Prof. Anchordoqui

Problems set $\#$ **4 Physics 303** September 30, 2014

1. N identical, ideal Carnot refrigerators are in series. In each cycle, the n-th refrigerator absorbs heat Q_n at temperature T_n , and emits heat Q_{n+1} at temperature T_{n+1} . The emitted heat Q_{n+1} is then absorbed by the $(n + 1)$ -th refrigerator, and so on. Each refrigerator requires 3 J of work to run, per cycle. You are given that $Q_1 = 1$ J, and $T_1 = 1$ K. Express the answers below in the appropriate units (J or K). (i) What is Q_n , for all $n \geq 1$? (ii) What is T_n , for all $n \geq 1$?

Solution: (i) For each cycle, $|W_n| = |Q_{n+1}| - |Q_n|$ and so $|Q_{n+1}| = |W_n| + |Q_n| = n|W| +$ $|Q_1| = 3n$ J + 1 J = $(3n + 1)$ J. Therefore $|Q_n| = (3n - 2)$ J. *(ii)* For the *n*-th cycle $T_{n+1}-T_n$ $\frac{d_1 - T_n}{T_n} = \frac{|W_n|}{|Q_n|} = \frac{3}{3(n-1)} \frac{J}{J+1}$ which implies $\frac{T_{n+1}}{T_n} - 1 = \frac{3}{3n-2}$ and so $\frac{T_{n+1}}{T_n} = \frac{3n+1}{3n-2}$. This leads to $T_{n+1} = \frac{3n+1}{3n-2}T_n = \prod_{i=1}^n \left[\frac{3i+1}{3i-2}\right]T_1 = (3n+1)T_1 = (3n+1)$ K, yielding $T_n = (3n-2)$ K.

2. A Carnot engine operates on 1 kg of methane (CH_4) , which we will consider to be an ideal gas. Take $\gamma = 1.35$. The ratio of the maximum volume to the minimum volume is 4 and the cycle efficiency is 25%. Find the entropy increase of the methane during the isothermal expansion.

Solution: For reversible processes, $T ds = du + P dv$. For the isothermal expansion, $dU = 0$ and therefore $T ds = P dv$. For the ideal gas, $ds = P dv/T = nR dv/v$ and so $\Delta s = nR \ln(v_b/v_a)$. What is v_b/v_a ? During the adiabatic expansion, $b \to c$, you can write $T_b v_b^{\gamma-1} = T_c v_c^{\gamma-1}$ and so v_b $\frac{v_b}{v_c} = \left(\frac{T_c}{T_b}\right)$ T_b $\int_1^{1/(\gamma-1)} = \left(\frac{T_1}{T_2}\right)$ T_{2} $\int_{1/(\gamma-1)}^{1/(\gamma-1)}$. The relationship between T_1 and T_2 can be found from the efficiency of the engine $\eta = 1 - T_1/T_2 = 25\%$, hence $T_1/T_2 = 3/4$. Putting everything together, you get $\Delta s = nR \ln(v_b/v_a) = nR \ln \left(\frac{v_b v_c}{v_c v_a} \right)$ v_cv_a $= nR \ln \left[\left(\frac{T_1}{T_2} \right) \right]$ T_{2} $\big\}^{1/(\gamma-1)}$ $\frac{v_c}{\gamma}$ va $\Big] = nR \ln \Big[\Big(\frac{3}{4} \Big)$ $\left[\frac{3}{4}\right]^{1/(1.35-1)} \times 4\right] =$ 293 J/K.

3. The low temperature specific heat of a diamond varies with temperature according to

$$
c_v = 1.88 \times 10^6 \left(\frac{T}{\theta}\right)^3 \text{ J kilomole}^{-1} \text{K}^{-1},
$$

where $\theta = 2230$ K. What is the entropy change of 1 kg of diamond when it is heated at constant volume from 4 K to 300 K.

Solution: Start with the main thermodynamic identity: $dU = T dS - P dV$. For a diamond in the air, P and V are almost constant at room temperature under 1 atm, thus $ds \simeq du/T$. This leads to $\Delta S \simeq n \int_{4 \text{ K}}^{300 \text{ K}} c_v \frac{dT}{T} = \frac{1}{12}$ $\frac{1}{12}$ \int_{4}^{300} K 1.88×10^6 $\left(\frac{7}{\theta}\right)$ $\left(\frac{T}{\theta}\right)^3 \frac{dT}{T}$ $\frac{dT}{T}$ JK⁻¹ = 127 JK⁻¹.

4. (a) Derive an expression for the entropy of an ideal gas: (i) as a function of T and V; (ii) as a function of T and P. Assume that the specific heats of the gas are constants. (b) An ideal monatomic gas undergoes a reversible expansion from specific volume v_1 to specific volume v_2 .

(i) Calculate the change in specific entropy Δs if the expansion is isobaric. (ii) Calculate Δs if the process is isothermal. *(iii)* Which is larger? By how much?

