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| Generalized Momenta I

Consider the motion of a single particle moving in one dimension

the kinetic energy is

T=-mzx

[ m O the mass of the particle
[0 « O its displacement

the particle’s linear momentum is

p=mzc

This can also be written as
oT B oL

P=%: ~ oz

because £L =T — U and the potential energy U is independent of z

Fall 2006 i i
Classical Mechanics Luis Anchordoqui
uUuwmMm



‘Generalized Momenta (cont’d)l

Consider a dynamical system described by F generalized coordinates ¢;
(fori=1,...,F)

By analogy with our previous discussion

J
we can define generalized momenta of the form
oL
P 0,

p; L is sometimes called the momentum conjugate to the coordinate g;
Lagrange's equation

i oL B oL _
dt \ 0g; oq;
can be re-written as

dpi o oL
dt N 8qi

Note that a generalized momentum
does not necessarily have the dimensions of linear momentum
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‘Generalized Momenta (cont’d)l

Suppose that the Lagrangian £ does not depend explicitly on some coordinate g,

4
dpy, _ oL _ 0
dt 0qp.
4
Pr = const.

The coordinate g, is said to be ignorable in this case
CONCLUSION
the generalized momentum associated with an ignorable coordinate
is a constant of the motion
EXAMPLE
The Lagrangian for a particle moving in a central potential
is independent of the angular coordinate 6

4

6 [ is an ignorable coordinate
Py = % = m1r? 60 is a constant of the motion
Of course [1 py is the angular momentum about the origin

which is conserved because a central force exerts no torque about the origin
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‘ Hamilton’s Equations I

Consider a dynamical system with F degrees of freedom
described by the generalized coordinates ¢; 1 ¢ =1,..., F
Suppose that neither 1" nor U depend explicitly on the time ¢
In conventional dynamical systems

[ the potential energy is generally independent of the ¢,
[I the kinetic energy takes the form of a homogeneous quadratic function of the ¢;

T= ) mydid
ij=1,F

[l m;; depends on the g; but not on the g¢;

U

oT
> Gine =2T
. 0q;
1=1,F

The generalized momentum conjugate to the ith generalized coordinate is

oL or
b= 0q;  0¢;

0 £L =T — U is the Lagrangian of the system
[1 U is independent of the ¢;
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‘Hamilton’s Equations (cont’d)l

Consider the function
H = Z ¢ipi — L = Z ¢Gpi—T+U
i=1,F i=1,F

If all of the conditions discussed above are satisfied

U
H=T+U

In other words [ the function H is equal to the total energy of the system
Consider the variation of the function H

_ , oc .. 0L
0H = ) (5%2% + ¢ 0p; — 0 0q; — Don 56]1:)
i—1.F d; dk

The first and third terms in the bracket cancel because [0 p; = 0L/0q;
Now [0 Lagrange's equation can be written as p; = 9L /0q;

\
OH = Z (¢i 6pi — i 0q;) (o)

i=1,F
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‘Hamilton’s Equations (cont’d)l

Suppose now [1 that we can express the total energy of the system H
solely as a function of the ¢; and the p; I with no explicit dependence on the ¢;

In other words [J suppose that we can write H = H(q;, p;)
When the energy is written in this fashion

U

it is generally termed the Hamiltonian of the system
The variation of the Hamiltonian function takes the form

oH = i;f <g§ op; + (895 5%‘) ()
A comparison of Eqgs. (&) and (&) yields
. OH : OH
T ops and P " 0,
fore=1,..., F

These 2F first-order differential equations are known as Hamilton'’s equations
Hamilton's equations are often a useful alternative to Lagrange’s equations
which take the form of F second-order differential equations
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| 1D Harmonic Oscillator I

Consider a one-dimensional harmonic oscillator
The kinetic and potential energies of the system are written

T=(1/2)mi? and U=(1/2) kz”

[0 2 U is the displacement
[0 m O is the mass

0 k>0
The generalized momentum conjugate to x is
oT 1 p?
=—c=mi=1===—
P= 5z 2 m
The Hamiltonian of the system takes the form
1p% 1
H=T+U=:-2 4 Zka?
2 m 2
Hamilton's equations yield
. 0OH p S L
r=—==— (which is just a restatement of the kinetic energy)
Op m
) , |
p=—o-= —kxz  (Newton's second law of motion for the system)
x
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|Motion in a Central Potentiall

