Errata

Chapter 1

e Proposition 1.2. z; = x; + iy;.
e Corollary 1.1. The relation using De Moivre’s theorem should read s"(cos n¢ + isinn¢) = r(cos 6 + isin 0).

e Definition 1.6. It should read “...(1.6) leads to...” instead of “...(1.5) leads to...”, “Conversely, if the conditions
(1.9) hold and the partial derivatives of u(x, y) and v(x, y) are continuous, the derivative f'(z) = u, + ivy exists”,
and Eq. (1.11) should read 6 f = (uy + ivy)0x + (uy + ivy)dy.

e Definition 1.15. fz TZ f(z)dz = f(ixz;yj)[u(x, y) + iv(x, y)][dx + idy]

- f;(cxzyyj)[u(x y)dx — v(x, y)dy] + i f(x Zlyi)[v(x y)dx + u(x, y)dyl.

e Theorem 1.6 Equation (1.44) should read §. f(z) dz = — [, (0x + u,) dx dy +1i [, (u, - v,) dx dy.

e Example 1.7 Equation (1.62) should read 9€c 243 g7

z(z—1)?
e Example 1.7. There is a printing error in Eq. (1.65). In the denominator, z(z — 7)?, the minus sign is out of place.

e Example 1.8. An equal sign is missing in the definition of the exponential, i.e., ¢* = },7 z"/n!. In Eq. (1.81) the
infinity signs got printed right on top of the summation signs instead of above them.

e Theorem 1.14. The sentence after Eq. (1. 95) should read ”where we have used Cauchy’s formula to obtain the
last line.” Equation (1.103) should read 5 ggc Z(Q ac=Y2 il 1 o

e Theorem 1.16. The last equation of the proof should read lim,_,,(z — zo) f(z) = lim,_,,[c_1 + co(z — 20) + c1(z —
20> + -] = c.1 = Resf(2)].—,

o Example 1.15. “... if we had reverse the sense...”
e Exercise 1.4(31) f(z) = ¢,

e Exercise 1.7. (iv) fc(z3 +3) dz.

Chapter 2

o Definition 2.10. The definiteness property should read (x,x) =0 & = = 0.
e Proposition 2.1. Equation 2.17 should read (—2|{x, y)[)* — 4/lx|?|ly|* < 0.
o Exercise 2.5.(v) Write down the matrix representation of T in the standard basis and use it to find T(2, -1, -1).

o Exercise 2.7 T is the projection onto the vector (1, -5).

Chapter 3

e Theorem 3.1 The first line of Eq. (3.46) should read [u(t) — uo| = |ft: fW,u(t)dt'| < 'ft; [f(t', u(t)ldt’|. The
sentence above Eq. (3.49) should read “. .. of successive approximations is now defined with ...”.

e Proposition 3.1 The sentence below Eq. (3.77) should read “In addition, if f satisfies the hypotheses of Picard’s
theorem, it is guaranteed the existence and uniqueness of a solution...”.

e Definition 3.21 The “dx” is missing in Eq. (3.121). It should read f_ :O:o o(x) f(x) dx = f(0). Equation (3.130)
should read I = limeo- €7 [ f(x)g(x/€)dx = lime_- €' [ *f f(x) g(x/e) dx.



e Corollary 3.3 Equation (3.145) should read [ ©'(x)f(x)dx = — [~ ©@)f'(x)dx = — [ f'(x)dx = £(0).

e Definition 3.25 Since K(t, ') is a solution of the homogeneous equation, G(t, t') satisfies...

e Lema 3.1. Equation (3.187) should read fab ui(x) uj(x) p(x)dx =0 it A; # A;

e Theorem 3.6. The first sentence in the proof should read: “We first show that (ii) holds. Itis evident thatif G(x, x")

exists then (3.196) is a solution of (3.194), because L[u(x)] = fub L[G(x, x)] f(x')dx’ = fab O(x—x") f(x)dx' = f(x);
note that L, acts on the first variable, which is unaffected by the integral.” The sentence after Eq (3.198) should

read: “Integration of (3.194) over [x’ — €,x" + €] (with e>0), -/ ’,"*j LpG(x, )] dx + [ q(x) Glx,x')dx =

fx e o(x — x) dx, leads to —[p(x) G’'(x,x)]Z ;*i + q(x) G(x,x’) dx = 1..” Equation (3 200) should read:
lime_ f q(x) G(x,x")dx — 0.

