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Lagrange’s Equations for Unconstrained Motion

Consider a particle moving unconstrained in 3 dimensions

The particle’s kinetic energy is
L oo 1 .

1
T=— = —mi? = —m(i? + g* + 2°
5T = gmi 2m(a: +y* + 2%)

and its potential energy
U=U(r)=U(z,y, 2)
The Lagrangian is defined as

L£=T-U=L=L(«, vy, z &, 1, 2

oL U oL oT

gr - or v T o P

Straightforward calculation shows that Newton's Law [ F = p

U

implies 3 Lagrangian equations in Cartesian coordinates
oc_dos 0T _ og _
or ' oy ' 0z
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Hamilton’s Principle
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Generalized Coordinates

The statement that S is stationary
for variations of the path around the correct path
must still be true in the new coordinates
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Generalized Coordinates (cont’d)

Crucial step in deriving Lagrange’s equations of motion

U

observation that yield a result equivalent to Newton’s second law
true only if the original frame in which we wrote down £ = T — U is inertial
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|Motion in a Central Potentiall

Consider a particle of mass m moving in 2D in the central potential U ()
this is clearly a two degree of freedom dynamical system
The particle’s instantaneous position is most conveniently specified

U

plane polar coordinates r and 6

these are our two generalized coordinates
The square of the particle’s velocity can be written as

v2 =712+ (r)?
the Lagrangian of the system takes the form

1 :
L=-—m@E24+r20%) -U(r)

2
0L : 0L -
57 = mT E-mr@ — dU/dr
a—gzmr26’ 82_0

90 0
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‘Motion in a Central Potential (cont’d)l

Equations of motion [ Lagrange equations

d(oLy ot . dfoL) oL
dt \ or or dt \ 96 00

OV =U/m
[1 h = constant

Fall 2006 . .
Classical Mechanics Luis Anchordoqui
UWM



| Atwood Machines I

An Atwood machine consists of two weights of mass m; and m-
connected by a light inextensible cord of length [ which passes over a pulley

This is a one degree of freedom system
whose instantaneous configuration is specified by the coordinate
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‘Atwood Machines (cont’d) I

The kinetic energy of the system is

1 1
T:§m1£1'32-|—§m23'32

The potential energy of the system takes the form
U=-migx—mag(l—x)

It follows that the Lagrangian is written as

1
£= 5 (m1 4+ ma) &% + g (m1 — mg) = + constant

The equation of motion is
d(ogy_oe
dt \ Ox or

yielding

g(mi —mo)
mi + Mg

(m1+mo)Z—g(mp —me)=0= 17 =
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‘Atwood Machines (cont’d) I

Atwood machine with one weight replaced by a second Atwood machine

The system now has two degrees of freedom
its instantaneous position is specified by the two coordinates x and x’
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‘Atwood Machines (cont’d)I

The kinetic energy of the system is

1 1 1
T:§m1¢2+§m2(—dz+ds’)2+§m3(—j:—j;’)2

The potential energy takes the form
U=-mige—mog(l—a+z')—mgg(l—z+1' -2

It follows that the Lagrangian of the system is

1 1 1
£ = §m15ﬁ2—|—§m2(—j}+il)2+§m3(—$—$/)2

+ g(mi1—mg —m3)x + g(mo —ms3)x’ + constant
The equations of motion are
d(y 0, d() oe_,
dt \ Ot ox dt \ 0z’ ox’
yielding
my & +mo (& — &) +mg (& + &) — g(m1 —ma —m3) =0

ma (=& + ') +ms (& + ') — g (ma —ms) =

Fall 2006 . .
Classical Mechanics Luis Anchordoqui
UWM



12

‘Sliding down a sliding pIaneI

Consider the case of a particle of mass m
sliding down a smooth inclined plane of mass M
which is free to slide on a smooth horizontal surface

This is a two degree of freedom system

U

need two coordinates to specify the configuration

CHOOSE

x [ horizontal distance of the plane from some reference point
x’ [0 particle's parallel displacement from some reference point on the plane

Define - and y-axes as shown in the diagram
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‘Sliding down a sliding plane (cont’d)l

x- and y-components of the particle’s velocity are

vy =2 + ' cosf
vy = —%' siné
6 U angle of inclination of the plane with respect to horizontal
I
2

v =v; +v, =& +2&d cos+ &'

The kinetic energy of the system takes the form

1 1
T = 5M:i;2+ 5m(a'c2 +2& & cosh+ i'?)

The potential energy is given by

U= —-mgz' sinf + constant

U

It follows that the Lagrangian is written as

1 1
£ = §Mj32 + §m(a’:cos€—|—x"2) +m gx’ sinf + constant
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Fall 2006

‘Sliding down a sliding plane (cont’d)l

The equations of motion are

d(ogy e dfos\ o
dt \ 01 oxr dt \ 0z’ ox!

