Errata

Chapter 1

- **Proposition 1.2.** $z_1 = x_1 + i y_1$.
- **Corollary 1.1.** The relation using De Moivre's theorem should read $s^n(\cos n\phi + i\sin n\phi) = r(\cos \theta + i\sin \theta)$.
- **Definition 1.6.** It should read "...(1.6) leads to..." instead of "...(1.5) leads to...", "Conversely, if the conditions (1.9) hold and the partial derivatives of $u(x, y)$ and $v(x, y)$ are continuous, the derivative $f'(z) = u_x + iv_x$ exists", and Eq. (1.11) should read $\delta f = (u_x + iv_x)\delta x + (u_y + iv_y)\delta y$.
- **Definition 1.15.** $\int_{z_1}^{z_2} f(z) dz = \int_{(x_1,y_1)}^{(x_2,y_2)} [u(x,y) + iv(x,y)][dx + i dy]$ $= \int_{(x_1,y_1)}^{(x_2,y_2)} [u(x,y)dx - v(x,y)dy] + i \int_{(x_1,y_1)}^{(x_2,y_2)} [v(x,y)dx + u(x,y)dy].$
- Theorem 1.6 Equation (1.44) should read $\oint_C f(z) dz = \int_A (v_x + u_y) dx dy + i \int_A (u_x v_y) dx dy$.
- **Example 1.7** Equation (1.62) should read \oint_C *z* ³+3 *z*(*z*−*i*) ² *dz*.
- **Example 1.7.** There is a printing error in Eq. (1.65). In the denominator, $z(z i)^2$, the minus sign is out of place.
- **Example 1.8.** An equal sign is missing in the definition of the exponential, i.e., $e^z = \sum_{n=0}^{\infty} z^n/n!$. In Eq. (1.81) the infinity signs got printed right on top of the summation signs instead of above them.
- **Theorem 1.14.** The sentence after Eq. (1.95) should read "where we have used Cauchy's formula to obtain the last line." Equation (1.103) should read $\frac{1}{2\pi i}\oint_{C_2}$ $\frac{f(\zeta)}{z-\zeta} d\zeta = \sum_{j=1}^{\infty}$ *bj* $\frac{y_j}{z^j}$.
- **Theorem 1.16.** The last equation of the proof should read $\lim_{z\to z_0}(z-z_0)f(z) = \lim_{z\to z_0}[c_{-1} + c_0(z-z_0) + c_1(z-z_0)]$ $(z_0)^2 + \cdots$] = c_{-1} = Res $f(z)|_{z=z_0}$
- **Example 1.15.** "... if we *had* reverse the sense..."
- **Exercise 1.4(i)** $f(z) = e^{iz^2}$.
- **Exercise 1.7. (iv)** $\int_C (z^3 + 3) dz$.

Chapter 2

- **Definition 2.10.** The definiteness property should read $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.
- **Proposition 2.1.** Equation 2.17 should read $(-2|\langle x, y \rangle|)^2 4||x||^2||y||^2 \le 0$.
- **Exercise 2.5.(v)** Write down the matrix representation of *T* in the standard basis and use it to find *T*(2,−1,−1).
- **Exercise 2.7** *T* is the projection onto the vector (1,−5).

