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Generalized Momenta

Consider the motion of a single particle moving in one dimension

the kinetic energy is

T =
1

2
mẋ 2

✐ m ☞ the mass of the particle
✎ x ☞ its displacement

the particle’s linear momentum is

p = mẋ

This can also be written as

p =
∂T

∂ẋ
=

∂L

∂ẋ

because L = T − U and the potential energy U is independent of ẋ
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Generalized Momenta (cont’d)

Consider a dynamical system described by F generalized coordinates qi

(for i = 1, . . . ,F)

By analogy with our previous discussion

⇓

we can define generalized momenta of the form

pi =
∂L

∂q̇i

pi ☞ is sometimes called the momentum conjugate to the coordinate qi

Lagrange’s equation

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi

= 0

can be re-written as

dpi

dt
=

∂L

∂qi

Note that a generalized momentum
does not necessarily have the dimensions of linear momentum
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Generalized Momenta (cont’d)

Suppose that the Lagrangian L does not depend explicitly on some coordinate qk

⇓

dpk

dt
=

∂L

∂qk

= 0

⇓

pk = const.

The coordinate qk is said to be ignorable in this case
conclusion

the generalized momentum associated with an ignorable coordinate
is a constant of the motion

example

The Lagrangian for a particle moving in a central potential
is independent of the angular coordinate θ

⇓

θ ☞ is an ignorable coordinate
pθ = ∂L

∂θ̇
= m r2 θ̇ is a constant of the motion

Of course ☞ pθ is the angular momentum about the origin
which is conserved because a central force exerts no torque about the origin
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Hamilton’s Equations

Consider a dynamical system with F degrees of freedom
described by the generalized coordinates qi ☞ i = 1, . . . ,F

Suppose that neither T nor U depend explicitly on the time t
In conventional dynamical systems

✐ the potential energy is generally independent of the q̇i

✎ the kinetic energy takes the form of a homogeneous quadratic function of the q̇i

T =
∑

i,j=1,F

mij q̇i q̇j

✏ mij depends on the qi but not on the q̇i

⇓

∑

i=1,F

q̇i

∂T

∂q̇i

= 2 T

The generalized momentum conjugate to the ith generalized coordinate is

pi =
∂L

∂q̇i

=
∂T

∂q̇i

✐ L = T − U is the Lagrangian of the system
✎ U is independent of the q̇i
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Hamilton’s Equations (cont’d)

Consider the function

H =
∑

i=1,F

q̇i pi −L =
∑

i=1,F

q̇i pi − T + U

If all of the conditions discussed above are satisfied

⇓

H = T + U

In other words ☞ the function H is equal to the total energy of the system
Consider the variation of the function H

δH =
∑

i=1,F

(

δq̇i pi + q̇i δpi −
∂L

∂q̇i

δq̇i −
∂L

∂qk

δqk

)

The first and third terms in the bracket cancel because ☞ pi = ∂L/∂q̇i

Now ☞ Lagrange’s equation can be written as ṗi = ∂L/∂qi

⇓

δH =
∑

i=1,F

(q̇i δpi − ṗi δqi) (♣)
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Hamilton’s Equations (cont’d)

Suppose now ☞ that we can express the total energy of the system H
solely as a function of the qi and the pi ☞ with no explicit dependence on the q̇i

In other words ☞ suppose that we can write H = H(qi, pi)

When the energy is written in this fashion

⇓

it is generally termed the Hamiltonian of the system

The variation of the Hamiltonian function takes the form

δH =
∑

i=1,F

(

∂H

∂pi

δpi +
∂H

∂qi

δqi

)

(♠)

A comparison of Eqs. (♣) and (♠) yields

q̇i =
∂H

∂pi

and ṗi = −
∂H

∂qi

for i = 1, . . . ,F

These 2F first-order differential equations are known as Hamilton’s equations
Hamilton’s equations are often a useful alternative to Lagrange’s equations

which take the form of F second-order differential equations
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1D Harmonic Oscillator

Consider a one-dimensional harmonic oscillator
The kinetic and potential energies of the system are written

T = (1/2) mẋ 2 and U = (1/2) k x2

✐ x ☞ is the displacement
✏ m ☞ is the mass
✎ k > 0

The generalized momentum conjugate to x is

p =
∂T

∂ẋ
= mẋ ⇒ T =

1

2

p 2

m

The Hamiltonian of the system takes the form

H = T + U =
1

2

p 2

m
+

1

2
k x2

Hamilton’s equations yield

ẋ =
∂H

∂p
=

p

m
(which is just a restatement of the kinetic energy)

ṗ = −
∂H

∂x
= −k x (Newton′s second law of motion for the system)
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Motion in a Central Potential

Consider a particle of mass m moving in the central potential U(r)
The kinetic energy is

T =
1

2
m (ṙ 2 + r2 θ̇ 2)

✏ (r, θ) ☞ are plane polar coordinates
The generalized momenta conjugate to r and θ are

pr =
∂T

∂ṙ
= m ṙ

pθ =
∂T

∂θ̇
= m r2 θ̇

⇓

T =
1

2 m

(

p 2
r +

p 2
θ

r2

)