Solution: (a) (i) Start with the main thermodynamic identity: $du = T ds - P dv$. It follows that $ds = \frac{F}{\tau}$ $\frac{P}{T}dv + \frac{du}{T} = \frac{R}{v}$ $\frac{R}{v}dv + c_v\frac{dT}{T}$ $\frac{dT}{T}$, and hence $\Delta s = R \ln \left(\frac{v_2}{v_1} \right)$ $\overline{v_1}$ $+ c_v \ln \left(\frac{T_2}{T_1} \right)$ $\overline{T_1}$). *(ii)* Likewise, $ds =$ 1 $\frac{1}{T}Pdv + c_v \frac{dT}{T}$ $\frac{dT}{T}$. Use the equation of state, $Pv = RT$, to obtain $Pdv + vdP = RdT$. Substitute this expression to obtain $ds = \frac{1}{7}$ $\frac{1}{T}(RdT-vdP)+c_v\frac{dT}{T}=(R+c_v)\frac{dT}{T}-\frac{v}{T}$ $\frac{v}{T}dP = c_P \frac{dT}{T} - R \frac{dP}{P}$ $\frac{dP}{P}$. Integrate this expression to obtain $\Delta s = c_P \ln \left(\frac{T_2}{T_1} \right)$ T_1 $-R\ln\left(\frac{P_2}{P_1}\right)$ P_1 $\left($, $\left($, $b\right)$ $\left($ $i\right)$ For an ideal monoatomic gas which undergoes isobaric expansion, it follows that $ds = \frac{1}{l}$ $\frac{1}{T}(du+Pdv)=\frac{c_v}{T}dT+\frac{P}{T}$ $\frac{P}{T}dv = c_v \frac{dT}{T} + \frac{P}{Pv/R}dv = c_v \frac{dT}{T} + R\frac{dv}{v}$ $\frac{dv}{v}$. Thus, $\Delta s_1 = c_v \int \frac{dT}{T} + R \int \frac{dv}{v} = c_v \ln \left(\frac{T_2}{T_1} \right)$ T_1 $+R\ln\left(\frac{v_2}{v_1}\right)$ v_1 $= c_v \ln \left(\frac{v_2}{v_1} \right)$ v_1 $+R\ln\left(\frac{v_2}{v_1}\right)$ v_1 $= c_P \ln \left(\frac{v_2}{v_1} \right)$ v_1). *(ii)* For an ideal monoatomic gas which undergoes isothermal expansion, it follows that $ds = \frac{F}{l}$ $\frac{P}{T}dv = R\frac{dv}{v}$ \overline{v} and so $\Delta s_2 = R \ln \left(\frac{v_2}{v_1} \right)$ $\overline{v_1}$). (iii) $\Delta s_1 - \Delta s_2 = c_P - R \ln \left(\frac{v_2}{v_1} \right)$ $\overline{v_1}$ $= c_v \ln \left(\frac{v_2}{v_1} \right)$ $\overline{v_1}$), which implies $\Delta s_1 > \Delta s_2$.

5. A kilomole of an ideal gas undergoes a revrsible isothermal expansion from a volume of 5 liters to a volume of 10 liters at a temperature of 20 \degree C. (i) What is the change in the entropy of the gas? Of the universe? (ii) What are the corresponding changes of energy if the process is a free expansion?

(i) A kilomole ($n = 1$) of an ideal gas undergoes isothermal expansion from $V_1 = 5$ liters to $V_2 =$ 10 liters. For isothermal processes $dU = 0$ and hence $dS = dQ/T = dW/T$, yielding $dS = \frac{F}{T}$ $\frac{P}{T}dV.$ This means that the entropy change in the system is $\Delta S_{\rm gas} = \int \frac{P}{T} dV = \int \frac{nR}{V}$ $\frac{nR}{V}dV = nR\ln\left(\frac{V_2}{V_1}\right)$ $\overline{V_1}$ $=$ $R\ln 2 = 5.76 \times 10^3 \text{ J K}^{-1}$. On the other hand, $\Delta Q_{\text{gas}} = -\Delta Q_{\text{env}}$; this entails $\Delta S_{\text{env}} = -\int \frac{P}{T} dV =$ $-\int \frac{nR}{V}$ $\frac{nR}{V}dV\ =\ -nR\ln\left(\frac{V_2}{V_1}\right)$ V_1 $= -R \ln 2$. Therefore $\Delta S_{\text{universe}} = \Delta S_{\text{gas}} + \Delta S_{\text{env}} = 0$. *(ii)* For the same initial and final states the entropy change in the gas is the same so $\Delta S_{\rm gas} = 5 \times 10^3 \,\rm J K^{-1}$. While the ideal gas undergoes free expansion, no heat enters or leaves the surroundings, so for the environment surrounding the system, $\Delta Q_{\text{env}} = 0$ and $\Delta S_{\text{env}} = 0$. In this case the total change of entropy in the universe is $\Delta S_{\text{universe}} = \Delta S_{\text{gas}} + \Delta S_{\text{env}} = \Delta S_{\text{gas}} = 5 \times 10^3 \text{ J K}^{-1}$.