Consider a particle of mass m moving in the central potential U (r)
The kinetic energy is
1 22 | 242
T = 5m (r+r<0°)
[0 (r,0) O are plane polar coordinates
The generalized momenta conjugate to r and 6 are

oT ]

r— <. =mrTr
P or

8T 2'

= —=m7r°60
Po 5
(X
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‘Motion in a Central Potential (cont’d)l

Hamilton's equations yield

f—aH—& and 9—8H— by
- Op, m ~ Opy mr2

(which are just restatements of the generalized momenta)

oOH W oU

br =" T mr or ()
OH
PO "0
The last equation implies that
Po 2 A
m (x)

[J A O is a constant
This can be combined with Eq. (F) to give

&_ﬁ_h_z_a_v ()
m  r3 or
OV=U/m

Of course [ Egs. (k) and () are the conventional equations of motion
for a particle moving in a central potential
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|Motion in a Central Potentiall

Consider a particle of mass m moving in 2D in the central potential U (r)
this is clearly a two degree of freedom dynamical system
The particle’s instantaneous position is most conveniently specified

4

plane polar coordinates » and ¢

these are our two generalized coordinates
The square of the particle’s velocity can be written as

v? =72+ (r6)?

the Lagrangian of the system takes the form

1 .
£ = §m(7'“2+7“202)—U(7“)
0L . 0L -
5 = m7 5 =mrf°—dU/dr
oL 5. 0L
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‘Motion in a Central Potential (cont’d)l

Equations of motion [1 Lagrange equations

d(ogy_og o dfogy 0L
dt \ or or dt \ 96 00

: aU
AN 9 2 —
(m7)—mr6o*+ a 0

%(mﬁé) =0

a
dt

_av
dr

20 =h

P—rf?=

OV =U/m
[1 h = constant
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‘ Phase Space I

Recall that
Y

The generalized coordinates g; define an s dimensional configuration space
with every point representing a state of the system
Likewise

4

The generalized momenta p; define an s-dimensional momentum space
representing a certain condition of motion of the system
Hamilton phase space [1 2s dimensional space consisting of g; and p;
which allows us to represent both the positions and the momenta of all particles
If the position and momenta of all the particles in a system are known
(at a given time)

4

these quantities can be used as initial conditions O (¢,(0),p;(0))

U

[1 the subsequent motion of the system is completely determined
[1 the representative point describing the system moves along a unique path phase
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‘ Phase Diagrams I

State of motion of 1-dimensional oscillator is completely specified by 2 quantities
x(t) and @(t)
(two quantities needed because differential equation of motion is second order)

x(t) and z(t) define coordinates of points in a 2-dimensional space

U

The Phase Space

In two dimensions the phase space is a phase plane

for general oscillator with n degrees of freedom [I 2n-dimensional phase space

[J As the time varies the point P(z, ) describing the state of the oscillating
particle will move along a certain phase path in the phase plane

[ For different initial conditions the motion will be described by different paths
[1 The totality of all phase paths constitutes the phase diagram of the oscillator
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‘Phase Diagrams (cont’d)l

simple harmonic oscillator
x(t) = Asin(wet — 9)
t(t) = Awg cos(wot — 6)
Eliminating ¢

22 72

T
A2 A2W2

This equation represents a family of elipses
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‘Phase Diagrams (cont’d)l

Total Energy £ = kA?/2 Angular Frequency w3 = k/m

T . T B
2E/k  2E/m

1

Each phase path corresponds to a definite total energy of the oscillator

No two phase paths of the oscillator can cross!!!

If they could cross [ this would imply that for a given set of initial conditions
the motion could proceed along different paths

U

This is impossible since the solution of the differential equation is unique
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| Statistical Mechanics I

For complex systems with a large collection of particles [ gas molecules

4

we are unable to identify the particular phase space point representing the system

U

we must devise some alternative approach to study the dynamics of such sytems
One possibility is to fill the phase space with a collection of points
each representing a possible condition of the system

U

[J any of which could be the actual system
We imagine a large number of systems
[1 each consistent with the known constraints

We are unable to discuss the details of the particles’ motion in the actual system

U

we substitute a discussion of an ensamble of equivalent systems
Each representative point corresponds to a single system of the ensamble
the motion of a particular point represents the independent motion of that system
No two of the phase path may ever intersect!!!
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| Liouville’s Theorem I