Chapter 3

- **Theorem 3.1** The first line of Eq. (3.46) should read $|u(t) u_0| =$ $\int_{t_0}^t f(t', u(t')) dt'$ \leq $\int_{t_0}^t |f(t', u(t'))|dt'$. The sentence above Eq. (3.49) should read ". . . of successive approximations is now defined with \ldots ".
- **Proposition 3.1** The sentence below Eq. (3.77) should read "In addition, if *f* satisfies the hypotheses of Picard's theorem, it is guaranteed the existence and uniqueness of a solution...".
- **Definition 3.21** The "dx" is missing in Eq. (3.121). It should read $\int_{-\infty}^{+\infty} \delta(x) f(x) dx = f(0)$. Equation (3.130) should read $I_f \equiv \lim_{\epsilon \to 0^+} \epsilon^{-1} \int_{-\infty}^{+\infty} f(x)g(x/\epsilon)dx = \lim_{\epsilon \to 0^+} \epsilon^{-1} \int_{-t}^{+t} f(x)g(x/\epsilon)dx$.
- **Corollary 3.3** Equation (3.145) should read $\int_{-\infty}^{+\infty} \Theta'(x) f(x) dx = -\int_{-\infty}^{+\infty} \Theta(x) f'(x) dx = -\int_{0}^{+\infty} f'(x) dx = f(0)$.
- Definition 3.25 Since $K(t, t')$ is a solution of the homogeneous equation, $G(t, t')$ satisfies...
- Lema 3.1. Equation (3.187) should read $\int_a^b u_i(x) u_j(x) \rho(x) dx = 0$ if $\lambda_i \neq \lambda_j$
- Theorem 3.6. The first sentence in the proof should read: "We first show that (ii) holds. It is evident that if $G(x, x')$ exists then (3.196) is a solution of (3.194), because $L[u(x)] = \int_a^b L_x[G(x, x')] f(x') dx' = \int_a^b \delta(x - x') f(x') dx' = f(x)$; note that *L^x* acts on the first variable, which is unaffected by the integral." The sentence after Eq. (3.198) should read: "Integration of (3.194) over $[x'-\epsilon, x'+\epsilon]$ (with $\epsilon > 0$), $-\int_{x'-\epsilon}^{x'+\epsilon}$ $\int_{x'-\epsilon}^{x'+\epsilon} \frac{d}{dx} [pG(x,x')] dx + \int_{x'-\epsilon}^{x'+\epsilon}$ $\int_{x'-\epsilon}^{x'+\epsilon} q(x) G(x,x')dx =$ $\int x^{\prime+\epsilon}$ $\int_{x'-\epsilon}^{x'+\epsilon} \delta(x-x') dx$, leads to $-[p(x) G'(x,x')]_{x=x'-\epsilon}^{x'+\epsilon} + \int_{x'-\epsilon}^{x'+\epsilon}$ $\int_{x'-\epsilon}^{x'+\epsilon} q(x) G(x,x') dx = 1.$." Equation (3.200) should read: $\lim_{\epsilon \to 0} \int_{x' - \epsilon}^{x' + \epsilon}$ $\int_{x'-\epsilon}^{x'+\epsilon} q(x) G(x,x')dx \to 0.$
- **Example 3.24** After Eq. (3.290) non-integral ν should read non-integer ν and after Eq. (3.291) integral *n* should read integer *n*.
- **Definition 3.40** Equation (3.371) should read $a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{k\pi x}{L}\right) dx$, $b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{k\pi x}{L}\right) dx$.
- **Exercise 3.12** "Consider the boundary value problem $u'' + \lambda u = 0$, with $u(0) u'(0) = 0$, $u(1) + u'(1) = 0$."
- **Exercise 3.14** "Let $L[u(x)] = -(x^2u')'$, $x \in [1,2]$ be a Sturm-Liouville operator..."
- Exercise 3.16 Show that: *(i)* Rodrigues formula is a solution of Legendre equation; *(ii)* $P_l^m(x) = (1 x^2)^{m/2} \frac{d^m}{dx^m} P_l(x)$; *(iii)* $\int_0^a \int_n^2 (k_m^n r/a) r dr = \frac{1}{2} a^2 J_{n+1}(k_m^n)$.

Chapter 4

• **Section 4.1** *Case II:* $b^2 - ac < 0$. The roots are conjugate complex: $\lambda_1 = \rho + i\sigma = \lambda_2^*$ ζ ². Thus, $\xi = x + \lambda_1 y = x + \rho y + i\sigma y$ and $\eta = x + \lambda_2 y = x + \rho y - i\sigma y = \xi^*$. The standard form is

$$
u_{\xi\xi^*}=0\,,\tag{1}
$$

with general integral $u = \phi(\xi) + \psi(\xi^*)$.