U

M i+ m (% + 2 cosf) =0
m (&' + % cosf) —mg sinf =0
Solving for & and &’

g sinf cos6
(m+ M)/m — cos? 0

=

o g sinf
1—mcos20/(m+ M)
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Lagrange Equations for Several Unconstrained Particles

Consider 2 particles moving unconstrained in 3 dimensions

the kinetic energy of the system is
1 1

T = §m17“.12 + §m27“°22

and its potential energy
U=U(ry, ra)
The Lagrangian is defined as
£=T-U

4

.. 1 ) 1 .
£=2L(r1, re, 71, T2) = §m1r12 + §m27°22 —U(ry, 12)

0 F=-VU
As usual the forces on the two particles are
[ Fy = —-VoU

Newton’s second law can be applied to each particle and yields 6 equations

Fla;:pla: Fly:ply Flz:plz F233:p2a: F2y:p2y F2z:p2z
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Lagrange Equations for Several Unconstrained Particles (cont’d)

The 6 equations imply that S = ft? £ dt is stationary

Changing to any set of generalized coordinates we have

oL _d 0% oL _d 0% oL _d 0%
(9q1 N dt 8q1 3QQ B dt 8Q2 8Q3 B dt 8Q3
os os e _

044 ' 0gs ' 0qe
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Lagrange Equations for Several Unconstrained Particles (cont’d)

HOMEWORK

Consider a system of N unconstrained particles
(e.g. gas of N molecules)
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Constrained Systems

Consider an arbitrary system of IV particles « = 1,... N with position r,

the parameters q; ... q, are a set of generalized coordinates for the system

0

I [ each position r, can be expressed as a function of g1 ..., g,
and possibly ¢

'ra:'r'a(QIa"'aQna t) [a:19°°°9N]

IT (1 each g; can be expressed in terms of the r, and possibly ¢
qi = qi(T15...5 TN, t) [t=1,..., n]

ITI U The number of generalized coordinates (n) is the smallest number
that allows the system to be parametrized in this way

In a 3-dimensional world

U

the number of n-generalized coordinates for IV particles
is certainly no more than 31N

For a constrained system is usually less [| sometimes dramatically so!
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The Simple Pendulum
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‘The Simple Pendulum (cont’d)l

Need to eliminate on of the coordinates

one obvious possibility y = /1?2 — 2

Simpler solution [1 express both x and y in terms of ¢
(¢ = angle between the pendulum and its equilibrium position)

The kinetic energy is

1 1 .
T =—mv?=—ml?¢?
2 2

The potential energy is
U=mgh
h [0 height of the bob above its equilibrium position

J
h =1(1— cos¢)

The Lagrangian is
1 .
L=T-U = Emlquz—mgl(l—cosqb)
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‘The Simple Pendulum (cont’d)l

Equation of Motion

0L d oL
8¢  dt 9o

d .
—mgl sing = E(mﬁqﬁ) =ml? ¢

[ —mglsin¢ = 7 I torque exerted by gravity on the pendulum
0 ml? = I O pendulum’s moment of inertia

[ ¢ = a I angular acceleration

Lagrange equation for the simple pendulum reproduces the familiar result

Fall 2006 . .
Classical Mechanics Luis Anchordoqui
UWM



22

The Spherical Pendulum

Consider a mass m at the end of light inextensible string of length [

Suppose that the mass is free to move in any direction
(as long as the string remains taut)

the fixed end of the string be located at the origin of coordinate system

We can define Cartesian coordinates [ (z, y, 2)
such that the z-axis points vertically upward

We can also define spherical polar coordinates [1 (7, 6, ¢)
whose axis points along the —z-axis

The latter coordinates are the most convenient

U

r is constrained to always take the value [
the two angular coordinates 0 and ¢ are free to vary independently

U

this is clearly a two degree of freedom system
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‘The Spherical Pendulum (cont'd)l

The Cartesian coordinates can be written in terms of angular coordinates

x =1 sin @ sin ¢

y =1 sinf cos ¢

z = —Il cos@
The potential energy of the system is

U=mgz=—mgl cosf

The kinetic energy is
L o 1 .o .2 .2 1 242, = 2pi2
T:Emv zim(a} +y°+2 ):§ml (0° +sin“0¢~)

The Lagrangian of the system is written
L 2 (52 e 2 72
£=§ml (0° +sin“0¢p°)+mgl cosb
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‘The Spherical Pendulum (cont’d)l