THEOREM
— Joseph Liouville (1809-1882) —
The density of representative points in phase space corresponding to
the motion of a system of particles remains constant during the motion

U

Define a density in phase p

[J must be sufficiently large to contain a large number of representative points
The volume elements of the phase space defining the density

[1 must be also sufficiently small so that the density varies continuously

The number N of systems whose representative points lie within a volume dv is
N = pdv

0 dv=dgidgs ... dgsdpdps ... dps
[J s 0 number of degrees of freedom in the ensamble
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‘ Liouville’s Theorem (cont’d)l

Consider an element of area in the g — pr plane in phase space

p, !

4

the number of representative points
moving across the left-hand edge into the area per unit time is

dqy,
225 dp. = pin d
and the number moving across the lower edge into the area per unit time is
dpy
2 don = opi d
P dt 4k = PPk Aqk

the total number of representative points
moving into the area dqi dpi per unit time is

p(dr dpr + Pr dqr)
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‘ Liouville’s Theorem (cont’d)l

By Taylor series expansion
the number of representative points moving out of the area per unit time is

0 )
i + ——(pdx) dar | dpk + | ppr + =— (ppr) dpi | d
[qu ar (pdr) Qk:] Dk [Ppk oo (pprK) pk] e

the total increase in density in dqi dpi per unit time is
op 0 0
9P g d dq d
a1 dx APK = [3 i (pgr) + A (Ppk)] 4k APk

After dividing by dgi dpr. and summing this expression over all possible values of k

- gy, Op . Opr '\ _
+ Z <anQk +'03Qk i 3pkpk +p3pk> =0

If the second partial derivatives of H are continuos [ Hamilton's equations yield

04~ Opg
+ 2P g
Oqr ~ Opg
\(}

Op  ~—( Op dqr | Op dpy dp
- =0=-—-=0
ot i ]; (8% dt i Opy, dt dt

20

Fall 2006 . . Luis Anchordoqui

Classical Mechanics

UWM



Fall 2006

21

| The Virial Theorem I

Consider a collection of particles
whose position vectors 7, and momenta p,, are bounded
[ i.e., remain finite at all times

Define a quantity
S=> Po . Ta

4

the time derivative of S is

as e o
dt — Z(pa . Ta T Dy - 7“@)

(6

U

The average value of dS/dt over a time interval 7 is

(@) = [ G
S(r) — 5(0)

T
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‘The Virial Theorem (cont’d)l

<d5> S(r) — S(0)

dt /) T

If the system motion is periodic = S(7) = S(0) and (S) O vanishes
If the system does not exhibit any periodicity

4
we can make (S) as small as desired by allowing 7 — oo
4
in this limit

() (T ) (T (T8

The sum over T, is the total kinetic energy of the system

<T>:—% <Zﬁa.m> (V)

The rhs of Eq. (*U) was called by Clausius (1822-1888) the virial of the system
The average kinetic energy of a system of particles is equal to its virial
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‘The Virial Theorem (cont’d)l

If the forces ﬁa can be derived from potentials U,

U

(T) = % <Zfa . ﬁUa>

(e

If two particles interact according to a central power law force
For®O U= kr™tt

J
= d
LV = rd—U — k(4 1) = (n+ 1)U
T
and the Virial Theorem becomes

n+1

1) =""—)

If the particles have gravitational interaction [ n = —2
J
1
(T) = - (U)
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| Homework I

[0 A particle moves in a circular orbit in a force field given by F(r) = —k/r?
Show that [ if k£ suddenly decreases to half its original value

U

the particle’s orbit is parabolic
CLUES

[] the potential energy decreases to half its former value
When k — k/2
[1 the kinetic energy remains the same

Since the orbital is circular 0 T'= (T') and U = (U)
For F' < 1/7? O the Virial Theorem states
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‘ Homework (cont’d) I

Consider the energy diagram

T8 = E original total energy
CA = U original potential energy
TO = Uc original centrifugal energy

The point B is obtained from CB = CA - CD
According to the Virial Theorem 0 E=U/2 - CB = CA/2

U
CD=CB=BA

J
If U suddenly is halved O the total energy is raised by an amount equal to CB

U

the total energy is raised from B to C' 0 Efgn. = 0 and the orbit is parabolic
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