- **Section 4.2.4** Equation (4.79) should read *G*(*ξ*, η) = $\frac{1}{2c}\Theta$ (*ξ*) Θ (−η) and Eq. (4.80) becomes *G*_{*ξ*η} = $-\frac{1}{2c}\delta$ (*ξ*) δ (η).
- **Section 4.3.2.** Equation (4.108) should read $K(x, t) = \frac{e^{-x^2/(4at)}}{2\pi}$ $\int_{-\infty}^{2/(4at)} \int_{-\infty}^{+\infty} e^{-(ix/\sqrt{4at}-k\sqrt{at})^2} dk = \frac{e^{-x^2/(4at)}}{2\pi\sqrt{at}}$ $\int_{2\pi}^{\frac{e^{-x^2/(4\alpha t)}}{2\pi\sqrt{\alpha t}}} \int_{-\infty}^{+\infty} e^{-z^2} dz$. The normalization condition before Eq. (4.111) should read $\int_{-\infty}^{+\infty} \delta(x-x')dx = 1$. In the line following Eq. (4.111) the second sentence should read "For a fixed $x \ne 0...$ ".
- **Section 4.3.3.** The title should read "Diffusion in a Finite Metal Bar." Equation (4.117) should read $T_n(t)$ = $b_ne^{-(n\pi/L)^2\alpha t}$ and Eq. (4.118) should read $u(x,t)=\sum_{n=1}^{\infty}b_ne^{-(n\pi/L)^2\alpha t}\sin(n\pi x/L)$. The expression between Eqs.(4.140) and (4.141) should read: $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[i\omega + \alpha \left(\frac{n\pi}{L} \right)^2 \right] \hat{g}_n(x',\omega) e^{i\omega(t-t')} d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega e^{i\omega(t-t')} \frac{2}{L} \sin \left(\frac{n\pi x'}{L} \right)$ <u>πx'</u>).
- **Section 4.4.2.** The sentence before Eq. (4.165) should read: Assuming a solution of the form $u(r, \Omega) = R(r)Y(\Omega)$ we obtain.
- **Section 4.5.1.** In Eq. $(4.208) \mu = 0.1, 2, 3$.
- **Section 4.5.2.** Equation (4.220) should read $(\Box^2 + m^2)G_F(x x') = \delta^{(4)}(x x')$. Equation (4.226) should read $S_F(p) = \frac{1}{p^2 - m^2 + (i\epsilon)^2}$.
- **Exercise 4.3.(v)** Determine the behavior of the solution for *t* → ∞.

• Note added (Example 4.12.) The gravity fields of the Earth, the Moon, and Mars have been described by a Laplace series with real eigenfunctions $U(r, \theta, \phi) = \frac{GM}{R} \left\{ \frac{R}{r} - \sum_{n=2}^{\infty} \sum_{m=0}^{\infty} \left(\frac{R}{r} \right)^{n+1} [C_{nm} Y^l_{mn}(\theta, \phi) + S_{nm} \right\}$ where M is the mass of the body and R is the equatorial radius. The real functions Y_{mn}^l and Y_{mn}^0 are defined $f(\theta, \phi) = D^m(\cos \theta)$ coeful and V^0 (θ, ϕ) $\frac{1}{2}$ by $Y_{mn}^l(\theta, \phi) = P_n^m(\cos \theta) \cos(m\phi)$ and $Y_{mn}^0(\theta, \phi) = P_n^m(\cos \theta) \sin(m\phi)$. Satellites measurements have led to the numerical values given in the table. The nodal lines separating excess and deficit regions on the sphere for various (*l*, *m*) pairs are shown in the figure. The top row shows the (0, 0) monopole, and the partition of the bottom row shows the *l* = 3 partitions, (3, 0), (3, 1), (3, 2), and (3, 3). sphere into two dipoles, $(1, 0)$ and $(1, 1)$. The middle row shows the quadrupoles $(2, 0)$, $(2, 1)$, and $(2, 2)$. The $\left\{\frac{R}{r} - \sum_{n=2}^{\infty} \sum_{m=0}^{\infty} \left(\frac{R}{r}\right)^{n+1} \left[C_{nm} Y^{l}_{mn}(\theta, \phi) + S_{nm} Y^{0}_{mn}(\theta, \phi)\right]\right\},$

\mathcal{L} x_o , and zone is the original model in \mathcal{L} \mathbf{t} **Appendix C**

ence "By partial integration we obtain" the lower limit of integration after the • Following the sentence "By partial integration we obtain" the lower limit of integration after the first equality about the $x + 1/2$ should be $-x + 1/2$.

Λ persons and comp Answers and comments on the excercises

- on 1.3 $z^n = \alpha e^{i\beta}$ implies that $z = \alpha^{1/n} e^{i(\frac{p}{n} + \frac{2k\pi}{n})}$ • **Solution 1.3** $z^n = \alpha e^{i\beta}$ implies that $z = \alpha^{1/n} e^{i(\frac{\beta}{n} + \frac{2k\pi}{n})}$.
- **Solution 1.9** Letting ... \mathcal{L} and \mathcal{L} a monopole term but in \mathcal{L}
- Solution 1.10 The dz is missing in the second relation of (ii) . α (*m*) α

 \overline{a} linear combination of the Y1m's.

