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‘ Warm-up: Reduced Mass I

[0 15 object is of mass m; and is located at position vector 7;
[1 Consider 2 objects
O 2" object is of mass ms and is located at position vector i

Let the first object exert a force f;l on the second

U

Newton's Third Law O 2°¢ object exerts an equal and opposite force on the 15

J12 = —fa1
Suppose that there are no other forces in the problem

U

The equations of motion of our two objects are

2 =
m d T o ]?

1] —= = —
dt?

2 e —
dt?

U f=fa
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‘Warm-up: Reduced Mass (cont’d)l

The center of mass of our system is located at

= M1 T1 + M2 Ty
cm ——
mi + ma
rn ="em — ———————7T ro ="¢em + ——T
mi1 + mo m1 + me

O 7=7ry—1]
Substituting into the equations of motion
(making use of the fact that the c.m. of an isolated system does not accelerate)
we find that both equations yield

d*vr o
M a2 f
= -1m2 [ js called the reduced mass
mi+mo

U

We have effectively converted a 2-body problem into an equivalent 1-body problem
In the equivalent problem

[ f is the same as that acting on both objects (modulo a minus sign)
[1 the mass p is different and is less than either of my or mo
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| Cross Sections I

Let us now consider scattering due to the collision of two particles

[ 15 particle is of mass my and is located at position vector 7}
O 274 particle is of mass ms and is located at position vector 7

We restrict our discussion to particles which interact via conservative central forces
By definition [I there is zero net linear momentum in the c.m. frame at all times
if the 15 particle approaches the collision point with momentum |}
the 224 must approach with momentum —p'

Likewise [
if the 15¢ particle recedes from the collision point with momentum p )
then the 2°¢ must recede with momentum —p’
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‘ Cross Sections (cont’d) I

The interaction force is conservative

U

the total kinetic energy before and after the collision must be the same

It follows that
[1 magnitude of the final momentum vector p’
is equal to the magnitude of the initial momentum vector p’

U

the collision event is completely specified
once the angle 6 through which the first particle is scattered is given

Recall that
in the c.m. frame the 24 particle is scattered through the same angle

Fall 2006 . .
Classical Mechanics Luis Anchordoqui
UWM



‘ Cross Sections (cont’d) I

Suppose that the two particles interact via a potential U(r)
(where 7 is the distance separating the particles)

U

the 2-body problem can be converted into the equivalent 1-body problem

In this equivalent problem
a particle of mass p = mq msy/(m1 + ms) is scattered in the fixed potential U(r)
(where 7 is now the distance from the origin)
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‘ Cross Sections (cont’d) I

[J The 7 of the particle in the equivalent problem
[I relative position vector 75 — 77 in the original problem
[J The angle 6 through which the particle is scattered is the same in both set ups

The scattering angle 6 is largely determined by the so-called impact parameter b
which is the distance of closest approach of the two particles
in the absence of an interaction potential

In the equivalent problem b is the distance of closest approach to the origin
in the absence of an interaction potential
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‘ Cross Sections (cont’d) I

If b =0 [0 head-on collision < particles reverse direction after colliding 1 8 =7
If bis large [J we expect the two particles to miss one another entirely [1 6 = 0
The scattering angle 0 is a decreasing function of the impact parameter b

Scattering
center
Take plane polar coordinates (r, ¥/) for the particle in the equivalent problem

let particle approach the origin from the direction ¥ = 0
and attain its closest distance to the origin when v = ©

from symmetry [0 the anglea =3 ||  from simple geometry [l a =6
0=m—-26 (1)
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| Recall that I

The total energy of our planet is a conserved quantity

v oM
2 T
and that

T=re.+10 eg
\

the total energy per unit mass of an object in orbit around the Sun is

240702 GM

&= 2 T
using
0 h=1r20 O u=r"t
0 r=—h Z—Z (1 r. O latus rectum of the orbit
0 r.= Gh—12\4 O we=1;"

the orbital energy per unit mass is

p2 | (du\®
5—7[(@> +u —2uuc]
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‘ Cross Sections (cont’d) I

By analogy with the orbital energy per unit mass
the conserved total energy F in the equivalent problem
(which can be shown to be the same as the total energy in the original problem)
is given by

