Classical Mechanics

Luis Anchordoqui UWM

Fall 2007

Reference text books

- ✓ **J. R. Taylor**Classical Mechanics

 University Science Books
- J. B. Marion and S. T. Thorton

 Classical Dynamics of Particles and Systems

 Saunders College Publishing
- ✓ V. D. Barger and M. G. Olsson

 Classical Mechanics: A Modern Perspective

 McGraw-Hill

 Mc

Syllabus

- **☞** Fundamental aspects of Newton's theory of motion
- A Newton's Laws A Projectiles Conservation Laws Rockets
- Oscillations
- Motion in Non-Inertial Reference Frames
- Newtonian Gravity
- A Newton's Law Ocean Tides Poisson's Equation
- Motions of the planets in the Solar System
- midterm exam (Thursday, October 18, 11:00 12:15 am)
- Lagrangian Mechanics
- △ Calculus of Variations △ Lagrange Equations △ Holonomic Systems
- Dynamics of a System of Particles
- △ Center of Mass △ Elastic and Inelastic Collisions △ Cross Sections
- Motion of rigid bodies
- midterm exam (Thursday, November 29, 11:00 12:15 am)
- Hamiltonian Mechanics
- **⇒ final exam** (Tuesday, December 18, 7:30 9:30 am) http://www.gravity.phys.uwm.edu/∼doqui/

Historical Overview

- **☞** Greeks first to think seriously about mechanics (more than 2000 yr ago)
- Development of mechanics as we know today began

Galileo (1564 - 1642) and Newton (1642 -1727)

 Development of two completely equivalent formulations of mechanics (late XVIII and early XIX centuries)

Lagrange (1564 - 1642) and Hamilton (1805 - 1865)

provide dramatically simpler solutions to many complicated problems

- **▼ XX** ⇔ became clear classical mechanics does not correctly describe
 - motion of objects moving close to the speed of light
 - motion of microscopic particles inside atoms

 \downarrow

Development of two completely new forms of mechanics

Relativistic Mechanics

Quatum Mechanics

★ Last few decades ⇒ with the advent of chaos theory research in classical mechanics has been rekindled!

Scalars and Vectors

- **≅** Physical quantities ⇒ represented by 2 distinct classes of objects
- Scalars: quantities that are invariant under coordinate transformations (denoted by real numbers)
- Line elements (and, therefore, vectors) are movable do not carry intrinsic position information
- Vectors possess a magnitude and a direction
 Scalars possess a magnitude but no direction

There are two approaches to vector analysis

- $rightharpoonup Geometric approach <math>\Rightarrow$ based on line elements in space

In physics • we adopt second approach

Coordinate Transformations

- ightharpoonup Consider a point P with coordinates (x_1, x_2)
- o Consider a new coordinate system generated via rotation of angle heta

ightharpoonup which are the P coordinates in the prime system?

 $x_1' \Rightarrow \text{projection of } x_1 \text{ onto } x_1' - \text{axis} + \text{projection of } x_2 \text{ onto } x_1' - \text{axis}$

$$x_1' = x_1 \cos \theta + x_2 \sin \theta$$
$$= x_1 \cos \theta + x_2 \cos(\pi/2 - \theta)$$

 $x_2' \Rightarrow \text{projection of } x_2 \text{ onto } x_2' - \text{axis} + \text{projection of } x_2 \text{ onto } x_2' - \text{axis}$

$$x_2' = -x_1 \sin \theta + x_2 \cos \theta$$
$$= x_1 \cos(\pi/2 + \theta) + x_2 \cos \theta$$

Coordinate Transformations (cont'd)

NOTATION

angle between
$$x_i'$$
 -axis and x_j -axis $\equiv (x_i', x_j)$

direction cosine of the x_i' -axis relative to x_j -axis $> \lambda_{ij} \equiv \cos(x_i',x_j)$

$$\lambda_{11} = \cos(x_1', x_1) = \cos \theta$$

$$\lambda_{12} = \cos(x_1', x_2) = \cos(\pi/2 - \theta) = \sin \theta$$

$$\lambda_{21} = \cos(x_2', x_1) = \cos(\pi/2 + \theta) = -\sin \theta$$

$$\lambda_{22} = \cos(x_2', x_2) = \cos \theta$$

EQUATIONS OF TRANSFORMATION BECOME

$$x'_{1} = x_{1} \cos(x'_{1}, x_{1}) + x_{2} \cos(x'_{1}, x_{2})$$

$$= \lambda_{11} x_{1} + \lambda_{12} x_{2}$$

$$x'_{2} = x_{1} \cos(x'_{2}, x_{1}) + x_{2} \cos(x'_{2}, x_{2})$$

$$= \lambda_{21} x_{1} + \lambda_{22} x_{2}$$

Coordinate Transformations (cont'd)