The Lagrangian is independent of the angular coordinate ¢

U

Py = 8—2 = ml? sin® 0 ¢
0
4
Pe Ll the angular momentum of the system about the z-axis

U

is a constant of the motion

Note that neither the tension in the string nor the force of gravity
exert a torque about the z-axis

Conservation of angular momentum about the z-axis

U

sin? 6 qb — h = constant
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‘The Spherical Pendulum (cont’d)l

The equation of motion of the system

dfogy oe
dt \ 56 00

IS

0 + % sinf — sin 0 cosﬁgﬁz =0

or equivalently

s g, 5 cosf
0+ = sinf — h — 0
[ sin®
Suppose that ¢ = ¢g = constant

U

) 0

=h =
J

% sinf = 0

simple pendulum whose motion is restricted to the vertical plane ¢ = ¢

6 +
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‘The Spherical Pendulum (cont’d)l

Suppose that 8 = 8y = constant

U

gﬁ = gﬁo — constant

U

the pendulum bob rotates uniformly in a horizontal plane

o — /2
do=1/%

d =1 cosfy [ vertical distance of the plane of rotation below the pivot point

[1 This type of pendulum is usually called a conical pendulum
string attached to pendulum bob sweeps out a cone as the bob rotates
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‘The Spherical Pendulum (cont’d)l

Suppose that the motion is almost conical

the value of 8 remains close to the value g 0 6 = 6y + 060
Taylor expanding the eqaution of motion to first order in 660

the zeroth order terms cancel out [ we are left with

60 + ¢Z (1 + 3 cos?6y) 66 ~ 0

Solution to this equation

0 ~ 0y + 66y cos(2t) with 2= g&o \/1 + 3 cos? 6,

[] The angle 6 executes simple harmonic motion about its mean value 6,
(at the angular frequency (2)

[1 The azimuthal angle ¢ increases by

ST ™

Ap =~ ¢y — =

2 /143 cos?b,

as the angle of inclination to the vertical 6
goes between successive maxima and minima
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‘The Spherical Pendulum (cont’d)l

[J Suppose that g is small [0 A is slightly greater than 7 /2

If A¢p were exactly /2
U

the pendulum bob would trace out the outline of a slightly warped circle
(something like the outline of a potato chip or a saddle)
The fact that A¢ is slightly greater than 7/2 means that this shape precesses
about the z-axis in the same direction as the direction rotation of the bob
The precession rate increases as the angle of inclination 6y increases

[1 Suppose that 6y is slightly less than /2 OO A¢ is slighly less than 7
(of course 6y can never exceed 7/2)

If A¢p were exactly 7

U

the pendulum bob would trace out the outline of a slightly tilted circle
The fact that A¢ is slightly less than m means that this shape precesses

about the z-axis in the opposite direction to the direction of rotation of the bob

The precession rate increases as the angle of inclination 6, decreases below /2
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‘ Holonomic Systems I

[J Number of degrees of freedom of a system

[1 number of coordinates that can be independently varied in a small displacement
[1 number of independent directions in which the system can move
from any given initial configuration

When the number of an IV particle system in 3 dimensions is less than 3N

U

the system is constrained

In 2 dimensions the corresponding number is 2NV

U

the bob a simple pendulum with 1 degree of freedom is constrained

Holonomic Systems [ Systems that have n degrees of freedom
and can be described by n generalized coordinates

but then ... aren’t all systems holonomic?
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‘Holonomic Systems (cont’d)l

Consider a rubber ball that is free to roll on a horizontal table
(but not to slide nor to spin about a verical axis)

Starting at any position (z, y) it can move only in two independent directions
[1 the ball has 2 degrees of freedom
Can this configuration be described by two coordinates x, y of its center?
[1 Place the ball at the origin O and make a mark on its top
[] Roll the ball along the z-axis for a distance equal to a circunference ¢
to a point P where the mark will be once again at the top
[1 Roll it the same distance ¢ along y-axis to () [ the mark is again on top
[1 Roll it straight back to the origin along the hypothenuse of the triangle OPQ

since the last move has length v/2¢ brings the ball back to its starting point
but with the mark no longer on the top

The position x,y has returned to its initial value
but the ball has now a different orientation!!!

Classical Mechanics Luis Anchordoqui
UWM



‘ Holonomic Systems (cont’d) I

Evidently the 2 coordinates are not enough to specify a unique configuration

the ball has 2 degrees of freedom but more than 2 generalized coordinates

It is a non-holonomic system!

[J generalized coordinates q1,..., qn
For any holonomic system with:
[J potential energy U(q1,...5 Qn, t)

the evolution in time is determined by n Lagrange equations

0¢ dog
dq; dt 8q;

with £ =T —-U

31
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