Classical Mechanics

Lagrangian Mechanics

[1 Variational Principle
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|The Shortest Path between Two Pointsl

Given two points in a plane

what is the shortest path between them?
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The Shortest Path between Two Points (cont’d)

The length of a short segment of the path is

ds = \/dwz + dy?

U
d

dy = e = y'(x)dz
dx

4
ds = \/da:2 + dy® = \/1 + [y (x)]? dz

The total length of the path between points 1 and 2 is

L:/lzds:/aj \/1—|—[y/(:13)]2d:13

This equation puts our problem in a mathematical form

U

find the function y(x) for which the integral is minimum
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Fermat’s Priciple

What is the path that light follows between two points?
4

The time for light to travel a short distance ds is ds/v
v = ¢/n speed of light in a medium with refractive index n

2 2 ds 1 2
time of travel = / dt = / sm—, —/ n ds
1 1 v CJ1

In general [ refractive index can vary

[ nteys = [ n i+ @ d
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| Calculus of Variationsl

Standard minimization problem of elementary calculus

unknown value of the variable = at which a known function f(x) has a minimum

() Recall that if df /dz = 0 at xo there are three possibilities

O If d2f/dx? > 0 = f has a minimum
O If d?f/dx? < 0 = f has a maximum
O If d®f/dxz? = 0 = there may be a minimum, a maximum, or neither

New problem [1 one step more complicated
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Fall 2006

The Euler-Lagrange Equation

We have to find the curve that makes S a minimum

f O function of 3 variables f = f(y, y’, x)

U

but integral follows path y = y(x)

U

integrand fly(x), y'(x), x] is actually a function of just one variable x
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The Euler-Lagrange Equation (cont’d)

If y(x) O right solution
U

S evaluated for y(x) is less than for any neighborhood curve Y (x)
convinient to write

Y(z) = y(z) + n(z)
since Y (x) must pass through points 1 and 2

I
n(z1) =n(z2) =0
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The Euler-Lagrange Equation (cont’d)

The integral taken along the wrong curve Y (x)
must be larger than that along the right curve y(x)
no matter how close is the former to the latter

to express this requirement [ introduce parameter «

4
Y(z) = y(x) + o n(z)
The integral S taken along the curve Y (x) now depends on «

U
S(a)
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The Euler-Lagrange Equation (cont’d)

differentiate with respect to «

U

of(y+an, ¥y +an’,z)  0f ,0f
=nN—+n
Jdo oy oy’
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The Euler-Lagrange Equation (cont’d)

Re-write second term on the right using integration by parts

[ oo~ 1 ()

U
/ 2 (a:)( d 8f> de =0
21 dy dz dy’

This condition must be satisfied for any choice of the function 7(x)
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The Shortest Path between Two Points (cont’d)

We saw that the length of a path between points 1 and 2 is

2 o
L:/ ds:/ \/ 14+ y?dx
1 1

that has the standard form

fy,y',z) =/1+y"”?

oy’

d of
dx 8y’ oy’

0= =C

J
y?=C*(1+y?)=>y*=C=>y(z)=m
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Brachistochrone

shape of the track on which
particle released from point 1 will reach point 2 in the minimum possible time

2 ds

time(1 — 2) = /

1 (¥

speed at any height y is determined by conservation of energy
4
v = /29y
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Brachistochrone (cont’d)

Take y as independent variable — unknown path x = z(y)

ds = \/dw2 + dy? = \/w'2(y) +1dy

@P+1
Yy
VY

To find the path that makes the time as small as possible
[J use Euler-Lagrange

8f d of

ox  dy oz’
)

time(1 — 2) = \/%_g /Oyz vie'
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Brachistochrone (cont’d)

We have chosen the initial point 1 to have xt =y =0

U
initial @ =0—C =0

final parametric equation for the path is

x = a(f —sin ) y = a(1l — cos0)

with the constant a chosen so that the curve passes through (z2, y2)
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‘ Brachistochrone (cont’d) I

In this figure we have continued the curve with dashes beyond the point 2
[ curve that solves the brachistochrone problem happens to be a cycloid

the curve trace out by a point on a rim of a wheel of radius a
rolling along the underside of the z-axis

If we release a cart from rest at point 2 and let it roll to the bottom of the curve

the time to roll 2 to 3 is the same whatever the position of 2
anywhere between 1 and 3
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Brachistochrone (cont’d)

From the parametric equation we obtain the derivatives

x' = a(l — cos0) y' = asinf

the element of path length is

ds = \/dw2 +dy? =\/z'* +y"?do = a\/(l — cos 0)? + sin? 0 do

U
ds = a\/2(1 — cos 6) df

the speed of the cart is given by conservation of energy as

v = /29(yo — y) = \/2ga(cos 8y — cos H)

the required time is

P ds [T ay/2(1 —cosH)

t = —
P, 0o \/2ga(cos 0o — cos 0)
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Brachistochrone (cont’d)

Using the substitution 8 = ™ — 2« plus a couple of trig identities

a [<° COS
t=2,/— do
g Jo \/sin2 ap — sin? a

Using the substitution sina = v and u/ug = v

t—2\f/u0 du _2\F/1 dv
Vagdo Vui—wz Vglo VI—22
a

t=m,/—
g

which is independent of 6,!!!

The higher the starting point P,
the further the car has to go
but the steeper the initial slope and the faster the car goes
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‘ Brachistochrone (cont’d) I

Raus in 90 Sekunden aus dem airbus 4380

— 8 Ausgange mit Rettungsrutschen
an einer Seite des Flugzeugs

fe—— 873 Passagiere
inklusive Crew

Cycloid
T=323sec

Circular arc
T=327 sec

Horizomtal displacennent (ft)
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More than Two Variables

[ there are several dependent variables
[1 For most applications in mechanics
[1 though fortunately only one independent variable ¢
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More than Two Variables (cont’d)

to

S = . Flz(t),y(t), ' (1), y'(t), t]dt

the “correct” path is given by

r=ux(t) y=y()

a neighboring “wrong” path is of the form

T =xz(t) + a &(t) y=y(t) + B n(?)

of d of of d of
dx  dt oz’ dy  dt oy’
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