GENERALIZATION FOR 3 DIMENSIONS

$$x'_{1} = \lambda_{11} x_{1} + \lambda_{12} x_{2} + \lambda_{13} x_{3}$$

$$x'_{2} = \lambda_{21} x_{1} + \lambda_{22} x_{2} + \lambda_{23} x_{3}$$

$$x'_{3} = \lambda_{31} x_{1} + \lambda_{32} x_{2} + \lambda_{33} x_{3}$$

SUMMATION NOTATION

$$x_i' = \sum_{j=1}^{3} \lambda_{ij} x_j$$
 $i = 1, 2, 3$

INVERSE TRANSFORMATION

$$x_i = \sum_{j=1}^{3} \lambda_{ji} x_j$$
 $i = 1, 2, 3$

ROTATION MATRIX

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix}$$

Orthogonality of Rotation Matrices

Euler's Rotation Theorem:

riangle Any rotation can be given as a composition of rotations about 3 axis and hence can be represented by a 3×3 matrix operating on a vector

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 ${\mathfrak S}$ In a rotation a vector must keep its original length ${\mathscr Z}$ $x_i'x_i'=x_ix_i$ Transformation Equation

$$x_{i}x_{i} = (\lambda_{ij}x_{j})(\lambda_{ik}x_{k})$$

$$= \lambda_{ij}(x_{j}\lambda_{ik})x_{k}$$

$$= \lambda_{ij}(\lambda_{ik}x_{j})x_{k}$$

$$= \lambda_{ij}\lambda_{ik}x_{j}x_{k}$$

$$= x_{i}x_{i} \Leftrightarrow \lambda_{ij}\lambda_{ik} = \delta_{jk} \qquad (i, j, k = 1, 2, 3)$$

Kronecker delta

$$\delta_{ij} = \begin{cases} 0, & \text{if } i \neq k \\ 1, & \text{if } i = k \end{cases}$$
 coordinate axes in each of the systems are mutually perpendicular

 $oxed{s}$ Consider coordinate axis rotated counterclockwise 90° about the x_3 -axis

In such a rotation $x_1' = x_2, x_2' = -x_1, x_3' = x_3$ The only nonvanishing cosines are:

$$cos(x'_1, x_2) = 1 = \lambda_{12}
cos(x'_2, x_1) = -1 = \lambda_{21}
cos(x'_3, x_3) = 1 = \lambda_{33}$$

The transformation matrix looks like:

$$\lambda_1 = \left(egin{array}{ccc} 0 & 1 & 0 \ -1 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

lacktriangleq Next consider the counterclockwise rotation through 90° about the x_1 -axis

In such a rotation $x_1' = x_1, x_2' = x_3, x_3' = -x_2,$ with

$$\boldsymbol{\lambda_2} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right)$$

The rotation about the x_3 -axis is defined by $\vec{x}' = \lambda_1 \vec{x}$ The rotation about the new x'-axis is defined by $\vec{x}'' = \lambda_2 \vec{x}'$ The transformation matrix for the combined transformation is

$$\vec{x}'' = \lambda_2 \lambda_1 \vec{x}$$

$$\begin{pmatrix} x_1'' \\ x_2'' \\ x_3'' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= \begin{pmatrix} x_2 \\ x_3 \\ x_1 \end{pmatrix}$$

The two rotations may be represented by a single matrix

$$\lambda_3 = \lambda_2 \lambda_1 = \left(egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}
ight)$$

The order in which the transformation matrices operate on \vec{x} is

IMPORTANT

$$\lambda_{4} = \lambda_{1}\lambda_{2}
= \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}
= \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}
\neq \lambda_{3}$$

PRODUCT OF MATRICES IS NOT COMMUTATIVE

 \clubsuit Different final orientations of the parallelepiped that undergoes rotations corresponding to two rotation matrices $\lambda_A \, \lambda_B$ when successive rotations are made in different order

The Scalar Product

- **✓** A scalar quantity is invariant under all possible rotational transformations
- **■** Individual components of a vector are not scalars

they change under rotational transformation

➤ Can we form a scalar combining one or more vector components?

