Classical Mechanics

Fundamental aspects of Newton’s theory of motion

[1 Newton’s Laws

[1 Inclined Plane

[1 Projectiles

[1 Conservation Theorems
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| Newton’s Laws I

I. A body remains at rest or in uniform motion unless acted upon by a force

Il. A body acted upon by a force moves in such a manner that the time rate of
change of momentum equals the force

lll. /f two bodies exert forces on each other, these forces are equal in magnitude

and opposite in direction

| is also known as Law of Inertia
It provides us only with a qualitative notion ragarding a force

Y

In the absence of forces a particle moves with constant velocity v

Il relates force to the time of rate of change of momentum
Newton defined momentum as p = mv [ m = particle’s mass

Newton's Second Law then reads

1l states that for two isolated bodies ﬁl = —ﬁz
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| Frames of Reference I

For the laws of motion to have a meaning |}

motion of bodies must be measured relative to some reference frame
Inertial Frame: a frame where Newton’s laws are valid

Galilean Invariance or Principle of Newtonian Relativity

If Newton’s laws are valid in one reference frame [J they are also valid in
any reference frame in uniform motion with respect to the first system

U

A change of coordinates involving constant velocity
does not influence the equation of motion

Theory of Relativity has shown that
the concepts of absolute rest and absoulte inertial frame are meaningless

In reference frames described with respect to “fixed” stars
Newtonian dynamics is valid to high degree of accuracy
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‘Equation of Motion for a ParticIeI

Particle’s vector equation of motion

[1 independent of the position of the origin of the coordinate system
[1 independent of its orientation in space

- ‘

T % \l
el 0 P
|

o

Rotating coordinate systems do not qualify as inertial reference frames
Equation of motion assuming m does not vary with time
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| Inclined Plane I

Find acceleration of sliding without friction inclined plane [1 8 = 30°

y-direction 0 —|W|cos+ [N|=0  z-direction O |[W|sin = mi

14
:'é:usiné’:
m m

sin 6
g PRz = gsinf

i = g sin30° = g = 4.9 m/s?
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‘ Inclined Plane (cont’d) I

Find blocks velocity after it moves from rest a distance x4

[Z = g sin 0]
4
2¢d = 22 g sin 6

a
dt

'U?i Ld
/ d(%) = 2g sinH/ dx
0 0

V3 =2gsinf x4

() = 2g sinf Z—f

vd:\/Qg sin 6 Ld
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Projectile Motion in 2-Dimensions

x-direction I mzZ =0 y-direction LI —mg = my

Neglect the height of the gun and assume z =y=00@ ¢t =10

=0 y=-g
x = vg cos 6 y=—gt—+ vy sinf
r =wvyt cosb y=uvgtsinh — gt?/2

speed 0 v(t) = /22 + 92 = (v} + g% 12 — 2ug gt sin§)1/2
displacement 0 r(t) = /22 + 32 = (V312 + g*t* /4 — vy g1 sin ) 1/?
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‘ Projectile Range I

Range: Value of  when the projectile falls back to ground

U
y=0
t
y:t(vosiné’—g—) =0
2
0 t=0
y=0
Ot=T
i)
T:2’0081I19
g
22 2
range = R=x(t=T) = “%0 Ging cosd = 0 sin(20)

9 9
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‘ Big Bertha I

On March 28th 1918 during World War I
the Germans used a long-range gun named Big Bertha to bombard Paris

Its muzzle velocity was 1,450 m/s and the angle of elevation § = 55°
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‘ Big Bertha (cont’d) I

According to our recent estimate

V3 <145O m/s

2
R=— Sln(29) = W) [Sln(].].oo)] = 202 km

Could a shell fired by a Big Bertha from 202 km caused this damage?
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‘ Big Bertha (cont’d) I

NO — because of the air resistance
[J Big Bertha’s actual range was 120 km

16 BERTHA'

B o ob the “Bad A B,

60O HOOHOEH

present day
Americans invented a much better weapon [J no resistance at all!!!
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‘Effects of Retarding Forcesl

F’s acting on a particle are not necessary constant
If a particle falls in a constant gravitational field [ ﬁg = mg
NEVERTHELESS
Retarding forces F). that are function of the instantaneous speed may exist
To a good approximation F,. o< v™
Total F acting on a particle

eS|

ﬁ:mﬁ—mkv"

¥/v O unit vector in the direction of ¥
k [ positive constant that specifies the strength of the retarding force

Experimentally [ for relatively small objects moving in air

n~1forv<24m/s
n ~ 2 is usually taken for speeds up to the speed of sound

In the power-law approximation the equation of motion can be integrated
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‘Effects of Air Resistance to the Motion of Projectilesl

INITIAL CONDITIONS

z(t=0)=0=y(t=0)

&(t=0) =vgcosd =U
y(t=0) =vgsinfd =V
EQUATION OF MOTION

mI = —kmx
my = —kmy — mg
4
dv

m% = —kmv=Inv=—-kt+C

FROM INITIAL CONDITION C=InU O v = Ue™ %t

U
T = U/e‘ktdt = —Ee_kt + K

FROM INITIAL CONDITION K =U/k O z = £ (1 — e *)
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‘Effects of Air Resistance to the Motion of Projectiles (cont’d)l

HOMEWORK:
show that a similar procedure using the equation in y-direction leads to

gt kV+yg
V= T TR

(1—e ™)

t when the projectile falls back to ground

_kV-I—g __—kt
T = ok (1—e™")

Transcendental Equation

[J Perturbation Method to find an approximate solution
Two approaches

[] Numerical method that can be as accurate as desired
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‘Effects of Air Resistance to the Motion of Projectiles (cont’d)l

