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‘Internal Forces Between the Particles in a Systeml

[1 Thus far we have treated our dynamical problems in terms of single particles
even though we have considered extended objects
(such as projectiles, rockets, and planets)
we have not had deal with the internal interactions
between the many particles that make up the extended body
Newton’s Third Law plays a prominent role in the dynamic of a system
Assumptions:

[1 The forces exerted by two particles o and (3 on each other are

equal in magnitude and oposite in direction
If fap represents the force on the ath particle due to the Sth particle

U

the so called “weak” form of Newton's Third Law is
f:zﬂ — _.f,éa

[1 The forces exerted by two particles o and (3 on each other
in addition to being equal and opposite

must lie on a stright line joining the two particles

This more restricted form of Newton's Third Law is often called strong form
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‘Strong Form of Newton’s Third LawI
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| Center of Mass I

Consider a system composed of n particles with masses m, [l a=1...n
the total mass of the system is

M:Zma

If the vector connecting the origin with the ath particle is 7,

J
the vector defining the position of the system’s center of mass is
— 1
R = M maf"a
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‘Linear Momentum of a Systeml

If a certain group of particles constitute a system

U

the resultant force acting on a particle within the system is composed of two parts

[ external force &
[I the resultant of all forces whose origin lies outside the system
[1 internal force f;
[ the resultant of the forces arising from the interaction of all other (n — 1)
particles with the ath particle

f; = Z f;g = f;g = force on the ath particle due to Sth particle
B

The total force acting on the ath particle is then

—

F,=F® 4 f,
According to Newton’s Third Law

faﬁ — _fﬂa
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‘Linear Momentum of a System (cont’d)l

ma%’: _‘(ge) + ,ﬁx

summing over «

d2 S S
7 T = LR+ Y fos
« o' a g

af

] the summation in the left hand side 0 MR .
[ a = (3 do not enter in the second sum of the right hand side I f,, =0

0 sum of all external forces O ) F = F

Y fap = (fop + f3a)

o,BF o a<lp

which vanishes from Newton's Thrid Law |}

.
—

MR=F
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‘Linear Momentum of a System (cont’d)l

The total linear momentum of the system is

P = za:ma?a = %Za:maff’a = %(Mﬁ) = Mﬁ

(%
P=MR=F

Summing up

[1 The center of mass of a system moves as if it were a single particle
(of mass equal to the total mass of the system)
acted on by the total external force and independent of the nature of the

internal forces (as long as they follow f;g = — f,;;a )
[1 The linear momentum of a system is the same as if a single particle of mass M

were located at the position of the center of mass and moving in the manner
the center of mass moves

[1 The total linear momentum for a system free of external forces is a constant
and equal to the momentum of the center of mass
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‘Angular Momentum of a System (cont’d)l

It is convinient to describe a system by a position vector with respect to the c.m
The position vector r,, in the inertial reference frame system becomes

Ta =R4+1',

r'y O position of the vector particle o wrt c.m.
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‘Angular Momentum of a System (cont’d)l

The angular momentum of the ath particle about the origin is

La:'raxpa

summing over «

Fall 2006 . .
Classical Mechanics Luis Anchordoqui
UWM



Angular Momentum of a System (cont’d)

The middle two terms can be written as

<Z mar_"a> X ﬁ—|— R x % (Z mar_'/a>
which vanishes because
Zmar_”a = Zma(f’a — ﬁ) = Zmaf’a — ﬁZma
Zmar_”a — MR- MR =0

0 This indicates that ) Mot o specifies the position of the center of mass
in the center of mass coordinate system [ it is a null vector

E:M}?xﬁqtz:f’aqu’a:ﬁxﬁqLZ?f’aqu’a

[J The total angular momentum about an origin is the sum
of the angular momentum of the center of mass about that origin +
the angular momentum of the system about the position of the center of mass
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‘Angular Momentum of a System (cont’d)l

The time derivative of the angular momentum of the ath particle is

summing over alpha

L= La=Y (Fax F)+ > (Fux fup)

o a,Ba

the last term may be written as

" (Fa X fap) = Y [(Fa X fap) + (75 X faa)]

a,fFa a<f
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‘Angular Momentum of a System (cont’d)l

The vector connecting the ath particle and the Sth particle is
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‘Angular Momentum of a System (cont’d)l

since fag = —fga
\

> (Fa X fap) D (Fo = 75) X fap

o,fF o a<p

= > (Fap X fap)

a<p

Applying the strong version of Newton's Third Law U 7,5 X f;ﬁ =0
4

I= Zfa x F&) = ZTC&e) _ ()

