Solution: Define S(Vy,Ty) = Sy as a reference point and calculate the entropy S(V,T) via
the integral of 6QQ/T over a path (Vp,Tp) — (V,T), that is, S(V,T) = Sy + f(%’:%) JTQ. As the
the entropy is a state function, its value does not depend on the path. Hence you can choose

the most convenient path, e.g., (Vo,Ty) — (Vo,T) — (V,T). During the first stage only the
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Figure 1: Isobar-isochore cycle (left) and ilsobar-isochore-isotherm cycle (right).



temperature is changing while the work is zero, thus §QQ = dU = (%)VdT = CydTl. In-
tegration for the perfect gas Cy = constant proceeds as follows S(Vy,T) = Sp + ffo C‘i[dT =
So + Cy In Tlo During the second stage T = constant. As for the ideal gas, the internal en-
ergy, U = U(T), does not change and 6Q) = PdV. Using the equation of state of the ideal gas
PV = nRT this can be rewritten as Q) = nRT %. Now integration with T' = constant pro-
ceeds as follows: S(V,T) = S(Vo,T) + an“/g % = So+ Cy lnTlO + nRlIn Vlo' Here the terms
with Ty and V) can be absorbed in the constant: S(V,T) = Cy InT + nRInV + constant. Using
Cp — Cy = nR (Mayer’s relation) and v = Cp/Cy, you can rewrite the previous expression as
S(V,T) = Cy[InT + (v — 1)In V] + constant = Cy InTV7~! + constant. The argument of the
logarithm is constant in the adiabatic process, S = constant. The result therefore has an expected

behavior and passes an error check.

3. Express the energy of a perfect gas in the natural variables, U = U(S,V), and check the
T:(aU> , _p:<5U> 7 <5T> :_(WD) '
0S /v AV /g oV /g 0S /v

Solution: In the V,T variables the energy of a perfect gas has the form U = CyT, where

relations:

a constant has been dropped for simplicity. The entropy of the perfect gas is given by S =
CyInTV7~! where again a constant has been dropped. From here you can express T as a
function of S, namely T = V1=7e%/Cv_ Therefore the energy in its natural variables becomes
U(S,V) = Cy V177 e%CVv: note that U depends on the volume! Now, using dU = T'dS — PdV

you can identify T = (g—g)v and —P = (g—g)s. Substitute the previously obtained T relation to

obtain (‘g—g)v = V1=7¢5/Cv = T. Further, using v = Cp/Cy and Cp — Cy = nR it follows that
(g—g)s = —%eS/CV = —"7;—}365/0‘/. Using again the T relation (g—g)s = —% = —P. Thus,
you have obtained P = %QS/ Cv_in the V, S variables. To check the Maxwell identity, use the

T relation to calculate (g—g)s = —%65/0". On the other hand, from P(V,S) it follows that
opP

—_ (22 — __nR ,S/Cv _ (OT
(BS)V = —oC = <8V g 38 expected.

4. Express thermodynamic potentials F' and G of the perfect gas in terms of their natural
variables and check the relations:

==(ar), (o) (), (or)
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Solution: Use the definition of the Helmholtz potential ' and the formulas for U and S of
a perfect gas to obtain F = U — TS = CyT — TCy nTV'™! = —CyTIn(TV7~!/e). Since
dF = —SdT — PdV, you can identify —S = (g%)v = Cy+ Oy +CyInTVI~ = Oy In TV L.

The entropy is found to be S = — (g—g)v = —Cy+Cy+CylnTVY ! = CyInTV'~. The

pressure is P = — (%)T = (%‘W)T =CyT(y-1) (8((1;{/‘/))T = CVT‘(,V_D = 2L Next,




you can verify the Maxwell relation, (%)T = (%)V’ as follows: (%)T = %CV InTV7—1 =

Cy(y — 1)6111\/ = 2&. 4n the other hand, (%) = % = @)T, as expected. For the Gibbs

ov v ov
thermodynamic potential G all calculations are parallel to those for F', only one has to express all

the formulas via P instead of V', using the equation of state of the ideal gas.

5. The Helmholtz free energy of a certain gas has the form

n2a

Find the equation of state of this gas, as well as its internal energy, entropy, heat capacities C'p
and Cy and, in particular, their diference Cp — Cy, .

Solution: To determine the equation of state, find P as a function of the native variables

. _ oF _ n’a nRT . . .
V,T; namely P = — (W>T = —%% + 7, Rearrange this expression to obtain the van

der Waals equation of state of a non-ideal gas (P + %) (V —nb) = nRT. Next, the entropy
is given by S = — (%)V = nRIn(V — nb) — J(T). Now the internal energy becomes U =
F4+TS = —% + J(T) — TJ'(T). The heat capacity can be found as Cy = (%>V =-TJ"(T)

or as Cy = (g%)v = —TJ"(T). Finding Cp = T(%)P requires some algebra. The idea
is simple. An explicit way to do this is to express V in the form V = V(P,T) everywhere
with the help of van der Waals equation of state. However, this V is a solution of a cubic
equation that is better to avoid. Also this method is inconvenient to study Cp — Cy because
both heat capacities have to be functions of the same variables. Therefore, it is better to use
the implicit method considering S = S(V,T) but with V. = V(P,T). It follows that Cp =
T (g%)v +T (%)T (%)P =Cy+T (%)T/ (g—‘r‘c)P. In this equation (%)T = V”_I":le, whereas

(%)P = ﬁ%% (P + %) (V —nb) =L [— 2{}1“(V —nb) + (P + %)} Now, substitue the ex-

nR
pression for P(V,T) to find (%)P = ﬁ {— 2‘7}23“(1/ —nb) + (/ﬁ_%,:fb

_ (mRT [_2n2 Rr ]! : _ RT
Cp—Cy = 7‘;_% {— 5 (V —nb) + (}_nb} , or equivalently Cp—Cy = anRT_(WZ/Vg)(V_nb)Q,
and finally Cp — Cy = 17(%2&(‘/72?)2) TRRTV) > nR. It is easily seen that at high temperatures

and large volumes the additional term in the denominator becomes small and Mayer’s relation for

}. Gathering terms, you obtain

the ideal gas arises.