- $-\frac{1}{2}$ $-\frac{2}{3}$ $-\frac{1}{2}$ **on 1.13(i)** $\lim_{z \to 1} \frac{\pi z (1-z^2)}{\sin(\pi z)} = \lim_{z \to 1} \frac{\pi z (1-z^2)}{\sin(\pi z + \pi - \pi)} = \lim_{z \to 1} \frac{\pi z (1-z)(1+z)}{\sin(\pi (z-1)+\pi)}$. Using the trigonometric $\frac{\partial n(x)}{\partial x}$ is the constraint $\frac{\partial n(x)}{\partial x}$ $\sigma(\beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$, the equation becomes $\lim_{z \to 1} \frac{\pi z(1-z)(1+z)}{-\sin \pi (z-1)} = 2$. Duplicating this lim_{z→−1} $\frac{\pi z (1-z^2)}{\sin(\pi z)} = -2$. • **Solution 1.13(i)** $\lim_{z\to 1} \frac{\pi z (1-z^2)}{\sin(\pi z)} = \lim_{z\to 1} \frac{\pi z (1-z^2)}{\sin(\pi z + \pi - \pi)} = \lim_{z\to 1} \frac{\pi z (1-z)(1+z)}{\sin[\pi(z-1)+\pi]}$. Using the trigonometric $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$, the equation becomes $\lim_{z \to 1} \frac{\pi z (1-z) (1+z)}{-\sin \pi (z-1)} = 2$. Duplicating this procedure $\frac{\pi z(1-z^2)}{\sin(\pi z)} = \lim_{z \to 1} \frac{\pi z(1-z^2)}{\sin(\pi z + \pi - \pi)} = \lim_{z \to 1} \frac{\pi z(1-z)(1+z)}{\sin[\pi(z-1)+\pi]}$ $\frac{n2(1-2)(1+2)}{\sin[\pi(z-1)+\pi]}$. Using the trigonometric identity, $\frac{\pi z(1-z^2)}{\sin(\pi z)} = -2.$
- on 1.13(iii) We know that around $z_0 = 0$. random direction. Using Auger's exposure map, we then • Solution 1.13(iii) We know that around $z_0 = 0$, $\frac{1}{\sin(\pi z)} = \csc(\pi z) = \frac{1}{\pi z} \left[1 + \frac{\pi z^2}{3!} + O(\pi z^4)\right]$. This is so because csc (*z*) has a simple pole at *z* = 0. The residue is: $\lim_{z\to 0} \frac{z}{\sin z} = 1$. This implies that the first coeficient in the Laurent expansion of csc (*z*) is $c_{-1} = 1$. The Laurent series is then given by csc(*z*) = $1/z + c_0 + c_1z + c_2z^2 + \cdots$. To determine the other coefficients you can use the relation csc (z) sin(z) = 1. Using the Taylor expansing for $\sin(z) = z - z^3/3! + z^5/5! + \cdots$ the previous relation can be rewritten as $(1/z + c_0 + c_1z + \cdots)(z - z^2/3! + z^5/5! + \cdots) = 1$. By comparison of the coefficients it follows that $c_0z = 0$ and $(-z^3/3!)(1/z) + c_1z^2 = 0$, yielding $c_0 = 0$ and $c_1 = 1/6$.
- **Solution 1.16(i)** $f(z) = \frac{(z k\pi + k\pi)^2}{\sin^2 z}$ $\frac{k\pi + k\pi^2}{\sin^2 z} = \sum_{-\infty}^{-\infty} c_n(z - k\pi)^n = \left[(z - k\pi)^2 + 2k\pi(z - k\pi) + k^2\pi^2 \right] \frac{1}{(z - k\pi)^2} \left[1 + \frac{(z - k\pi)^2}{3!} + \cdots \right]^2$
- **Solution 1.16(ii)** Res $f(z)\Big|_{z=\pm i} = \frac{d}{dz} \left(\frac{z^2-1}{(z\pm i)^2}\right)\Big|_{z=\pm i} = \frac{\pm 2z\pm i}{(z\pm i)^3}\Big|_{z=\pm i} = 0.$
- **Solution 1.17(i)** To calculate the residues of tan *z* apply the L'Hospital's rule.
- **Solution 2.1.** $T(cx) = cT(x) = c\lambda x = \lambda(cx)$.
- **Solution 2.4. and 2.5.** The bars of \neq are shifted 4 lines upward.
- **Solution 2.5.(ii)** The factors (−2, 4,−1) are never applied to the transformations of the matrix vectors. The correct solution is $T(-2, 4, -1) = (0, 6, -8)$.
- **Solution 2.5.(iii)** $T(-4, 5, 1) = (2 \times (-4) 5, 2 \times (-5) 3 \times (-4), -4 1) = (-13, 2, -5).$
- **Solution 2.5.(vi)** The inverse matrix is $\begin{pmatrix} 0 & -4/3 & 1/3 \end{pmatrix}$ 0 1 0 −1/2 −2 1/2 λ $\begin{array}{c} \hline \end{array}$
- **Solution 2.6.(iii)** The rotation matrix is clockwise (it is counterclockwise in the original question), though it doesn't affect the answer. $T(2, 2) = \begin{pmatrix} -1 - \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$ –1– √3
√3–1 .

