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| Hooke’s LawI

Consider the motion of an object (of mass m) which is slightly perturbed from a
stable equilibrium point (at £ = 0) of the conservative force-field f(x)

For x = 0 to be a stable equilibrium point O f(0) =0 and df(0)/dz < 0
The object obeys Newton's Second Law of motion 0 m & = f(x)
If it always stays fairly close to its equilibrium position (to a good approximation)

U

f(x) can be represented by a truncated Taylor series about this position

f(z) ~ FO) + L(0)2+ O

—df(0)/dxz = k O restoring force is always directed to the equilibrium position

U

derivative is negative = k is a positive constant

The equivalent of this force law was originally announced in 1676
by Robert Hooke in the form of a Latin cryptogram
CEIIINOSSSTTUV
Hooke later provided a translation
ut tensio sic vis [1 the stretch is proportional to the force
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‘The Simple Harmonic Oscillatorl

Equation of motion for the simple harmonic oscillator

U

Substitution of Hooke’s law force into the Newtonian equation
(with df (0)/dz = —mw§)

d’x o
F—l-wowzo

Solution governs the motion of all 1-dimensional conservative systems
which are slightly perturbed from some stable equilibrium point

x(t) = A sin(wot — 9)
x(t) = A cos(wot — @)

Pattern of motion is periodic in time with repetition period 79 = 27 /wy
oscillating between z = +A
Phase angle simply shifts pattern of motion backward and forward in time

(6 =/2)
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‘The Simple Harmonic Oscillator (cont’d)l

Relation between the kinetic energy and the amplitude of motion

1
T = —mi?

1
Emw(z,A2 cos? (wot — )

1
= 5kA2 cos? (wot — 6)

Potential energy calculated from work done to displace particle distance x

dW = —Fdx = kxdx
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The Simple Harmonic Oscillator (cont’d

)

The potential energy at position x is

1
U(x) ~ §mw02 -

The total (mechanical) energy is

T'+U

1 dz 2+1 9 9
2 "\ at o M0

1

1
5 mwg A? cos?(wot — ¢) + 5 mwg A* sin®*(wo t — @)

1
2

angular frequency of the motion (wg) is related to the frequency (1) by

wo = 2y = \/k/m

[1 independent of the amplitude
[1 The period of the simple harmonic oscillator is
[ independent of the total energy
[1 A system exhibiting this property is said to be isochronous
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‘ Phase Diagrams I

State of motion of 1-dimensional oscillator is completely specified by 2 quantities
x(t) and z(t)
(two quantities needed because differential equation of motion is second order)

x(t) and z(t) define coordinates of points in a 2-dimensional space

U

The Phase Space

In two dimensions the phase space is a phase plane

for general oscillator with n degrees of freedom [J 2n-dimensional phase space

[J As the time varies the point P(x, &) describing the state of the oscillating
particle will move along a certain phase path in the phase plane

[ For different initial conditions the motion will be described by different paths

[1 The totality of all phase paths constitutes the phase diagram of the oscillator
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‘ Phase Diagrams (cont’d) I

simple harmonic oscillator
z(t) = Asin(wot — 0)
t(t) = Awg cos(wot — )
Eliminating ¢

x> 72

+ —1
A2 A%

This equation represents a family of elipses

= :
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‘ Phase Diagrams (cont’d) I

Total Energy E = kA?%/2 Angular Frequency w? = k/m

x> 12

2E/k | 2B/m

1

Each phase path corresponds to a definite total energy of the oscillator

No two phase paths of the oscillator can cross!!!

If they could cross [1 this would imply that for a given set of initial conditions
the motion could proceed along different paths

U

This is impossible since the solution of the differential equation is unique
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Harmonic Oscillations in 2-dimensions

[1 proportional to the distance of the particle from a force center
(located at the origin)
[] Restoring force
[J directed toward the origin

F=—kr
in polar coordinates components

F, = —krcosf = —kx
Fy, = —krsinf = —ky

Equation of Motion

T+ wor =0
y+woy =0

recall 0 w2 = k/m

Solution

z(t) = Acos(wot + @) }
y(t) = B cos(wot + )
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Harmonic Oscillations in 2-dimensions (cont’d)