Perturbation Method
[1 Consider an expansion parameter or coupling constant that is normally small
EXAMPLE

retarding force constant k
We solved the case £ =0
We turn on retarding force but keep it small
Expansion of the exponential term

kV +g 1 90, 1 .33
T = T — — k“T — k°T° — ...
ok {k TR TR

Keeping terms in Tup to k3 0 T = 13{{‘/}; + LK1

Expansion of denominator in power series up to second order

1
1+kV/g

. . 2 2
Keeping terms up to first order 0 7' = 2~ + (% - 25 > k+ O(k?)
In the limit £ — 0 [0 we recover solution without air resistance

T(l{?ZO) :To =2 V/g:2’l}0 smé?/g

=1—(kV/g) + (kV/g)® —
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‘Effects of Air Resistance to the Motion of Projectiles (cont’d)l

Approximate expression for flight time
2V kV
T~ — (1 — —)
g 39
Writing equation of z-direction in expanded form

= — — — —k°t° ...
T k(kt 2kt—l—6

keeping terms only through first order of k

R ~U (T — %sz)

Replacing by T 0 R’ ~ 2UY ( _ %) 0 but 2UV/g = v2sin(20) /g = R

valid when k < g/V = g/(vg sin6)
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‘Effects of Air Resistance to the Motion of Projectiles (cont’d)l

Solve numerically

HOMEWORK

r_kV+g

1_—k:t
E9 (1 - ey

show that the linear approximation is inaccurate for k values as low as 0.01 s—!

show that it incorrectly indicates the range is zero for k > 0.014 s—!

(]

E
b, 8
=
=
=
o

HOMEWORK’S HINT

. A pproximation
1

__ Numerical

Fall 2007
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| Conservation Theorems I

Newtonian mechanics of a single particle

[1 We derive important theorems regarding conserved quantities
[1 We DO NOT prove the conservation of the various quantities
[1 We derive consequences of Newton’s laws of dynamics

U

Implications must be put to the test of experiment

U

Verification supplies a measure of confirmation of the dynamical laws

[1 Conservation theorems are found to be valid in many circumstances

U

Important part of the proof for the correctness of Newton’s laws

U

(at least in classical physics)
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‘Conservation Theorems (cont’d) I

I. The total liner momentum p of a particle is conserved when the total
force on it is zero

II. The angular momentum Lofa particle subject to no torque 7
is conserved

III. The total energy E of a particle in a conservative force field is a
constant in time

I — is derived from vector equation [ ﬁ: 0

4

applies for each component of the linear momentum

Let § be some constant vector such F . §= 0V time
U
7.3=0

integration leads to

e

—

P . § = constant
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‘Conservation Theorems (cont’d) I

[1 The angular momentum of a particle
(with respect to an origin from which the position vector 7 is measured) is

—

L=7vXp

[ The torque (or moment of force) with respect to the same origin is

F=FxF
1

position vector from the origin to the point where the force is applied

fFr=0=> L =00 L is a vector constant in time
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‘Conservation Theorems (cont’d) I

If some work W5 is done on a particle by a force F in transforming the
particle from condition 1 to condition 2 = Wi, = ff F .dr

F . dF

F . dfis an exact differential = work done by the total force F
acting on a particle is equal to its change in kinetic energy AT
=—m(vy —v]) =Ty — T

1
Wi = | =mv?
2= (37}, =3

|fT1 > Ty = Wia <0
[J the particle has done work with a resulting decrease in its kinetic energy

2
1 2 2
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‘Conservation Theorems (cont’d) I

A force is said to be conservative

0

the work required to move a particle from one position to another without
any change in kinetic energy depends only on the original and final
positions and not on the exact path taken by the particle
Example: A constant gravitational field

A Cingin

[ If a particle of mass m is raised through a height h (by any path) |
an amount of work mgh has been done on the particle
[] The particle can do equal amount of work in returning to its original position

[1 The capacity to do work is known as potential energy of the particle
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‘Conservation Theorems (cont’d) I

Potential Energy
Y

required work to transport the particle from point 1 to a point 2
(with not net change in kinetic energy)

2
/ F.di=U, — U,
1

—

F=_-VU

2 2 2
/F“.df:—/(ﬁv).dfz—/ dU = Uy — U,
1 1 1

[1 The potential energy is defined only to within an additive constant
(1 The force defined by VU is no different from that defined by §(U—I— constant)

[1 Only differences of potential energy are physically meaningful

fVxEF=0

(3

[1 The ¥ of a particle is in general different in different inertial reference frames

[J It is impossible to ascribe an absolute kinetic energy to a particle
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‘Conservation Theorems (cont’d) I

Total (mechanical) energy of a particle 1 E=T+ U

dE _dT U
dt  dt = dt

Recall that F . di =dT 0 T =F . 7

aUu oUu d:cz U
dt Z 0x; dt
- . oU
= (VU) .74+ —

ot

If F is a conservative force 1 F = —VU

dE oUu
dt

If OU /0t = 0 the total (mechanical) energy of a particle is a constant in time

Classical Mechanics
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‘ Energy I

[1 The concept of energy was not nearly as popular in Newton's time as it is today

[1 Early in the XIX century [J became clear that heat was another form of energy
(and not a form of fluid called caloric that flowed between hot and cold bodies)

[1 Count Rumford is given credit for realizing that the amount of heat generated
during the boring of a cannon was caused by friction and not the caloric

If frictional energy is just energy [1 a total conservation of energy occurs

[ Hermann von Helmholtz (1821-1894) formulated the general law of energy
conservation in 1847
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