.

- **Solution 2.8** $U^{-1} = \frac{1}{3}$ $\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$
- **Solution 3.2(i)** The units of *C* should be minutes[−]¹ .
- **Solution 3.2(ii)** $y = Ke^x 3$, where $K = e^C$. Since $y(0) = -2$, then $K = 1$ and therefore $y = e^x 3$.
- **Solution 3.3(i)** In general, at any given point the lines of force are tangent to the gradient $F \propto -\nabla \Phi = \partial_x \Phi \hat{i} + \partial_y \Phi \hat{j}$. In the last sentence "equipotentail" should read "equipotential."
- **Solution 3.3(ii)** In the last sentence "equipotential lines" should read "streamlines."
- **Solution 3.4** The first sentence should read "In general, for $\frac{dy}{dx} = f(x, y)$: *(a)* if $f(x, y)$ is continuous \Rightarrow existence of solution; *(b)* if $\partial_y f(x, y)$ is continuous ⇒ uniqueness of solution."
- **Solution 3.5(i)** For $u(0) = 1$ and $f(t, u) = u^2$ Picard's iteration leads to $u^{(0)} = u(0) = 1$; $u^{(1)} = \int_0^t dt' + u^{(0)} = t + 1$; $u^{(2)} = u^{(0)} + \int_0^t (t' + 1)^2 dt' = \frac{1}{3}t^3 + t^2 + t + 1$; $u^{(3)} = u^{(0)} + \int_0^t (\frac{1}{3}t'^3 + t'^2 + t' + 1)^2 dt' = \frac{1}{63}t^7 + \frac{2}{15}t^4 + \frac{5}{15}t^5 + \frac{8}{12}t^4 + t^3 + t^2 + t + 1$; \cdots ; $u^{(n)} = \cdots + t^n + t^{n-1} + \cdots + t + 1$. You can now guess that the solution to the differential equation is of the form $u = \sum_{n=1}^{\infty} t^n = (1-t)^{-1}$, and you know this series converges for $|t| < 1$. If you determine the region where the solution exists using the hypotheses of Picard's theorem, you obtain |*t*| < *a* and |*u* − 1| < *b*, and so the region of convergence is bounded by $min\{a, b/(b + 1)^2\}$. Search for the position of the maximum, $[b/(b+1)^2]' = \frac{1}{(b+1)^2} - \frac{2b}{(b+1)^2} = 0 \rightarrow b = 1$, and hence for $a > 1/4$, min $\{a, b/(b+1)^2\} = 1/4$. Then if you do not know the domain of convergence of the series, you can only ensure that the solution exists for $|t| < \frac{1}{4}$.
- **Solution 3.5(ii)** For $u(1) = 0$ and $f(t, u) = t u^2$ Picard's iteraction leads to $u^{(0)} = 0$; $u^{(1)} = u^{(0)} + \int_1^t t' dt' = \frac{1}{2}t^2 \frac{1}{2}$; $u^{(2)} = u^{(0)} + \int_1^t [t' - (\frac{1}{2}t'^2 - \frac{1}{2})^2] dt' = \frac{1}{2}(t^2 - 1) + \frac{1}{20}(1 - t^5) + \frac{1}{6}(t^3 - 1) + \frac{1}{4}(1 - t)$. The region of validity for the approximation in the rectangle $|t - 1| < a$ and $|u| < b$ is min $\{a, b/(a - b)^2\}$.
- **Solution 3.8** The second *(iv)* should be *(v)* and *(v)* should be *(vi)*. The answer of *(vi)* should read $f(\pi) + f'(2\pi) + f''(2\pi)$ *f*"(*b*).
- **Solution 3.10** $M(\epsilon) \rightarrow -\langle T_2, f \rangle$
- **Solution 3.12** There is an extra open parenthesis in the third line. The boundary conditions imply that $-uu'|_0^1 = -u(1)u'(1) + u(0)u'(0) = |u(1)|^2 + |u(0)|^2 \ge 0.$ *(iii)* Let $0 < \lambda_1 < \lambda_2 < \cdots$ be the eigenvalues. Graphically, you can establish that $1<\sqrt{\lambda_1}<\pi/2$, $\pi/2<\sqrt{\lambda_2}<3\pi/2$, \cdots , $(2n-3)\pi/2<\sqrt{\lambda_n}<(2n-1)\pi/2$, for $n=3,4,\cdots$; you can establish that 1 < √*Λ*₁ < *π*/2*, π*/2 < √*Λ*₂ < 3
see Fig. 1. Furthermore, √*λ*_{*n*} ≈ (*n* − 1)*π* for a large *n*.
- **Solution 3.13** "Likewise, a solution to $-u'' = 0$, satisfying u'_2 $y_2'(1) = 0$, is ..."
- **Solution 3.14** The general solution of the homogeneous equation is $u(x) = c_1 + c_2x^{-1}$.
- **Solution 3.16(i)** Let $y = (x^2 1)^l \Rightarrow \frac{dy}{dx} = l(x^2 1)^{l-1} 2x$, and so $(x^2 1) \frac{dy}{dx} = l(x^2 1)^l 2x = 2xly$. Differentiate the previous equation $l + 1$ times to obtain $\frac{d^{l+1}}{dx^{l+1}}$ $\frac{d^{l+1}}{dx^{l+1}}[(x^2-1)\frac{dy}{dx}] = \frac{d^{l+1}}{dx^{l+1}}$ $\frac{d^{n+1}}{dx^{l+1}}$ [2*xly*]. Using the Leibnintz formula (3.258) you can rewrite the left-hand-side of the previous equation as $(x^2 - 1) \frac{d^{l+2}y}{1+y^2}$ dx^{l+2} $+(l + 1)2x\frac{d^{l+1}y}{l+1}$ *dx^l*+¹ $+\frac{l(l+1)}{2}$ $\frac{1}{2} + \frac{1}{2} 2 \frac{d^l y}{dx^l}$ *dx^l* , whereas the