e Example 3.24 After Eq. (3.290) non-integral v should read non-integer v and after Eq. (3.291) integral n should
read integer n.

e Definition 3.40 Equation (3.371) should read a; = % f_ LL f(x) cos('%) dx, by= % f_ LL f(x) sin(’%) dx.
o Exercise 3.12 “Consider the boundary value problem u” + Au = 0, with u(0) — #’(0) = 0, u(1) + u’(1) = 0.”

e Exercise 3.14 “Let L[u(x)] = —(x*u’)’, x € [1,2] be a Sturm-Liouville operator...”

m

dxm

e Exercise 3.16 Show that: (i) Rodrigues formula is a solution of Legendre equation; (ii) P}"(x) = (1- —x2)m/2 2Py (x);

(iii) [} 2K ayrdr = § @ Juan (kL.

Chapter 4

e Section 4.1 Case II: b* —ac < 0. The roots are conjugate complex: Ay = p+io = Aj. Thus, & = x+ A1y = x+py+ioy
and n = x + Ay = x + py — ioy = &". The standard form is

uge =0, ey
with general integral u = ¢(&) + P(E7).
e Section 4.2.4 Equation (4.79) should read G(&, 1) = 2%@(5)@(—17) and Eq. (4.80) becomes G, = —%6(5)6(1}).

e Section 4.3.2. Equation (4.108) should read K(x,t) = & /(M " g ix/ Viat-kVal? i = 2_;2:(4;) " e7dz. The

normalization condition before Eq. (4.111) should read L . 6(x —-X )dx = 1. In the line following Eq. (4.111) the
second sentence should read “For a fixed x #0...".

e Section 4.3.3. The title should read “Diffusion in a Finite Metal Bar.” Equation (4.117) should read T,(f) =
bue~ /Lt and Eq. (4.118) should read u(x, ) = Y., bye /L’ sin(nmx/L). The expression between Egs.(4.140)

and (4.141) should read: ﬁ f;, [za)+a( ) ]gn(x w)et="de = L f dew eiw(f—f')%sin(”“T"/).

e Section 4.4.2. The sentence before Eq. (4.165) should read: Assuming a solution of the form u(r, Q) = R(r) Y(€2)
we obtain.

e Section 4.5.1. In Eq. (4.208) u=0,1,2,3.

e Section 4.5. 2 Equation (4.220) should read (0% + m2)Gp(x — x’) = 6W(x — x’). Equation (4.226) should read
Se(p) = 2—
p2—m2+(i€)?

o Exercise 4.3.(v) Determine the behavior of the solution for t — oo.



Coefficient Earth Moon Mars
Cao 1.083 x 1073 (0.200 + 0.002) x 1073 (1.96 + 0.01) x 1073
Cxp 0.16 x 107° (24 +0.5)x107° (-5+1)x107°
Sy -0.09x107° (0.5+0.6) x107° B+1)x107°
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e Note added (Example 4.12.) The gravity fields of the Earth, the Moon, and Mars have been described by a
Laplace series with real eigenfunctions U(r, 6, ¢) = < {B ) I I (R)HH [ComY!n(0, D) + Sum Y2,,(6, @)]}r

where M is the mass of the body and R is the equatorial radius. The real functions Y?,, and Y9, are defined
by Y!,,.(0,$) = P"(cos 0) cos(m¢) and YY,,(6,¢) = P(cos 0) sin(me). Satellites measurements have led to the
numerical values given in the table. The nodal lines separating excess and deficit regions on the sphere for
various ([, m) pairs are shown in the figure. The top row shows the (0,0) monopole, and the partition of the
sphere into two dipoles, (1,0) and (1,1). The middle row shows the quadrupoles (2,0), (2,1), and (2,2). The
bottom row shows the | = 3 partitions, (3,0), (3,1), (3,2), and (3, 3).

Appendix C

e Following the sentence “By partial integration we obtain” the lower limit of integration after the first equality
should be —x + 1/2.