 Suppose that we were to define the "ampersand" product

$$\vec{x} \& \vec{y} = x_1 y_2 + x_2 y_3 + x_3 y_1 = S$$

Is $\vec{x} \& \vec{y}$ invariant under transformation as must be the case if S is a scalar number?

$$\Rightarrow$$
 Take $\vec{x}(1,0,0,0)$ and $\vec{y}(0,1,0) \Rightarrow \vec{x} \& \vec{y} = 1$

riangle rotate the basis through 45° degrees about the z-axis

$$\Downarrow$$

$$\vec{x}' = (1/\sqrt{2}, -1/\sqrt{2}, 0) \text{ and } \vec{y}' = (1/\sqrt{2}, 1/\sqrt{2}, 0) \Rightarrow \vec{x}' \& \vec{y}' = 1/2$$

Not invariant under rotational transformation

The Scalar Product: 2^{nd} trial

Consider now the dot product $\vec{x} \cdot \vec{y} = \sum_i x_i y_i$

$$\vec{x}' \cdot \vec{y}' = \sum_{i} x_{i}' y_{i}'$$

$$= \sum_{i} \left(\sum_{j} \lambda_{ij} x_{j} \right) \left(\sum_{k} \lambda_{ik} y_{k} \right)$$

$$= \sum_{jk} \left(\sum_{i} \lambda_{ij} \lambda_{ik} \right) x_{j} y_{k}$$

$$= \sum_{j} \left(\sum_{k} \delta_{jk} x_{j} y_{k} \right)$$

$$= \sum_{j} x_{j} y_{j}$$

$$= \vec{x} \cdot \vec{y}$$

Invariant under rotational transformations !!!

Unit Vectors

◆ To describe a vector in terms of the component along the three coordinate axis together with convinient specification of the axis

Introduce unit vectors vectors having a length equal to the unit of length used along the particular coordinate axis

The following ways of expressing the vector \vec{x} are equivalent:

$$\vec{x} = (x_1, x_2, x_3)$$

$$= x_1 e_1 + x_2 e_2 + x_3 e_3$$

$$= \sum_{i=1}^{3} x_i e_i$$

$$= x_1 \hat{1} + x_2 \hat{1} + x_3 \hat{k}$$

If any two unit vectors are orthogonal

$$egin{array}{c} iglet oldsymbol{e_i} \cdot oldsymbol{e_j} = \delta_{ij} \end{array}$$

The Vector Product

$$\vec{c} = \vec{a} \times \vec{b}$$

Components of \vec{c} defined by the relation

$$c_i \equiv \sum_{jk} \epsilon_{ijk} a_j b_k$$

Levi-Civita density

$$\epsilon_{ijk} = \begin{cases} 0, \\ +1, \\ -1, \end{cases}$$

 $\epsilon_{ijk} = \begin{cases} 0, & \text{if any index is equal to any other index} \\ +1, & \text{if } i, j, k \text{ form an } even \text{ permutation of } 1, 2, 3 \\ -1, & \text{if } i, j, k \text{ form an } odd \text{ permutation of } 1, 2, 3 \end{cases}$

$$c_1 = \sum_{jk} \epsilon_{1jk} \ a_j b_k$$

$$= \epsilon_{123} \ a_2 b_3 + \epsilon_{132} \ a_3 b_2$$

$$= a_2 b_3 - a_3 b_2$$

$$c_2 = a_3 b_1 - a_1 b_3$$

Vector Operations

HOMEWORK

Scalar Product

$$\vec{a} \cdot \vec{b} = |\vec{a}| \, |\vec{b}| \, \cos \theta$$

Vector Product

$$|\vec{a} \times \vec{b}| = |\vec{a}| \, |\vec{b}| \, \sin \theta$$

 $heta \equiv$ angle between $ec{a}$ and $ec{b}$

Homework Clues

Scalar Product

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \sum_{i} \frac{a_i}{|\vec{a}|} \frac{b_i}{|\vec{b}|}$$

