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Problems set # 5 Physics 303 October 7, 2014

1. (i) Show that the entropy change in the cyclic process of an ideal gas, that is represented by

a rectangle in the (P, V ) diagram, is zero. (ii) Show that the entropy change in the cyclic process

of an ideal gas that include an isobar, an isochore, and an isotherm is zero. See Fig. 1.

Solution: (i) In the isobatic process of an ideal gas, the infinitesimal amount of heat is given

by δQ = dU + PdV = CV dT + PdV . From the equation of state of the ideal gas, PV = nRT ,

it follows that T = PV
nR and so dT = PdV

nR . Substitute these expressions into dS = δQ/T , to ob-

tain dS = CV PdV/(nR)+PdV
PV/(nR) = (CV + nR)dVV = CP

dV
V . In the isochoric process of the ideal gas,

the heat exchange is δQ = CV dT = CV
V dP
nR , and so dS = δQ

T = CV
dP
P . For the cyclic process

in the left panel of Fig. 1, ∆SAB =
∫ P2
P1
CV

dP
P = CV ln P2

P1
> 0, ∆SCD = CV ln P1

P2
= −∆SAB,

∆SBC =
∫ V2
V1
CP

dV
V = CP ln V2

V1
> 0, and ∆SDA = CP ln V1

V2
= −∆SBC . The total entropy

change ∆S = ∆SAB + ∆SBC + ∆SCD + ∆SDA = 0, as it should be. (ii) Using the results

of (i) it follows that ∆SBC = CP ln V2
V1

> 0 and ∆SCD = CV ln P1
P2

< 0. In the isothermal

process of an ideal gas dU = 0 thus δQ = PdV and dS = δQ
T = PdV

T = nRdV
V . This yields

∆SDB = nR ln V1
V2
< 0. Using the equation of state of the ideal gas, on the ends of the isotherm

you find P1/P2 = V1/V2 ⇒ ∆SCD = CV ln V1
V2

. The total entropy change over the cycle is

∆S = ∆SBC + ∆SCD + ∆SDB = (CP − CV − nR) ln V2
V1

= 0, as it should be.

2. Calculate the entropy of a perfect gas as a function of (V, T ) by integration using S = δQ/T .

Solution: Define S(V0, T0) = S0 as a reference point and calculate the entropy S(V, T ) via

the integral of δQ/T over a path (V0, T0) → (V, T ), that is, S(V, T ) = S0 +
∫ (V,T )
(V0,T0)

δQ
T . As the

the entropy is a state function, its value does not depend on the path. Hence you can choose

the most convenient path, e.g., (V0, T0) → (V0, T ) → (V, T ). During the first stage only the
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Figure 1: Isobar-isochore cycle (left) and iIsobar-isochore-isotherm cycle (right).



temperature is changing while the work is zero, thus δQ = dU =
(
∂U
∂T

)
V
dT = CV dT . In-

tegration for the perfect gas CV = constant proceeds as follows S(V0, T ) = S0 +
∫ T
T0

CV dT
T =

S0 + CV ln T
T0

. During the second stage T = constant. As for the ideal gas, the internal en-

ergy, U = U(T ), does not change and δQ = PdV . Using the equation of state of the ideal gas

PV = nRT this can be rewritten as δQ = nRT dV
V . Now integration with T = constant pro-

ceeds as follows: S(V, T ) = S(V0, T ) + nR
∫ V
V0

dV
V = S0 + CV ln T

T0
+ nR ln V

V0
. Here the terms

with T0 and V0 can be absorbed in the constant: S(V, T ) = CV lnT + nR lnV + constant. Using

CP − CV = nR (Mayer’s relation) and γ = CP /CV , you can rewrite the previous expression as

S(V, T ) = CV [lnT + (γ − 1) lnV ] + constant = CV lnTV γ−1 + constant. The argument of the

logarithm is constant in the adiabatic process, S = constant. The result therefore has an expected

behavior and passes an error check.

3. Express the energy of a perfect gas in the natural variables, U = U(S, V ), and check the

relations:

T =

(
∂U

∂S

)

V
, −P =

(
∂U

∂V

)

S
,

(
∂T

∂V

)

S
= −

(
∂P

∂S

)

V
.

Solution: In the V, T variables the energy of a perfect gas has the form U = CV T , where

a constant has been dropped for simplicity. The entropy of the perfect gas is given by S =

CV lnTV γ−1, where again a constant has been dropped. From here you can express T as a

function of S, namely T = V 1−γ eS/CV . Therefore the energy in its natural variables becomes

U(S, V ) = CV V
1−γ eS/CV ; note that U depends on the volume! Now, using dU = TdS − PdV

you can identify T =
(
∂U
∂S

)
V

and −P =
(
∂U
∂V

)
S

. Substitute the previously obtained T relation to

obtain
(
∂U
∂S

)
V

= V 1−γeS/CV = T . Further, using γ = CP /CV and CP − CV = nR it follows that
(
∂U
∂V

)
S

= − (γ−1)CV
V γ eS/CV = −nR

V γ e
S/CV . Using again the T relation

(
∂U
∂V

)
S

= −nRT
V = −P . Thus,

you have obtained P = nR
V γ e

S/CV , in the V, S variables. To check the Maxwell identity, use the

T relation to calculate
(
∂T
∂V

)
S

= − nR
CV V γ

eS/CV . On the other hand, from P (V, S) it follows that

−
(
∂P
∂S

)
V

= − nR
CV V γ

eS/CV =
(
∂T
∂V

)
S

, as expected.

