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Problems set # 3 Physics 303 September 16, 2014

1. (i) A system initially with volume 10 liters and temperature T = 0◦C is compressed adiabat-

ically to a state with volume 5 liters and temperature T = 100◦C. In this process, 1000 J of work is

done on the system. By how much does the internal energy of the system change in this process?

(ii) Instead, we start from the same initial state as above, and end at the same final state as above,

by going through the following two steps. Step 1: the system is first heated isochorically (constant

volume) to the final temperature T = 100◦C. Step 2: the system is then compressed isothermally

(constant temperature) to the final volume of 5 liters. In the first step, 800 J of heat had to be

added to the system. In the second step, 1900 J of heat flowed out of the system. Compute the

energy changes and amounts of work done in each of these two steps. (iii) Can this system be

regarded as an ideal gas? Why or why not?

Solution: (i) ∆U = ∆Q−∆W = 1000 J. (ii) Step 1: ∆W = 0 as the volume remains constant;

∆Q = 800 J; ∆U = ∆Q−∆W = 800 J. Step 2: ∆Q = −1900 J; 1000 J = 800 J + ∆U ⇒ ∆U =

200 J; ∆W = ∆U −∆Q = −1900 J − 200 J = −2100 J. (iii) No, the system is not an ideal gas.

The internal energy of the system changes under the isothermal process in Step 2, while for an

ideal gas its internal energy should depend on temperature only.

2. The temperature of an ideal gas at initial pressure P1 and volume V1 is increased isochorically

until the pressure has doubled. The gas is then expanded isothermally (constant temperature) until

the pressure drops to its original value. Then it is compressed isobarically (constant pressure) until

the volume returns to its initial value. (i) Sketch these processes in the P −V plane and the P −T
plane. (ii) Compute the work done in each process, and the net work done in the cycle, if n = 2

kilomoles, P1 = 105 Pa, and V1 = 2 m3.

Solution: (i) The P −V and P −T diagrams are shown in Fig. 1. (ii) Step 1: Use the equation

of state of the ideal gas to obtain P1V1 = nRT1; ∆W1 = 0; remains constant; P2 = 2P1V2
and so 2P1V1 = T2nR. Step 2: ∆W2 =

∫ V2
V1
P2 dV =

∫ V2
V1

nRT2
V dV = 2P1V1 ln 2. Step 3:

∆W3 =
∫ V1
V2
P1dV = P1(V1−V2) = −V1P1. Step 1 + Step 2 + Step 3: ∆W = ∆W1+∆W2+∆W3 =

P1V1(2 ln 2− 1) = 7.73× 104 J.

3. A hypothetical substance has expansivity β = aT 3/v and isothermal compressibility κ = b/v,

where a and b are constants. Find the equation of state (including the unknown constant of inte-

gration).

Solution Express the volume as a function of T and P . Relate the partial derivatives to the

thermodynamic coefficients to obtain dv = βvdT − κvdP = aT 3dT − bdP . The equation of state is

then v − v0 = a(T 4 − T 4
0 )/4− b(P − P0).
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Homework 2 Solution

1. (a)

¢U = ¢Q °¢W = 1000J (1)

(b) • Step1:

¢W = 0 for the volume remains constant

¢Q = 800J

¢U = ¢Q °¢W = 800J (2)

• Step2:

¢Q = °1900J

1000J = 800J + ¢U ) ¢U = 200J

¢W = ¢U °¢Q = °1900J ° 200J = °2100J (3)

(c) No, the system is no an ideal gas. The internal energy of the system changes under isothermal process in
Step 2, while for an ideal gas its internal energy should depend on temperature only.

2. (a) P-V diagram and P-T diagram

(b) • Step 1:

¢W1 = 0, (4)

for the volume is constant.

• Step 2:

¢W2 =

Z V2

V1

P dV =

Z V2

V1

nRT2

V
dV = 2P1V1 ln 2, . (5)

• Step 3:

¢W3 =

Z V1

V2

dV P = (V1 ° V2)P1 = °V1P1, . (6)

• Step 1 + Step 2 +Step 3

¢W = ¢W1 + ¢W2 + ¢W3 = P1V1(2 ln 2 ° 1) = 7.73 £ 104J. (7)

3. For stainless steel, its coe±cient of linear thermal expansion Æ = 17.3£ 10°6/K at 20oC, and its bulk modulus
is about 1.611Pa. The coe±cient of volume thermal expansion Ø ª 3Æ = 5 £ 10°5/K, and the isothermal
compressibility ∑ = 1/(bulk modulus) = 6.25 £ 10°12/Pa.

v = vo[1 + Ø(T ° To) ° ∑(P ° Po)]. (8)

For constant volume,

Ø¢T = ∑¢P

¢P =
Ø

∑
¢T = 4.15 £ 107Pa (9)

Figure 1: P − V diagram (left) and P − T diagram (right).

4. For stainless steel, the coefficient of linear thermal expansion is α = 17.3× 10−6/K at 20◦C,

and the bulk modulus is about 1.6× 1011 Pa. What pressure ∆P is needed to keep stainless steel

from expanding, when heated from 20◦C to 25◦C. Assume that the coefficients are constant over

this temperature range. Consider the pressure needed on a little steel nugget, to prevent its volume

from expanding in any direction. [Hints: This question is about expansion in any direction, not

just one linear direction: be careful about factors of 3. The isothermal compressibility is the inverse

of the bulk modulus.]

Solution: The coefficient of volume thermal expansion β = 3α = 5× 10−5 K−1, and the isother-

mal compressibility κ = 1/(bulk modulus) = 6.25 × 10−12 Pa−1. Express the volume as a func-

tion of T and P . Relate the partial derivatives to the thermodynamic coefficients to obtain dv =

βvdT−κvdP . For constant volume, this leads to β∆T = κ∆P , hence ∆P = β∆T/κ = 4.15×107 Pa.

5. The pressure on 100 g of nickel is increased quasistatically and isothermally from zero pressure

to 500 atm. Calculate the work done on the material, assuming that the density and isothermal

compressibility remain constant at the values of 8.90× 103 kg m−3 and 6.75× 10−11 Pa−1.

Solution: The volume of 100 g of nickel is 0.10 kg/(8.90 × 103kg m−3) = 1.12 × 10−5 m3.

P2 = 500 atm = 5 × 1.01 × 107 Pa = 5.05 × 107 Pa. You can compute the work done on the

material from dW = −PdV = −P
[(

∂V
∂T

)
P
dT +

(
∂V
∂P

)
T
dP
]

= −PV βdT + PV κdP . For dT = 0,

W = V κ
∫
PdP = 1

2 V κP
2
∣∣∣
P2

P1

= 9.7× 10−2 J.