 $\frac{a_i}{|a|} \equiv$ direction cosines \blacktriangleleft Sum of direction cosines is the cosine of θ

$$(|\vec{a}| |\vec{b}| \sin \theta)^{2} = |\vec{a}|^{2} |\vec{b}|^{2} - |\vec{a}|^{2} |\vec{b}|^{2} \cos^{2} \theta$$

$$= \left(\sum_{i} a_{i}^{2}\right) \left(\sum_{i} b_{i}^{2}\right) - \left(\sum_{i} a_{i} b_{i}\right)^{2}$$

$$= (a_{2}b_{3} - a_{3}b_{2})^{2} + (a_{3}b_{1} - a_{1}b_{3})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2}$$

If we take the positive square root of both sides

$$|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$$

Differentiation of a scalar with respect to a scalar

 $\mathfrak S$ If a scalar function $\phi(s)$ is differentiated with respect to a scalar variable s, because neither part of the derivative can change under coordinate transformation, the derivative itself cannot change and must be a scalar

Because of scalar identity \blacksquare in the x_i and x_i' coordinate systems

$$\psi$$

$$\phi = \phi' \text{ and } s = s'$$

 \Downarrow

$$d\phi = d\phi'$$
 and $ds = ds'$

 \Downarrow

$$\frac{d\phi}{ds} = \frac{d\phi'}{ds'} = \left(\frac{d\phi}{ds}\right)'$$

Differentiation of a vector with respect to a scalar

The components of a vector \vec{a} transform according to

$$a_i' = \sum_j \lambda_{ij} \, a_j$$

$$\frac{da_i'}{ds'} = \frac{d}{ds'} \sum_j \lambda_{ij} a_j$$

$$= \sum_j \lambda_{ij} \frac{da_j}{ds'}$$

but of course
$$s=s' \blacktriangleleft \frac{da_i'}{ds'} = \left(\frac{da_i}{ds}\right)' = \sum_j \lambda_{ij} \left(\frac{da_j}{ds}\right)$$

 $d\vec{a}/ds$ is a vector

Useful Formulae

Sum Rules

$$\frac{d}{ds}(\vec{a} + \vec{b}) = \frac{d\vec{a}}{ds} + \frac{d\vec{b}}{ds}$$

$$\frac{d}{ds}(\vec{a} \cdot \vec{b}) = \vec{a} \cdot \frac{d\vec{b}}{ds} + \frac{d\vec{a}}{ds} \cdot \vec{b}$$

$$\frac{d}{ds}(\vec{a} \times \vec{b}) = \vec{a} \times \frac{d\vec{b}}{ds} + \frac{d\vec{a}}{ds} \times \vec{b}$$

$$\frac{d}{ds}(\phi \vec{a}) = \phi \frac{d\vec{a}}{ds} + \frac{d\phi}{ds}\vec{a}$$

Physical Examples of derivatives

$$\vec{r} = \sum x_i e_i$$
 position

$$\vec{v} = \dot{\vec{r}} = \sum_{i} \frac{dx_{i}}{dt} e_{i}$$
 velocity

$$\vec{a} = \dot{\vec{v}} = \ddot{\vec{r}} = \sum_{i} \frac{d^2 x_i}{dt^2} e_i$$
 acceleration

Useful Formulae (cont'd)

Gradient operator

$$\operatorname{grad} \equiv \vec{\nabla} = \sum_{i} e_{i} \; \frac{\partial}{\partial x_{i}}$$

The gradient operator can:

(a) operate directly on a scalar function

$$\vec{\nabla}\phi$$

(b) be used in a scalar product with a vector function \rightarrow the divergence

$$\vec{\nabla}.\vec{a}$$

(c) be used in a vector product with a vector function \rightarrow the curl

$$\vec{\nabla} \times \vec{a}$$

Integration of vectors

$$\int_{V} \vec{a} \ dv = \left(\int_{V} a_1 \ dv, \int_{V} a_2 \ dv, \int_{V} a_3 \ dv \right)$$