4. Express thermodynamic potentials F and G of the perfect gas in terms of their natural

variables and check the relations:

−S =

(
∂F

∂T

)

V
, −P =

(
∂F

∂V

)

T
,

(
∂S

∂V

)

T
=

(
∂P

∂T

)

V
.

Solution: Use the definition of the Helmholtz potential F and the formulas for U and S of

a perfect gas to obtain F = U − TS = CV T − TCV lnTV γ−1 = −CV T ln(TV γ−1/e). Since

dF = −SdT − PdV , you can identify −S =
(
∂F
∂T

)
V

= −CV + CV + CV lnTV γ−1 = CV lnTV γ−1.

The entropy is found to be S = −
(
∂F
∂T

)
V

= −CV + CV + CV lnTV γ−1 = CV lnTV γ−1. The

pressure is P = −
(
∂F
∂V

)
T

=
(
∂(CV T lnV γ−1)

∂V

)
T

= CV T (γ − 1)
(
∂(lnV )
∂V

)
T

= CV T (γ−1)
V = nRT

V . Next,



you can verify the Maxwell relation,
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

, as follows:
(
∂S
∂V

)
T

= ∂
∂V CV lnTV γ−1 =

CV (γ − 1)∂ lnV∂V = nR
V ; on the other hand,

(
∂P
∂T

)
V

= nR
V =

(
∂S
∂V

)
T

, as expected. For the Gibbs

thermodynamic potential G all calculations are parallel to those for F , only one has to express all

the formulas via P instead of V , using the equation of state of the ideal gas.

5. The Helmholtz free energy of a certain gas has the form

F = −n
2a

V
− nRT ln(V − nb) + J(T ).

Find the equation of state of this gas, as well as its internal energy, entropy, heat capacities CP
and CV and, in particular, their diference CP − CV .

Solution: To determine the equation of state, find P as a function of the native variables

V, T ; namely P = −
(
∂F
∂V

)
T

= −n2a
V 2 + nRT

V−nb . Rearrange this expression to obtain the van

der Waals equation of state of a non-ideal gas
(
P + n2a

V 2

)
(V − nb) = nRT . Next, the entropy

is given by S = −
(
∂F
∂T

)
V

= nR ln(V − nb) − J ′(T ). Now the internal energy becomes U =

F + TS = −n2a
V + J(T ) − TJ ′(T ). The heat capacity can be found as CV =

(
∂U
∂T

)
V

= −TJ ′′(T )

or as CV =
(
∂S
∂T

)
V

= −TJ ′′(T ). Finding CP = T
(
∂S
∂T

)
P

requires some algebra. The idea

is simple. An explicit way to do this is to express V in the form V = V (P, T ) everywhere

with the help of van der Waals equation of state. However, this V is a solution of a cubic

equation that is better to avoid. Also this method is inconvenient to study CP − CV because

both heat capacities have to be functions of the same variables. Therefore, it is better to use

the implicit method considering S = S(V, T ) but with V = V (P, T ). It follows that CP =

T
(
∂S
∂T

)
V

+ T
(
∂S
∂V

)
T

(
∂V
∂T

)
P

= CV + T
(
∂S
∂V

)
T
/
(
∂T
∂V

)
P

. In this equation
(
∂S
∂V

)
T

= nR
V−nb , whereas

(
∂T
∂V

)
P

= 1
nR

∂
∂V

(
P + n2a

V 2

)
(V − nb) = 1

nR

[
−2n2a

V 3 (V − nb) +
(
P + n2a

V 2

)]
. Now, substitue the ex-

pression for P (V, T ) to find
(
∂T
∂V

)
P

= 1
nR

[
−2n2a

V 3 (V − nb) + nRT
V−nb

]
. Gathering terms, you obtain

CP −CV = (nR)2T
V−nb

[
−2n2a

V 3 (V − nb) + nRT
V−nb

]−1
, or equivalently CP −CV = nR nRT

nRT−(2n2a/V 3)(V−nb)2 ,

and finally CP − CV = nR
1−(2n2a(V−nb)2)/(nRTV 3)

> nR. It is easily seen that at high temperatures

and large volumes the additional term in the denominator becomes small and Mayer’s relation for

the ideal gas arises.


