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‘Sy"abusl

Fundamental aspects of Newton’s theory of motion
Newton's Laws [ Projectiles [1 Conservation Laws [1 Rockets
Oscillations

Motion in Non-Inertial Reference Frames

Newtonian Gravity

Newton's Law [0 Ocean Tides [ Poisson’'s Equation

Motions of the planets in the Solar System

midterm exam (Thursday, October 18, 11:00 - 12:15 am)
Lagrangian Mechanics

Calculus of Variations [J Lagrange Equations [J Holonomic Systems
Dynamics of a System of Particles

Center of Mass [ Elastic and Inelastic Collisions [ Cross Sections
Motion of rigid bodies

midterm exam (Thursday, November 29, 11:00 - 12:15 am)
Hamiltonian Mechanics

final exam (Tuesday, December 18, 7:30 - 9:30 am)

ttp://www.gravity.phys.uwm.edu/~doqui/
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| Historical Overview I

[1 Greeks first to think seriously about mechanics (more than 2000 yr ago)

[1 Development of mechanics as we know today began

U
Galileo (1564 - 1642) and Newton (1642 -1727)

[1 Development of two completely equivalent formulations of mechanics

(late XVIII and early XIX centuries)

U
Lagrange (1564 - 1642) and Hamilton (1805 - 1865)

U

provide dramatically simpler solutions to many complicated problems
[ XX < became clear classical mechanics does not correctly describe
e motion of objects moving close to the speed of light

e motion of microscopic particles inside atoms

U

Development of two completely new forms of mechanics
Relativistic Mechanics Quatum Mechanics

[1 Last few decades = with the advent of chaos theory
research in classical mechanics has been rekindled!
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| Scalars and Vectors I

[ Physical quantities = represented by 2 distinct classes of objects
Scalars: quantities that are invariant under coordinate transformations
(denoted by real numbers)

Vectors: defined in terms of transformation properties
_>

(represented by directed line elements in space e.g. PQ )

Line elements (and, therefore, vectors) are movable
do not carry intrinsic position information

Vectors possess a magnitude and a direction
Scalars possess a magnitude but no direction

There are two approaches to vector analysis

Geometric approach = based on line elements in space
Coordinate approach = assumes that space is defined by Cartesian coordinates
and uses these to characterize vectors

In physics [1 we adopt second approach
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| Coordinate Transformations I

(1 Consider a point P with coordinates (x1,x2)
[1 Consider a new coordinate system generated via rotation of angle 6

[1 which are the P coordinates in the prime system?
[0 x| = projection of z; onto x/-axis + projection of x5 onto x}-axis

Ty = x1c080 + z28ind

= x1cos0 + xycos(m/2 —6)

[0 x5 = projection of x5 onto z4-axis 4+ projection of x5 onto z5-axis

vy, = —x18in6+ x5 cosb

= x1cos(m/2+0)+ x2cosb
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‘Coordinate Transformations (cont’d)l

NOTATION
angle between z) -axis and xj-axis = (x}, z;)

U

direction cosine of the z;-axis relative to xj;-axis U \;; = cos(x;,x;)

EQUATIONS OF TRANSFORMATION BECOME

x1 cos(xy, 1) + T2 cos(zy, T2)

A11T1 + A12T2

x1 cos(Zgy, T1) + T2 cos(xy, T2)

A21T1 + Aoa®a
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‘Coordinate Transformations (cont’d)l

GENERALIZATION FOR 3 DIMENSIONS

!/
r7 = A121 + A2 T2 + A3 T3

!/
Ty = A21 1 + A2 To + Ao3 T3

!/
T3 = A31 T1 + A32 T2 + A33 23

SUMMATION NOTATION
3
x;:Z)\wxj ’l::]., 2,3
7j=1
INVERSE TRANSFORMATION

3
xi:Z)\ji:cj ’l::]., 2,3
j=1

ROTATION MATRIX
A1 A2 Ais
A= do1 A2 Ao
A3l A3z Ass
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‘Orthogonality of Rotation Matricesl

Euler’'s Rotation Theorem:

[1 Any rotation can be given as a composition of rotations about 3 axis
and hence can be represented by a 3 X 3 matrix operating on a vector

/
1 A1 A2 Ais T1
/
T A21 A2g  Aos T2
/
x5 A31 A3z Ass T3

[J In a rotation a vector must keep its original length [ zz) = z;x;
Transformation Equation

(Xijz;) (Aikr)

= Aijzjdir) T
= Aij(Ainz;) Tk
= AijAikZ; Tk
= T;%; & AijAik = 0k (¢, 4, k=1, 2, 3)
[l Kronecker delta
5. — { 0, .if z * k coordinate axes in ea(fh of the systems
* 1, ifi =k are mutually perpendicular

Orthogonality condition guarantees 0 A~! = AT and ATA =1
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Geometrical Significance of Transformation Matrices

[] Consider coordinate axis rotated counterclockwise 90° about the x3-axis

X5

Ay
e
90" rotation

about xy-dxis

In such a rotation 0 2} = 23, b = —x1, 25 = x3
The only nonvanishing cosines are:

cos(zl,xz2) = 1 =
cos(zh, 1) = —1 =
cos(xzj,z3) = 1 =

The transformation matrix looks like:
0 1 0
-1 0 0
0 0 1
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Geometrical Significance of Transformation Matrices (cont’d)