Answers and comments on the excercises

e Solution 1.3 2" = e’ implies that z = al/¢i(;+3%),
e Solution 1.9 Letting ...
o Solution 1.10 The dz is missing in the second relation of (i).

niz(1-22)
sin(mz)

niz(1-22)

T nz(1-z)(1+z)
- hmz_)l sin(riz+m—1)

sin[nt(z—1)+7] *

e Solution 1.133) lim,_,; = lim,_,; Using the trigonometric identity,

sin(a + ) = sinacos + sinp cosa, the equation becomes lim,_,; %

nz(1-22) _
sin(mz) -2

= 2. Duplicating this procedure

lim,, 4

e Solution 1.13(iii) We know that around zy = 0, ﬁ = csc(nz) = % [1 + ”3—2,2 + 0(7'(24)]. This is so because
csc (z) has a simple pole at z = 0. The residue is: lim,,o 5= = 1. This implies that the first coeficient in the
Laurent expansion of csc (z) is c-; = 1. The Laurent series is then given by csc(z) = 1/z 4+ ¢ + c1z + CoZ% -
To determine the other coefficients you can use the relation csc (z) sin(z) = 1. Using the Taylor expansing for
sin(z) = z—z%/3!+2°/5!+- - - the previous relation can be rewritten as (1/z+co +c1z+..)(z—2z%/3!+2° /5! +...) = 1.
By comparison of the coefficients it follows that coz = 0 and (=z3/3)(1/z2) + 122 = 0, yielding co = 0and c; = 1/6.



2 _ 2 2
Solution 1.16(i) f(z) = fkmikn)” _ y=0 0 (2 — km)t = [(z —km)? + 2kn(z — km) + k2n2] 1 [1 + ek ] .

SinZz (z—km)? 3!

_ £2zi42
= zip

Solution 1.16(i) Res f(z)|,_,, = % (&%)

=0.

z==+i

z==4i
Solution 1.17(i) To calculate the residues of tanz apply the L'Hospital’s rule.
Solution 2.1. T(cx) = cT(x) = cAx = A(cx).

Solution 2.4. and 2.5. The bars of # are shifted 4 lines upward.

Solution 2.5.(ii) The factors (-2,4,—1) are never applied to the transformations of the matrix vectors.
The correct solution is T(-2,4, -1) = (0,6, —8).

Solution 2.5.(iii) T(—4,5,1) = (2 X (—4) — 5,2 X (=5) — 3 X (—4), -4 — 1) = (-13,2, -5).

0 -4/3 1/3
Solution 2.5.(vi) The inverse matrix is 0 1 0
-1/2 -2 1/2

Solution 2.6.(iii) The rotation matrix is clockwise (it is counterclockwise in the original question), though it
doesn'’t affect the answer. T(2,2) = (:/13__16)

Solution 2.8 U™ = %( 11
-1 2

Solution 3.2(i) The units of C should be minutes™'.
Solution 3.2(ii) y = Ke* — 3, where K = ¢“. Since y(0) = -2, then K = 1 and therefore y = ¢* — 3.

Solution 3.3(i) In general, at any given point the lines of force are tangent to the gradient F o« —-V® = 9, ®i+d,Pj.
In the last sentence “equipotentail” should read “equipotential.”

Solution 3.3(ii) In the last sentence “equipotential lines” should read “streamlines.”

Solution 3.4 The first sentence should read “In general, for g—x = f(x,y): (@) if f(x,y) is continuous = existence
of solution; (b) if d, f(x, y) is continuous = uniqueness of solution.”

Solution 3.5(i) For u(0) = 1 and f(t, u) = u? Picard’s iteration leads to u© = u(0) = 1; u® = fot ' +u® =t+1;
u® = u(0)+f0t(t’+l)2dt’ = 1B+ +t+15u0 = u(o)+f0t(%t’3+t’2+t’+1)2dt' =S+ E+ 2P+ S P P+t + 1
csu® =4 1+ 71 4o+t + 1. You can now guess that the solution to the differential equation is of the
formu = Y2, t" = (1 - t)7!, and you know this series converges for |t| < 1. If you determine the region

where the solution exists using the hypotheses of Picard’s theorem, you obtain |f{| < 4 and |u — 1| < b, and
so the region of convergence is bounded by minf{a,b/(b + 1)*}. Search for the position of the maximum,

[b/(b+ 1)) = m - ﬁ =0 — b =1, and hence for a > 1/4, min {a,b/(b + 1)?} = 1/4. Then if you do not

know the domain of convergence of the series, you can only ensure that the solution exists for |f| < .
Solution 3.5(ii) For u(1) = 0 and f(t, u) = t — u? Picard’s iteraction leads to u© = 0; u® = u© + flt var =12 -1;
u?® =y 4 flt[t’ - (%t’2 - %)2]dt’ = %(t2 -1+ 21—0(1 -9+ %(t‘o’ -1+ }1(1 — t). The region of validity for the
approximation in the rectangle |t — 1| < a and |u| < b is min {a, b/(a - b)?)}.