The Hamiltonian of the system takes the form

H =
1

2 m

(

p 2
r +

p 2
θ

r2

)

+ U(r)
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Motion in a Central Potential (cont’d)

Hamilton’s equations yield

ṙ =
∂H

∂pr

=
pr

m
and θ̇ =

∂H

∂pθ

=
pθ

m r2

(which are just restatements of the generalized momenta)

ṗr = −
∂H

∂r
=

p 2
θ

m r3
−

∂U

∂r
(z)

ṗθ = −
∂H

∂θ
= 0

The last equation implies that

pθ

m
= r2 θ̇ = h (κ)

✏ h ☞ is a constant
This can be combined with Eq. (z) to give

ṗr

m
= r̈ =

h2

r3
−

∂V

∂r
(κ)

✏ V = U/m
Of course ☛ Eqs. (κ) and (κ) are the conventional equations of motion

for a particle moving in a central potential
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Motion in a Central Potential

Consider a particle of mass m moving in 2D in the central potential U(r)
this is clearly a two degree of freedom dynamical system

The particle’s instantaneous position is most conveniently specified

⇓

plane polar coordinates r and θ

these are our two generalized coordinates
The square of the particle’s velocity can be written as

v2 = ṙ 2 + (r θ̇)2

the Lagrangian of the system takes the form

L =
1

2
m (ṙ 2 + r2 θ̇ 2) − U(r)

∂L

∂ṙ
= m ṙ

∂L

∂r
= m r θ̇ 2 − dU/dr

∂L

∂θ̇
= m r2 θ̇

∂L

∂θ
= 0
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Motion in a Central Potential (cont’d)

Equations of motion ☞ Lagrange equations

d

dt

(

∂L

∂ṙ

)

−
∂L

∂r
= 0

d

dt

(

∂L

∂θ̇

)

−
∂L

∂θ
= 0

d

dt
(m ṙ) − m r θ̇ 2 +

dU

dr
= 0

d

dt

(

m r2 θ̇
)

= 0

r̈ − r θ̇ 2 = −
dV

dr

r2 θ̇ = h

☞ V = U/m
☞ h = constant
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Phase Space

Recall that

⇓

The generalized coordinates qj define an s dimensional configuration space
with every point representing a state of the system

Likewise

⇓

The generalized momenta pj define an s-dimensional momentum space
representing a certain condition of motion of the system

Hamilton phase space ☞ 2s dimensional space consisting of qj and pj

which allows us to represent both the positions and the momenta of all particles
If the position and momenta of all the particles in a system are known

(at a given time)

⇓

these quantities can be used as initial conditions ☞ (qj(0), pj(0))

⇓

✐ the subsequent motion of the system is completely determined
✎ the representative point describing the system moves along a unique path phase
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Phase Diagrams

State of motion of 1-dimensional oscillator is completely specified by 2 quantities
x(t) and ẋ(t)

(two quantities needed because differential equation of motion is second order)

x(t) and ẋ(t) define coordinates of points in a 2-dimensional space

⇓

The Phase Space

In two dimensions the phase space is a phase plane

for general oscillator with n degrees of freedom ☞ 2n-dimensional phase space

☛ As the time varies the point P (x, ẋ) describing the state of the oscillating
particle will move along a certain phase path in the phase plane

☛ For different initial conditions the motion will be described by different paths

☛ The totality of all phase paths constitutes the phase diagram of the oscillator
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Phase Diagrams (cont’d)

simple harmonic oscillator

x(t) = A sin(ω0t − δ)

ẋ(t) = Aω0 cos(ωot − δ)

Eliminating t

x2

A2
+

ẋ2

A2ω2
0

= 1

This equation represents a family of elipses
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Phase Diagrams (cont’d)

Total Energy E = kA2/2 Angular Frequency ω2
0 = k/m

⇓

x2

2E/k
+

ẋ2

2E/m
= 1

Each phase path corresponds to a definite total energy of the oscillator

No two phase paths of the oscillator can cross!!!

If they could cross ☞ this would imply that for a given set of initial conditions
the motion could proceed along different paths

⇓

This is impossible since the solution of the differential equation is unique
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Statistical Mechanics

For complex systems with a large collection of particles ☞ gas molecules

⇓

we are unable to identify the particular phase space point representing the system

⇓

we must devise some alternative approach to study the dynamics of such sytems
One possibility is to fill the phase space with a collection of points

each representing a possible condition of the system

⇓

☛ any of which could be the actual system
We imagine a large number of systems

☛ each consistent with the known constraints

We are unable to discuss the details of the particles’ motion in the actual system

⇓

we substitute a discussion of an ensamble of equivalent systems
Each representative point corresponds to a single system of the ensamble

the motion of a particular point represents the independent motion of that system
No two of the phase path may ever intersect!!!
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Liouville’s Theorem

theorem

– Joseph Liouville (1809-1882) –
The density of representative points in phase space corresponding to

the motion of a system of particles remains constant during the motion

⇓

Define a density in phase ρ

✐ must be sufficiently large to contain a large number of representative points
The volume elements of the phase space defining the density