 $s=0$ $s=1$ $s=2$ right-hand-side becomes $2x l \frac{d^{l+1} y}{d+1+1}$ $\frac{d^{l+1}y}{dx^{l+1}} + 2l(l+1)\frac{d^l y}{dx^l}$ $s=0$ $s=1$ $\frac{d^2y}{dx^2}$. Substituting you obtain $(x^2 - 1) \frac{d^{l+2}y}{dx^{l+2}} + 2x \frac{d^{l+1}y}{dx^{l+1}} - l(l+1) \frac{d^l y}{dy^l} = 0$,

which after manipulation becomes $(1-x^2)\frac{d^{l+2}y}{dx^{l+2}} - 2x\frac{d^{l+1}y}{dx^{l+1}} + l(l+1)\frac{d^l y}{dy^l} = 0$. It follows that $(1-x^2)\frac{d^2}{dx^2}[\frac{1}{2^l}$ *d ly* $\frac{d^{\iota} y}{dx^{\iota}}$] – $2x \frac{d}{dx} \left[\frac{1}{2^{l}l!}\right]$ *d ly* $\frac{d^2y}{dx^l}$ + $l(l+1)[\frac{1}{2^l l!}]$ *d ly dx^l*]. Therefore, Rodrigues formula (3.251) satisfies Legendre equation (3.241).