Solution 3.8 The second (iv) should be (v) and (v) should be (vi). The answer of (vi) should read f(r) + f'(2m) +
f// (b)

Solution 3.10 M(e) — —(T>, f)

Solution 3.12 There is an extra open parenthesis in the third line. The boundary conditions imply that
—uu'[5 = —u(1)u’ (1) + u(0)u’(0) = [u(1)* + [u(0)* > 0. (iii) Let 0 < A1 < Ay < --- be the eigenvalues. Graphically,
you can establish that 1 < VA, < /2, ©/2 < VA3 <3m/2, -+, (2n=3)1/2 < YA, < 2n—1)r/2, forn =3,4,---;
see Fig. 1. Furthermore, VA, ~ (1 — 1)r for a large n.



e Solution 3.13 “Likewise, a solution to —u"" = 0, satisfying u(1) = 0, is ...”

e Solution 3.14 The general solution of the homogeneous equation is u(x) = ¢; + cpx7 L.

e Solution 3.16() Let y = (x> = 1)) = Z—Z =1(x? - )1’12x and so (¥ — 1)5—1’ = I(x* - 1)'2x = 2xly. Differentiate the

previous equation [ + 1 times to obtain % [(x* - ) ] ‘i;l [2xIy]. Using the Leibnintz formula (3.258) you can
l+2y l+1 l(l + 1) dl
rewrite the left-hand-side of the previous equation as (2 - 1)d T (I+1)2x e + 5 d = whereas the
s=0 s=1 s=2
1+1 y dl y g2
right-hand-side becomes 2x/ T +2I(1 + 1)E' Substituting you obtain (x* — 1) dx,g dxm -1l + 1) =0,
—— e
5=0 s=1
> dl+2 dl+1y dl _ ) 1 dly
which after manipulation becomes (1 — x) dx,ﬂ - 2xor + I+ 1) 3 = 0. It follows that (1 — x2)<4; pra [zll! e
20 L[ L] 4 11+ 1)[ 2 %4]. Therefore, Rodrigues formula (3.251) satisfies Legendre equation (3.241).

e Solution 3.18 To integrate ayp = % f LL Z,‘:i_ O(x — a + 2kL)dx perform the change of variables u = x —a +
2kL = du = dx; substituting ap = L Zk_foo o(uydu = 1 Zk_fmf o(u)du = L, where u; = —L —a + 2kL

and up = L —a +2kL. Fora, = 7 f Zk__oo — a + 2kh) cos[mm(x — a)/L]dx perform the same change of
variables, a,, = f " Y oo O(u) cos[mm(u — 2kL)/L]du =1 T Voo f O(u) cos[mm(u — 2kL)/L]du = 7. Note that
=1 f_LL Yoo O(x —a + 2kh) sin[mm(x —a)/L]dx = 0, therefore ;7 6(x—a+2kL) = £{3 + Yo, cos["m—x”)]}.

e Solution 3.19 In the second line, e " should read e~*?".

e Solution 4.4 In the second to last line where by is defined, there is a 1/L before the integral that should be a 2/L
instead; i.e., by = % fOL f(x) dx.

e Solution 4.11 Hence X" (x) = —=AX(x), Y”(y) = —uY(y), T(t) = —c*(A + W)T(®).

e Solution 4.12 The last part of this problem, which is in the missing page 202, should read “Therefore, ¢(x) =
%[f(x) + % ﬁq(C)dC] and ¢ (x) = %[f(x) - % ﬁq(C)dC], so u(x,t) = p(x +ct) + P(x —ct) = %[f(x +ct)+ flx —ct)] +
L[t g(C) dC, which is the d’ Alembert solution.”