Equation for the path of the particle
J

eliminate ¢ between the 2 equations

B cos|wot — a+ (a — )]
B cos(wot — ) cos(a — ) — Bsin(wgt — «) sin(a — ()

Define § = a — 3 and recall O cos(wopt — a) = x/A

y = gxcosé—B\/l — (z/A)? sind

Ay — Bx cosd = —By\/ A% — x? sin§

on squaring

A%y? — 2A By x cosd + B?z? cos® 6 = A’B?sin® § — B%z? sin?§
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Harmonic Oscillations in 2-dimensions (cont’d)

B?z? —2ABxycosd + A%y? = A’ B?sin? ¢
U
If(5:i7r/2:>j—22—l—é—22:1
If further require A = B = circular motion
2?2 4% = A2
If the phase 6 = nm withn € Z
B?z* —2ABxy + A*y? = 0= (Bx — Ay)* =0
U

linear solution
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Harmonic Oscillations in 2-dimensions (cont’d)

SUMMARY

If A=1B

U
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‘ Damped Oscillatory Motionl

1-D conservative systems slightly perturbed from a stable equilibrium point

(and then left alone)
oscillate about this point with a fixed frequency and a constant amplitude

U

In other words [ the oscillations never die away

This is not very realistic [J (in practice)
If we slightly perturb a dynamical system from a stable equilibrium point

U

it will indeed oscillate about this point [1 but these oscillations will eventually
die away due to frictional effects that are present in all real dynamical systems

In order to model frictional effects
need to include [ frictional drag force in our perturbed equation of motion

[1 is always directed in the opposite direction to the instantaneous velocity

[1 The most common model for a frictional drag force is one which

[1 is directly proportional to the magnitude of this velocity
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‘Damped Oscillatory Motion (cont’d)l

drag force can be written

fdrag 2mﬁ

(B O positive constant.

Including such a force in our perturbed equation of motion

U

d2
yry 2[3 -I—szU—O

lL

this is a linear second-order ordinary differential equation
(that we suspect possesses oscillatory solutions)

[1 [ parameterizes the strength of frictional damping in our dynamical system
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‘Damped Oscillatory Motion (cont’d)l

There is a standard trick for solving such an equation

U

search for complex oscillatory solutions of the form

z=Ae ¥

w and A are (in general) complex

Of course [J Physical solution is the real part of the above expression
This method of solution is only appropriate for linear differential equations

[1 if z is a complex variable
[1] The method works because: &

[J L some real linear differential operator which acts on this variable
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‘Damped Oscillatory Motion (cont’d)l

Substituting £ = Ae~'“? in the equation of motion leads to

Al-w? —i2Bw+wi]e @t =0
which reduces to the following quadratic equation for w

w?+i28w —wi =0

The solution to this equation is 0 wy = —i 3+ y/wé — (2
Most general physical solution to damped oscillatory motion
z(t) =Re[Aj e '“tT + A_e w1

A4 are two arbitrary complex constants

[1 underdamped

[] We can distinguish three different cases [I critically damped

[ overdamped
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‘Damped Oscillatory Motion (cont’d)l

If B3 < wg U the motion is said to be underdamped

The most general solution is written

vo + B o

z(t) = xg e Pt cos(wy-t) + <
Wy

) e Pt sin(w, t)

wr =ywé =2  x9=x(0) vy =dx(0)/dt

[] oscillates at some real frequency w,.
(somewhat less than natural frequency wg of undamped system )

[] It can be seen that the solution

[1 decays exponentially in time
(at a rate proportional to the damping coefficient [3)
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‘Damped Oscillatory Motion (cont’d)l

Phase diagram for underdamped motion

z(t) = Ae P! cos(wyt — )

i(t) = —Ae PYB cos(wyt — 6) + w, sin(w,t — 6)]

Changing variables
U= W, w=0r+2zT

U

u = wyAe Pt cos(w,t — 0)

w = —w,Ae Pt sin(w,t — 0)

In polar coordinates

p=+Vu2+w? ©=uwt
U
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‘Damped Oscillatory Motion (cont’d)l

Equation of a logarithmic spiral

A

T

£l /"
—
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‘Damped Oscillatory Motion (cont’d)l

If 3 = wo U the motion is said to be critically damped

The most general solution is written

z(t) = [1o (1 +wot) +vgt]e 0!