✎ must be also sufficiently small so that the density varies continuously

The number N of systems whose representative points lie within a volume dv is

N = ρ dv

✐ dv = dq1 dq2 . . . dqs dp1 dp2 . . . dps

✎ s ☞ number of degrees of freedom in the ensamble
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Liouville’s Theorem (cont’d)

Consider an element of area in the qk − pk plane in phase space

the number of representative points
moving across the left-hand edge into the area per unit time is

ρ
dqk

dt
dpk = ρq̇k dpk

and the number moving across the lower edge into the area per unit time is

ρ
dpk

dt
dqk = ρṗk dqk

the total number of representative points
moving into the area dqk dpk per unit time is

ρ(q̇k dpk + ṗk dqk)
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Liouville’s Theorem (cont’d)

By Taylor series expansion
the number of representative points moving out of the area per unit time is

[

ρq̇k +
∂

∂qk

(ρq̇k) dqk

]

dpk +

[

ρṗk +
∂

∂pk

(ρṗk) dpk

]

dqk

the total increase in density in dqk dpk per unit time is

∂ρ

∂t
dqk dpk = −

[

∂

∂qk

(ρq̇k) +
∂

∂pk

(ρṗk)

]

dqk dpk

After dividing by dqk dpk and summing this expression over all possible values of k

∂ρ

∂t
+

s
∑

k=1

(

∂ρ

∂qk

q̇k + ρ
∂q̇k

∂qk

+
∂ρ

∂pk

ṗk + ρ
∂ṗk

∂pk

)

= 0

If the second partial derivatives of H are continuos ☞ Hamilton’s equations yield

∂q̇k

∂qk

+
∂ṗk

∂pk

= 0

⇓

∂ρ

∂t
+

s
∑

k=1

(

∂ρ

∂qk

dqk

dt
+

∂ρ

∂pk

dpk

dt

)

= 0 ⇒
dρ

dt
= 0
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The Virial Theorem

Consider a collection of particles
whose position vectors ~rα and momenta ~pα are bounded

☞ i.e., remain finite at all times

Define a quantity

S ≡
∑

α

~pα . ~rα

⇓

the time derivative of S is

dS

dt
=

∑

α

(~pα . ~̇rα + ~̇pα . ~rα)

⇓

The average value of dS/dt over a time interval τ is
〈

dS

dt

〉

=
1

τ

∫ τ

0

dS

dt
dt

=
S(τ) − S(0)

τ
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The Virial Theorem (cont’d)

〈

dS

dt

〉

=
S(τ) − S(0)

τ

If the system motion is periodic ⇒ S(τ) = S(0) and 〈Ṡ〉 ☞ vanishes
If the system does not exhibit any periodicity

⇓

we can make 〈Ṡ〉 as small as desired by allowing τ → ∞

⇓

in this limit
〈

∑

α

~pα . ~̇rα

〉

= −

〈

∑

α

~̇pα . ~rα

〉

⇒

〈

2
∑

α

Tα

〉

= −

〈

∑

α

~Fα . ~rα

〉

The sum over Tα is the total kinetic energy of the system

〈T 〉 = −
1

2

〈

∑

α

~Fα . ~rα

〉

(V)

The rhs of Eq. (V) was called by Clausius (1822-1888) the virial of the system
The average kinetic energy of a system of particles is equal to its virial
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The Virial Theorem (cont’d)

If the forces ~Fα can be derived from potentials Uα

⇓

〈T 〉 =
1

2

〈

∑

α

~rα . ~∇Uα

〉

If two particles interact according to a central power law force
F ∝ rn ☞ U = krn+1

⇓

~r . ~∇U = r
dU

dr
= k(n + 1)rn+1 = (n + 1)U

and the Virial Theorem becomes

〈T 〉 =
n + 1

2
〈U〉

If the particles have gravitational interaction ☞ n = −2

⇓

〈T 〉 = −
1

2
〈U〉
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Homework

✇ A particle moves in a circular orbit in a force field given by F (r) = −k/r2

Show that ☞ if k suddenly decreases to half its original value

⇓

the particle’s orbit is parabolic
clues

☛ the potential energy decreases to half its former value
When k → k/2

☛ the kinetic energy remains the same

Since the orbital is circular ☞ T = 〈T 〉 and U = 〈U〉
For F ∝ 1/r2 ☞ the Virial Theorem states

〈T 〉 = −
1

2
〈U〉

⇓

E = T + U = −
1

2
U + U =

1

2
U
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Homework (cont’d)

Consider the energy diagram

The point B is obtained from CB = CA − CD
According to the Virial Theorem ☞ E = U/2 → CB = CA/2

⇓

CD = CB = BA

⇓

If U suddenly is halved ☞ the total energy is raised by an amount equal to CB

⇓

the total energy is raised from B to C ☞ Efinal = 0 and the orbit is parabolic
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