[1 Next consider the counterclockwise rotation through 90° about the x;-axis

Wi~ rotation
nhout x,-axis

In such a rotation U z| = x1, 5 = 3, 25 = —x4, with
1 0 O
Ay = 0 0 1
0 —1 O

The rotation about the z3-axis is defined by 7' = A\
The rotation about the new z’-axis is defined by z'' = X3 7’
The transformation matrix for the combined transformation is

=11 .
r = )\2A1£C
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Geometrical Significance of Transformation Matrices (cont’d)

W rotation
ahout x,-axis
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Geometrical Significance of Transformation Matrices (cont’d)

The two rotations may be represented by a single matrix

The order in which the transformation matrices operate on & is

IMPORTANT

A1 A2
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Geometrical Significance of Transformation Matrices (cont’d)

PRODUCT OF MATRICES
IS NOT COMMUTATIVE

1;!1]" rotation L.HJ rotation
about x,-axis ' about x-axis

h
B u1.;|.|.|1‘.lr'|. r':[: :] ";'U':' rolation
Elbljul X -axis about x;-axis

[1 Different final orientations of the parallelepiped that undergoes rotations
corresponding to two rotation matrices A g \p
when successive rotations are made in different order
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| The Scalar Product I

[1 A scalar quantity is invariant under all possible rotational transformations
[ Individual components of a vector are not scalars

U

they change under rotational transformation

[J Can we form a scalar combining one or more vector components?
Suppose that we were to define the “ampersand” product

(X
T&Y=x1y2 +22y3 + 2371 = S

|s &4/ invariant under transformation as must be the case if S is a scalar number?
[0 Take #(1,0,0,) and 4(0,1,0) = £&y =1
[] rotate the basis through 45° degrees about the z-axis
4
# = (1/V2, ~1/V2, 0) and 7' = (1/v2, 1/v2, 0) = ¥ & 7/

[1 Not invariant under rotational transformation

1/2
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|The Scalar Product: 24 triaII

Consider now the dot product U .5 =) . x;y;

[ Take x; = Zj )\ijilfj and yé — Zk )\zk:yk:

Invariant under rotational transformations !!!
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| Unit Vectors I

[] To describe a vector in terms of the component along the three
coordinate axis together with convinient specification of the axis

U

Introduce unit vectors [J vectors having a length equal to the unit of length
used along the particular coordinate axis

The following ways of expressing the vector ¥ are equivalent:

r = (xh X2, 3’)3)

= 1€1 + T2€ez + T3eg
3
= E Li€4
i=1
= T11+ 3323 + x3k

If any two unit vectors are orthogonal

U

€; . ej :57;j
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| The Vector Product I

c=axb

Components of ¢ defined by the relation

Levi-Civita density

0, if any index is equal to any other index
€ijk = § +1, if ¢, 7, k form an even permutationof 1, 2, 3
—1, if 7, 5, kform an odd permutationof 1, 2, 3

cC1 = E €15k ajbk
Ik

= €123 a2b3 + €132 asbo

asbs — asbs

co = a3by — a1b3

c3 = a1by — asb;
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‘ Vector Operations I

HOMEWORK

Scalar Product

@.b=|al|b| cosb

Vector Product

@ x b| = |d]||b| sin6

6 = angle between a and b
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| Homework Clues I

Scalar Product

(]

ﬁ = direction cosines [1 Sum of direction cosines is the cosine of 8

7
a

Vector Product

(1@ |b] sing)* = |al® |b|* — |a|* |b]* cos®

- () (59)- (2]

= (agbz — azb2)? + (azby — a1b3)® + (a1b2 — azb1)?

If we take the positive square root of both sides
@ x b| = |d@]||b| sin 6
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‘ Differentiation of a scalar with respect to a scalarl

[l If a scalar function ¢(s) is differentiated with respect to a scalar variable
s, because neither part of the derivative can change under coordinate
transformation, the derivative itself cannot change and must be a scalar

Because of scalar identity U in the x; and z. coordinate systems

\
¢»=¢ and s =5’

J
d¢ = d¢' andds = ds’
\

dqb_dgb’_(dgb)'
ds _ds  \ds
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‘ Differentiation of a vector with respect to a scalarl

The components of a vector a transform according to

l — . .
J

U

d
@ Z )\ijaj
J

da;
= L Nigy
J

da’. \/ da.:
but of course s =" 0 = = (‘iiasz) =3, Aij (%)
U

dd/ds is a vector
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| Useful Formulae I

Sum Rules

ds S S
d . - _ db dd =
%(axb)—ax%+%xb
d . . da do,
£(¢a) ds + dsa
Physical Examples of derivatives
r = Xi€; position
i =7 = azi e; locit
V=T~= dt i VEIOCIlY

- dzﬂ?q; )
a=v=71= E —— e; acceleration
dt?

1
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‘ Useful Formulae (cont’d)l

Gradient operator

= a
d = _EZ—
gra, V 7;e s

The gradient operator can:

(a) operate directly on a scalar function
Ve
(b) be used in a scalar product with a vector function — the divergence
V.d
(c) be used in a vector product with a vector function — the curl
V xa

Integration of vectors

/FL dv:(/al dv,/ag dv,/ag dv)
1% 1% 1% 1%
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