[1 If the resultant of external torques about a given axis vanish
[ angular momentum of the system about that axis remains constant in time
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| Recall that: I

If some work W, is done on a particle by a force F in transforming the
- L] s 2 — —y
particle from condition 1 to condition 2 = Wy, = [ F . dF

q di  d

F . dr = mE . %dt
= m% . vdt
- %%(6. 7)dt
- %%(&)dt

F . dis an exact differential = work done by the total force F
acting on a particle is equal to its change in kinetic energy AT

1 2
W12 = (gmv ) .

|fT1 > Ty = Wia <0
[1 the particle has done work with a resulting decrease in its kinetic energy

2
1
= §m(v§ —v) =Ty, — Ty
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‘Energy of the Systeml

The work done on the system
in moving it from a configuration 1 (in which all coordinates 7%, are specified)
to a configuration 2 (in which the coordinates 7, have some different specification)
is

2
Wi = Z/ F, . dF,
o 1
2
= 3 [ dlmavi/2
o Y1

= To -1

—

F, 0 net resultant force acting on particle «
T=>,Ta=>,mqv2/2

[J Note that the individual particles may be rearranged in such a process
but the position of the c.m. could remain stationary
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‘Energy of the System (cont’d)l

using the relation [ F'a = r_”a +R

ro . Te = viz(rq’a—i—}_f) : (7“_"a—l—}?)

= (r'ar'a)+2 ("o . R)+ (R . R)
V242 (r'y . R)+V?
# =71’ and V O velocity of the c.m.

T = Zma v2 /2

= %:mav;2/2—|—%:maV2/2—l—ﬁ. %;mar_”a

Dzamar_”azo
T=13 mav? + = MV?
2 & G "9
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‘Energy of the System (cont’d)l

[1 The total kinetic energy of the system is equal to the sum of the kinetic energy
of a particle of mass M moving with velocity of the c.m. and the kinetic energy
of the motion of the indiuvidual particles relative to the c.m.

HOMEWORK

Use a procedure similar to that in obtaining
the conservation of energy of a particle in a conservative system
to show that

[1 The total energy for a conservative system is constant
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| Reduced Mass I

[0 15% object is of mass mq and is located at position vector 7}
[1 Consider 2 objects

[0 27d object is of mass mo and is located at position vector 7
Let the first object exert a force f;l on the second

U

Newton's Third Law O 24 object exerts an equal and opposite force on the 15
Ji2 = —Jfa1
Suppose that there are no other forces in the problem

U

The equations of motion of our two objects are

&r
mj —dt2 —f
Py
" g =1
0 f=fa
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‘ Reduced Mass (cont’d) I

The center of mass of our system is located at

= _ M1T1 + M2y
cm ——
mi + ma
rn ="em — ——————7T ro ="¢em +——T
mi1 + mo m1 + me

O 7=7ry—1]
Substituting into the equations of motion
(making use of the fact that the c.m. of an isolated system does not accelerate)
we find that both equations yield

d*vr o
M a2 f
b= % [] is called the reduced mass
U

We have effectively converted a 2-body problem into an equivalent 1-body problem
In the equivalent problem

[ f is the same as that acting on both objects (modulo a minus sign)
[1 the mass p is different and is less than either of my or mo
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|Elastic and Inelastic CoIIisionsI

Next [1 apply conservation laws to the interaction of two particles
Take advantage of simplifications by describing collisions on the c.m. system

moving

1= mass of the { struck } particle

mo =

In general * quantities refer to the c.m. system

W7 = initial : :

# = final } velocity of miin the lab system
up = initial velocity of mqin the c.m. system
7t = final y oL Y

similarly for wy = 0, va, w3, U5

T() = e . . . . lab
T total initial kinetic energy in { o } system
T1 . . . lab
T = total final kinetic energy of my in { cm } system
similarly for T and T5
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‘Elastic and Inelastic Collisions (cont’d)l

(8 Inmitial condition

{¢) Final condition {d) Final condition

vV O velocity of the c.m. in the lab system

¥ O angle through which m is deflected in the lab system

¢ O angle through which ms is deflected in the lab system

6 [ angle through which m; and mo are deflected in the c.m. system
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Energy Conservation in Particle’s Collisions

1 1 1
Q + §m1u% + §m2u§ = Emlv% + §m2v§

) I energy loss or win in the collision

[ @ > 0 0O exoergic collision [ kinetic energy is gained
[1 @ =0 0O elastic collision [ kinetic energy is conserved
[1 @ < 0 0O endoergic collision [1 kinetic energy is lost

Coefficient of restitution [ Newton’s rule

_ o2 — v
6 —_—

only applies to ¥ components along the normal (aa’) to the plane of contact (bb')
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