- **Solution 3.18** To integrate $a_0 = \frac{1}{L} \int_{-L}^{L} \sum_{k=-\infty}^{\infty} \delta(x a + 2kL) dx$ perform the change of variables $u = x a +$ $2kL \Rightarrow du = dx$; substituting $a_0 = \frac{1}{L} \int_{u_1}^{u_2} \sum_{k=-\infty}^{\infty} \delta(u) du = \frac{1}{L} \sum_{k=-\infty}^{\infty} \int_{u_1}^{u_2} \delta(u) du = \frac{1}{L}$, where $u_1 = -L - a + 2kL$ and $u_2 = L - a + 2kL$. For $a_m = \frac{1}{L} \int_{-L}^{L} \sum_{k=-\infty}^{\infty} \delta(x - a + 2kh) \cos[m\pi(x - a)/L] dx$ perform the same change of variables, $a_m = \frac{1}{L} \int_{u_1}^{u_2} \sum_{k=-\infty}^{\infty} \delta(u) \cos[m\pi(u-2kL)/L] du = \frac{1}{L} \sum_{k=-\infty}^{\infty} \int_{u_1}^{u_2} \delta(u) \cos[m\pi(u-2kL)/L] du = \frac{1}{L}$. Note that $b_m = \frac{1}{L} \int_{-L}^{L} \sum_{k=-\infty}^{\infty} \delta(x - a + 2kh) \sin[m\pi(x - a)/L] dx = 0$, therefore $\sum_{k=-\infty}^{\infty} \delta(x - a + 2kL) = \frac{1}{L} \left\{ \frac{1}{2} + \sum_{m=1}^{\infty} \cos\left[\frac{m\pi(x-a)}{L}\right] \right\}$.
- **Solution 3.19** In the second line, $e^{-k\sigma^2}$ should read $e^{-(k\sigma)^2}$.
- **Solution 4.4** In the second to last line where b_0 is defined, there is a 1/L before the integral that should be a 2/L instead; i.e., $b_0 = \frac{2}{L} \int_0^L f(x) dx$.
- **Solution 4.11** Hence $X''(x) = -\lambda X(x)$, $Y''(y) = -\mu Y(y)$, $\ddot{T}(t) = -c^2(\lambda + \mu)T(t)$.
- **Solution 4.12** The last part of this problem, which is in the missing page 202, should read "Therefore, $\phi(x)$ = $\frac{1}{2}[f(x) + \frac{1}{c}\int_{\infty}^{x} q(\zeta)d\zeta]$ and $\psi(x) = \frac{1}{2}[\tilde{f}(x) - \frac{1}{c}\int_{\infty}^{x} q(\zeta)d\zeta]$, so $u(x,t) = \phi(x+ct) + \psi(x-ct) = \frac{1}{2}[f(x+ct) + f(x-ct)] +$ $\frac{1}{2c}\int_{x-ct}^{x+ct} q(\zeta) d\zeta$, which is the d'Alembert solution."
- **Solution 4.13** The B_n are the Fourier coefficients of the initial displacement: $f(x) = \sum_{n=1}^{\infty} B_n \sin(\frac{n\pi x}{L})$. Using the trigonometric identity with $\alpha = \frac{n\pi x}{L}$ and $\beta = \frac{n\pi ct}{L}$, you have $u(x, t) = \frac{1}{2} \sum_{n=1}^{\infty} B_n [\sin(\frac{n\pi x}{L} + \frac{n\pi ct}{L}) + \sin(\frac{n\pi x}{L} - \frac{n\pi ct}{L})]$ $\frac{1}{2}\left[\sum_{n=1}^{\infty}B_n\sin\left[\frac{n\pi}{L}(x+ct)\right]+\sum_{n=1}^{\infty}B_n\sin\left[\frac{n\pi}{L}(x-ct)\right]\right]=\frac{1}{2}\left[f(x+ct)+f(x-ct)\right],$ which is the d'Alembert solution.
- **Solution 4.14** Setting $u(r, \theta) = R(r) \Theta(\theta)$ and applying the method of separation of variables you find $R''\Theta$ + $R' \Theta/r + R \Theta''/r^2 = -k^2 R \Theta$, and so $r^2 R''/R + rR'/R + r^2 k^2 = -\Theta''/\Theta$. The *r*-dependent terms are now isolated on the left-hand side, while the θ -dependent term is isolated on the right hand side, and so by the usual separation of variables argument both sides must be equal to a constant, which you denote say by λ^2 . This leads to $r^2R'' + rR' + (-\lambda^2 + r^2k^2)R = 0$ and $\Theta'' + \lambda^2\Theta = 0$. The general solution of the latter, $\Theta(\theta) = c_1 \cos(\lambda \theta) + c_2 \sin(\lambda \theta)$, does not satisfy $\Theta(\theta) = \Theta(\theta + 2\pi)$ unless $\lambda = n \in \mathbb{N}$. Next, you have to look for solutions of $r^2R'' + rR' +$ $(-n^2 + r^2k^2)R = 0$ that remain bounded. If you make the change of variables $x = rk \Rightarrow R' = \overline{R'}/k$ it follows that $x^2 \overline{R}'' + x \overline{R}' + (x^2 - n^2) \overline{R} = 0$, which is the differential equation of the Bessel function of order *n*. Actually, the equation has a pair of linearly independent solutions, but only the Bessel function $J_n(x)$ is regular as $x \to 0$. (The other solution is the Bessel function of order *n* of the second kind. It is unbounded as $x \to 0$.) Thus the solution is $R(r) = \overline{R}(x(r)) = J_n(x(r)) = J_n(kr)$. At this point you have an infinite set of solutions of the Helmholtz equation that are periodic in θ and regular at the origin, *viz* cos(*n* θ)*J_n*(*kx*), with *n* = 0, 1, 2, · · · and sin(*n* θ)*J_n*(*kx*), with $n = 1, 2, 3, \cdots$. You can now set $u(r, \theta) = \sum_{n=0}^{\infty} A_n \cos(n\theta) J_n(kr) + \sum_{n=1}^{\infty} B_n \sin(n\theta) J_n(kr)$ and impose the boundary condition $f(\theta) = u(1, \theta) = \sum_{n=0}^{\infty} A_n \cos(n\theta) J_n(k) + \sum_{n=1}^{\infty} B_n \sin(n\theta) J_n(k)$. However, $f(\theta)$ viewed as a function on the circle also has a unique Fourier expansion $f(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\theta) + \sum_{n=1}^{\infty} b_n \sin(n\theta)$, for which the coefficients a_n and b_n are determined by $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$ and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(n\pi) dx$.