[1 The solution now decays without oscillating

If 3 > wo I the motion is said to be overdamped
The most general solution is written

- (352)

Br=PBE\/F*—w

[1 The solution again decays without oscillating
(except there are now two independent decay rates)
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‘Damped Oscillatory Motion (cont’d)l

SUMMARY

The largest B4 [ is always greater than the critically damped decay rate wy
The smallest 3_ [ is always less than this decay rate.

U

[l underdamped solution
[1 The critically damped solution is more rapidly damped than
[l overdamped solutions

Underdamping, 87 < '-'-'é

Critical damping, 3°= Iuﬁ
Overdamping, 8% > w]

=
L
-'-rn.--
l--_.__-_-
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‘Sinusoidal Driving Forcesl

We saw that [

1-dimensional dynamical systems slightly perturbed from stable equilibrium point
(and then left alone)
eventually return to this point at rate controlled by damping of the system

Now [

Suppose the same system is subject to an external force with fixed frequency w

U

system will eventually settle down to some steady oscillatory pattern of motion
(with the same frequency)

Next [
Probe whether this is true by studying the properties of such a “driven oscillation”
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‘Sinusoidal Driving Forces (cont’d)l

Suppose that our system is subject to an external force of the form

fext(t) = mwg X1 cos(wt)

X1 O typical ratio of the amplitude of external force to that of restoring force
Incorporating the external force into our perturbed equation of motion

U

d*x dx
pr) +26% +wir=wi X, cos(wt)

Trial Solution 0 wg X1 exp(—iwt) 00 w is now a real parameter
[J again understood that physical terms are real parts of these expressions

4 [_w2 —i2ﬂw—|—w02} piwt :w()QXle_iwt

U

(.UO2 Xl
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‘Sinusoidal Driving Forces (cont’d)l

In general 0 a is a complex quantity = ¢ = De'?
(D and ¢ are both real)

[ the physical solution takes the form [ z(¢t) = D cos(wt — 9)
4

2 X 2
D = “o A1 and 6 = tan ! <&>
W

(0 —w?)? + 4202 o

Conclusion

In response to the applied sinusoidal force

the system executes a sinusoidal pattern of motion at the same frequency
with fixed amplitude D and phase-lag ¢

(with respect to the external force)
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| Resonance Phenomena I

Amplitude Resonance Frequency [1 w at which D is maximum

dD

bt —0
dw

W=WR

U

wr = \/wi — 232

The resonance frequency wg is lowered as the damping coefficient beta is increased

No resonance occurs if 32 > w? /2
(wg is imaginary and D decreases monotonically with increasing w)

We customarily describe degree of damping in oscillating systems via quality factor

(1 If little damping occurs [
() > 1 and shape of the resonance curve approaches that of undamped oscillator

[1 Resonant condition is completely destroyed if damping is large and Q < 1
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‘ Resonance Phenomena (cont’d)l

SUMMARY

==

ol
o} /Q'”’
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| Electrical Oscillations I

Consider the simple harmonic oscillator and the LC electrical circuit

[ the charge on the capacitor C'is ¢(t)
[J At some instant ¢
[ the current flowing through the inductor L is I(t) = ¢(t)

Applying Kirchhoff’s equation leads to a voltage drops around the circuit

a1
t Y =0
ﬁ+0/

27

K 00000 —
rri' |
St o | I |
&
mi+kxr=0 Li+q/C=0
wo =V k/m wo =1/VLC
x(t) = xq cos(wot) q(t) = qo cos(wot)
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‘ Electrical Oscillations (cont’d)l

Differentiating the expression for ¢(t) 0 ¢ = I = —wqqq sin(wqt)

2
Squaring g and I O LI? + %% =%
The term LI?/2 represents the energy stored in the inductor
g
(corresponding to mechanical kinetic energy)

= constant

The term ¢?/2C represents the energy stored in the capacitor
(corresponding to the mechanical potential energy)

The sum of these two energies is constant [1 the system is conservative

Analogous Mechanical and Electrical Quantities

Mechanical Electrical
x [ displacement ¢ [0 charge
x O velocity ¢ =1 [ current
m [0 mass L [ inductance
2m3 [0 damping resistance R [] resistance
k—1 O mechanical compliance C 0O capacitance
fext 1 amplitude of impressed force &£ [J amplitude of impressed emf
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