2c x—ct

e Solution 4.13 The B, are the Fourier coefficients of the initial displacement: f(x) = }.;7; B, sin(*f*). Using the
trigonometric identity with @ = % and g = #7< you have u(x,t) = $ Y52 Bu[sin(Z% + 2X2) 4 gin(1x — 124 )] =
;{Zn 1 Busin[ZE (x + ct)] + X021 B sm[ IR (x — ct)] 5 L f(x+ct)+ f(x — ct)], which is the d’ Alembert solution.

e Solution 4.14 Setting u(r, 0) = R(r)®(0) and applying the method of separation of variables you find R”© +
R'©/r + R®"[r* = —k*RO, and so r*R”’ /R + rR’ /R + r*k* = —©" /©. The r-dependent terms are now isolated on
the left-hand side, while the O-dependent term is isolated on the right hand side, and so by the usual separation
of variables argument both sides must be equal to a constant, which you denote say by A%. This leads to
r?R” +rR" + (=A% +7%k*)R = 0 and @ + 12O = 0. The general solution of the latter, ®(0) = c1 cos(A6) + ¢, sin(A0),
does not satisfy ©(6) = ©(0 + 27) unless A = n € IN. Next, you have to look for solutions of #2R” + rR’ +
(-n2 + r2k*)R = 0 that remain bounded. If you make the change of variables x = rk = R’ = R’/k it follows that

x?R” + xR’ + (x? — n?)R = 0, which is the differential equation of the Bessel function of order n. Actually, the
equation has a pair of linearly independent solutions, but only the Bessel function J,(x) is regular as x — 0.
(The other solution is the Bessel function of order n of the second kind. It is unbounded as x — 0.) Thus the
solution is R(r) = R(x(r)) = Ju(x(r)) = J.(kr). At this point you have an infinite set of solutions of the Helmholtz
equation that are periodic in 6 and regular at the origin, viz cos(n6)]J,(kx), withn =0,1,2,--- and sin(n0)],(kx),
with n = 1,2,3,---. You can now set u(r,0) = Y.,y A, cos(n0) J,(kr) + ¥.;—; By sin(n0)],(kr) and impose the
boundary condition f(6) = u(1,0) = Y.;-o A cos(n6)],(k) + Y.p-q By sin(n6)],(k). However, f(0) viewed as a
function on the circle also has a unique Fourier expansion f(0) = 3 + Y,;°; 4, cos(n6) + Y..°; by sin(n6), for
which the coefficients a, and b, are determined by a, = % f_ 7; f(x) cos(nx)dx and b, = % f_ 7; f(x) sin(nm)dx.
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1 f_: f(x) cos(nx)dx, withn =0,1,2,3,---,and

T . . 1
Compatibility of the two expressions for f(6) requires A, = ;-

B, = 5+ [T f(x)sin(nx), withn =1,2,3,-.

e Solution 4.15 The first part in the missing page 202 reads as follows: (i) You must solve the equation y; =

%&X[A(x)yx], where b(x) = cx, A(x) = hex, with ¢ constant, see Fig. 2. Without loss of generality you can use
separable variables, y(x, ) = X(x)T(t). The differential equation then becomes X(x)T" (t) = %T(t)[A’(x)X’(x) +
A(x)X”(x)] and so T(T)/T(t) = %[A’(x)X’(x) + A(x)X"”(x)]/X(x) = —A. The solution of T”(t) + AT(t) = 0 is
T(t) = Asin( VAt)+ B cos( VAL), where A and B are constants. With the substitution k2 = A/(gh), the X-equation,
%[A’(x)x’(x) + A(X)X"”(x)] + AX(x) = 0, becomes X" (x) + X’(x)/x + k*’X(x) = 0. The solution then takes the
form X(x) = CJo(kx) + DYy(kx), where Jo(kx) is the Bessel function of the first kind, Y is the Bessel function of
the second kind, and C, D are constants. Since y(x, t) has to remain bounded as x — 0 you should set O = 0,
because lim,_,p Yo(kx) — —oo. Then y(x, f)[Asin( VAL) + Beos(VAH]CJo(kx). In order to satisfy the boundary

condition y(L, t) = a cos(wt) = [A sin( VAL + B cos( VAHICo(kL),

e Solution 4.19 The 4th sentence should read “Writing ¢ = R(r)®(0) you can extract the following decouple
differential equations: ®” = —n?@ and R” + & + (k2 - ’;—ZZ)R =0."