Compatibility of the two expressions for $f(\theta)$ requires $A_n = \frac{1}{f_n(k)} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$, with $n = 0, 1, 2, 3, \cdots$, and $B_n = \frac{1}{J_n(k)} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx)$, with $n = 1, 2, 3, \cdots$.

- **Solution 4.15** The first part in the missing page 202 reads as follows: *(i)* You must solve the equation y_{tt} = *g* $\frac{\delta}{b(x)}\partial_x[A(x)y_x]$, where $b(x) = cx$, $A(x) = hcx$, with *c* constant, see Fig. 2. Without loss of generality you can use separable variables, $y(x, t) = X(x)T(t)$. The differential equation then becomes $X(x)T''(t) = \frac{g}{b(t)}$ $\frac{g}{b(x)}T(t)[A'(x)X'(x) +$ $A(x)X''(x)$] and so $T''(T)/T(t) = \frac{g}{b(x)}$ $\frac{g}{b(x)}[A'(x)X'(x) + A(x)X''(x)]/X(x) = -\lambda$. The solution of $T''(t) + \lambda T(t) = 0$ is *T*(*t*) = *A* sin($\sqrt{\lambda}t$) + B cos($\sqrt{\lambda}t$), where *A* and *B* are constants. With the substitution $k^2 = \lambda/(gh)$, the *X*-equation, *g* $\frac{g}{b(x)}[A'(x)X'(x) + A(x)X''(x)] + \lambda X(x) = 0$, becomes $X''(x) + X'(x)/x + k^2X(x) = 0$. The solution then takes the form $X(x) = CJ_0(kx) + DY_0(kx)$, where $J_0(kx)$ is the Bessel function of the first kind, Y_0 is the Bessel function of the second kind, and C, \hat{D} are constants. Since $y(x, t)$ has to remain bounded as $x \to 0$ you should set $\hat{D} = 0$, the second kind, and *C*, *D* are constants. Since *y*(*x*, *t*) has to remain bounded as *x* → 0 you should set *D* = 0,
because lim_{*x*→0} *Y*₀(*kx*) → −∞. Then *y*(*x*, *t*)[*A* sin($\sqrt{\lambda}$ *t*) + *B* cos($\sqrt{\lambda}$ *t* because $\lim_{x\to 0} Y_0(kx) \to -\infty$. Then $y(x, t)[\mathcal{A} \sin(\sqrt{\lambda}t) + \mathcal{B} \cos(\sqrt{\lambda}t)]CJ_0(kL)$,
condition $y(L, t) = a \cos(\omega t) = [\mathcal{A} \sin(\sqrt{\lambda}t) + \mathcal{B} \cos(\sqrt{\lambda}t)]CJ_0(kL)$,
- **Solution 4.19** The 4th sentence should read "Writing $\varphi = R(r)\Theta(\theta)$ you can extract the following decouple differential equations: $\Theta'' = -n^2 \Theta$ and $R'' + \frac{R''}{r}$ $\frac{R'}{r}$ + ($k^2 - \frac{n^2}{r^2}$ $\frac{n}{r^2}$)*R* = 0."