2 2
E:%[(Z—g) +u2| + U,

0 o =r-1

[1 h is the angular momentum per unit mass in the equivalent problem

The impact parameter specifies the angular momentum per unit mass

h = bvs

1/2 «\ 1/2
() =)
M M

Voo LI the approach velocity in the equivalent problem at large r

the total energy I/ must equal the kinetic energy 7if at r = co where U =0
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‘ Cross Sections (cont’d) I

It follows that

du 2—|—u2
dv

The above equation can be rearranged to give
dv b

Ty =Tg b’ + U (u)

du /1 —-b2u?—U(u)/Ty

Integration yields

mas bdu

°ch Vre-vwm Y

Umaz = 1/Tmin O Tmin is the distance of closest approach
by symmetry O (du/d?),,,.., =0=1-b%*u2,,, — U(tmaz)/Tg =0

Equations () and (1) enable us to calculate the function b(6)
for given interaction potential U(r) and energy T of the two particles in the c.m.

b(0) tells us which impact parameter corresponds to which scattering angle

and vice versa
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‘ Cross Sections (cont’d) I

Instead of two particles

U

consider two counter-propagating beams of identical particles
(with the same properties as the two particles described above)
which scatter one another via binary collisions

What is the angular distribution of the scattered particles?

[1 Consider pairs of particles whose impact parameters lie in the range b to b + db
[J The particles scattering angles lie in the range 6 to 6 + df
6 O is determined from inverting the function b(0) and df = |db(0)/d9|

[the modulus of db(0)/df is because b(f) is a decreasing function of 6]

Assuming (as seems reasonable) that the scattering is azimuthally symmetric
the range of solid angle into which the particles are scattered is

27 sin 6 db

2 =27 si —
d 7 sin 6 df db/dd
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‘ Cross Sections (cont’d) I

The annulus cross-sectional area through which incoming particles must pass
if they are to have impact parameters in the range b to b+ db is

Scallering

center
dAd =2nhdb

do = 2w bdb
The differential scattering cross-section is then
o b |db
d2  sind |dé
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‘ Cross Sections (cont’d) I

The differential scattering cross-section has units of area per steradian
It specifies the effective target area for scattering into a given range of solid angle
For two uniform beams scattering off one another
the differential scattering cross-section
effectively specifies the probability of scattering into a given range of solid angle
The total scattering cross-section is
(the integral of the differential cross-section over all solid angles)

do
ot — — df?
Otot /dﬂd

0ot Measures the effective target area for scattering in any direction

If the flux of particles per unit area per unit time of the two beams is F
(otherwise known as the intensity)

U

the number of particles of a given type scattered per unit time is simply

N =Fo
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‘ Rutherford Scattering FormuIaI

] In 1909 Ernest Rutherford was motivated to study
the scattering of alpha particles by thin metal fouls

[1 He constructed a genious experiment that becomes a standard method
to probe the subatomic world: the scattering process

e
|
. ’ |
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beam of He \\ beam of He
; _____________ v S—— e  X-2AIS

:=- solid angle ﬂj:)/ :

S i
P gt
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[1 It is rather remarkable that quantum mechanical treatment of Coulomb
scattering leads to same result as does the classical derivation

[1 This is indeed a fortunate circumstance because, if it were otherwise,
the disagreement at this early stage between classical theory and
experiment might have seriously delayed the progress of nuclear physics

Luis Anchordoqui

Classical Mechanics
UWM



Consider the scattering of particles in a Coulomb field

1 q192 k
U('r) p— — ;

AdTteg T

Equation (}) becomes

o° (b/r) dr
o /77— (R]Tg)T = 12

Integration leads to

e =

(k/b) K
V1 + (k/b)? - 2Ty

cos® =

After a bit of algebra this equation can be re-written as

b* = k? tan®* ©
Using ® =n7/2 —-0/2 = b=k cot(6/2)
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1
2 sin’®(6/2)

do

sin 0

b ‘db‘

K2 cot(6/2)
2 sinf sin’(0/2)

Using the trigonometric identity

sin @ = 2sin(6/2) cos(6/2)

we obtain Rutherford scattering formula

2 1 k2 1
o(0) = =

4 sin®(0/2)  16T32 sin(9/2)
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