Prof. Anchordoqui

’Problems set # 13‘ Physics 303 December 9, 2014

1. Derive the density of states p(¢) as a function of € for a free electron gas in one-dimension.
(Assume periodic boundary conditions or confine the linear chain to some length L). Then calculate
the Fermi energy e at zero temperature for an N electron system.
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Solution: The energy particle is e = p?/2m. Therefore, dp = (
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T = 0 K, the electrons will occupy all the state whose energy is from 0 to the Fermi energy cp.
2
Hence N = [57 p(e)de, giving ep = 2 (%) .

the two states spins, you get, p(e)de = yjldp = . At temperature
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2. Calculate the average energy per particle, €, for a Fermi gas a T' = 0, given that ep is the
Fermi energy. Consider two cases separately, non-relativistic and relativistic.

Solution: For a non-relativistic particle, p < mec (p is the momentum and m the mass), it follows
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that ¢ = %. We have p(e) = /e - constant. Then £ = m = %EF. For p > mc, we have
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e = pc and p(e) = &2 - constant. Therefore, & = f};;;d; = 2ep.

3. For a system of electrons, assumed non-interacting, show that the probability of finding an
electron in a state with energy A above the chemical potential p is the same as the probability of
finding an electron absent from a state with energy A below u at any given temperature 7.

Solution: According to the Fermi distribution the probability for a level € to be occupied is

fle)= m, so the probability for finding an electron at e = p+ A'is f(u+ A) = and
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the probability for not finding electrons at ¢ = p — A is given by 1 — f(u — A) = The two
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probabilities have the same value as reqired.



