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  Inelastic Scattering
In switching from a muon to a proton target                                         

jµ(∼ uγµu) by proton current Jµ(∼ uΓµu)

This is inadequate to describe inelastic events                                             
because final state is not a single fermion                                      
described by a Dirac     entry in matrix current

Therefore ☛      must have a more complex structure Jµ

Square of invariant amplitude                             is generalized to|M|2 =
e4

q4
Lµν
(e)L

(µ)
µν

|M|2 ∝ L(e)
µν Wµν

Lµν
(e) =

1

2
Tr[(!k′ +me) γ

µ ( !k +me) γ
ν ]

Leptonic part of diagram above photon propagator is left unchanged

we replaced lepton current

ū

☛

k k′

proton

hadrons

Figure 4.3: Lowest-order diagram for ep → eX.

better spatial resolution. This can be done simply by requiring a large energy
loss of the bombarding electron. There is, however, a catch: because of the
large transfer of energy, the proton will often break up. The picture of
Fig. 4.2 would therefore need to be generalized to Fig. 4.3. For modest −q2,
one might just excite the proton into a ∆-state and hence produce an extra
π-meson, that is ep → e∆+ → epπ0. In this case, the square of the invariant
mass is W 2 # M2

∆. When −q2 is very large, however, the debris becomes so
messy that the initial state proton loses its identity completely and a new
formalism must be devised to extract information from the measurement.

The problem facing us now is illustrated by recalling (4.1.10), (4.1.11),
and Fig. 4.2. The switch from a muon to a proton target was made by
replacing the lepton current jµ(∼ uγµu) by a proton current Jµ(∼ uΓµu), and
the most general form of Γµ was constructed. This is inadequate to describe
the inelastic events of Fig. 4.3 because the final state is not a single fermion
described by a Dirac u entry in the matrix current. Therefore, Jµ must
have a more complex structure than (4.1.11). The square of the invariant
amplitude (3.2.37) is generalized to

|M|2 ∝ L(e)
µν W µν , (4.1.18)

where L(e)
µν represents the lepton tensor of (3.2.41), since everything in the

leptonic part of the diagram above the photon propagator in Fig. 4.3 is left
unchanged. The hadronic tensor W µν serves to parametrize our ignorance of
the form of the current at the end of the propagator. The most general form
of the tensor W µν must now be constructed out of gµν and the independent
momenta p and q (with p′ = p+q); γµ is not included as we are parametrizing
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Hadronic Tensor
parametrizes our ignorance of form of current at end of propagatorWµν

Most general form of tensor        Wµν

gµνis constructed out of       and independent momenta   and   p q

p′ = p+ q
γµ

is not included as we are parametrizing |M|2
which is already summed and averaged over spins

Wµν = −W1g
µν +

W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν)

We have omitted antisymmetric contributions to                                      
since their contribution to cross section vanishes                             
because tensor        is symmetric

Wµν

L(e)
µν

Note omission of       in our notation                                           
this spot is reserved for a parity violating structure function              
when a neutrino beam is substituted for the electron beam                            
so that the virtual photon probe is replaced by a weak boson

W3

(with              )
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Vertex Constraints
Current conservation at vertex requires qµW

µν = qνW
µν = 0

0 = qνW
µν

= −qνW1g
µν +

W2

M2
(p . q)pµ +

W4

M2
q2qµ +

W5

M2
[q2pµ + (p . q)qµ]

Setting coefficients of     and     to zero we findqµ pµ

−W1 +
W4

M2
q2 +

W5

M2
(p . q) = 0

W2

M2
(p . q) +

W5

M2
q2 = 0

which lead to W5 = −p . q

q2
W2

W4 =

(
p . q

q2

)2

W2 +
M2

q2
W1
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New invariants
Only 2 of 4 inelastic structure functions are independent        
and we can write without loss of generality

⦁⦁

Wµν = W1

(
−gµν +

qµqν

q2

)
+W2

1

M2

(
pµ − p . q

q2
qµ

)(
pν − p . q

q2
qν
)

             are functions of Lorentz scalar variables                        
that can be constructed from 4-momenta at hadronic vertex

Wi

Unlike elastic scattering ☛ there are two independent variables
and we choose

⦁⦁

q2 and ν ≡ p . q

M

Invariant mass    of final hadronic system is related to⦁⦁ W q2ν and by

W 2 = (p+ q)2 = M2 + 2Mν + q2

✦
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Tensor Product
To evaluate cross section for              ep → eX

e−µ− → e−µ−straightforward repetition of calculation for scattering 

Using

and noting we findqµL(e)
µν = qνL(e)

µν = 0

Lµν
(e)Wµν = 4W1(k . k

′) +
2W2

M2
[2(p . k)(p . k′)−M2k . k′]

In laboratory frame this becomes

Lµν
(e)Wµν = 4EE′

{
W2(ν, q

2) cos2
θ

2
+ 2W1(ν, q

2) sin2
θ

2

}

recall ☛

Lµν
(e) =

1

2
Tr(!k′γµ !kγν) +

1

2
m2

eTr(γ
µγν)

= 2(k′µkν + k′νkµ − (k′.k −m2
e)g

µν)

q2 ! −2k . k′ ! −2EE′(1− cos θ) = −4EE′ sin2(θ/2)
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Differential Cross Section 

to obtain final result we neglect mass of electron and used

q2 ! −2k . k′ ! −2EE′(1− cos θ) = −4EE′ sin2(θ/2)

dσ

dE′dΩ

∣∣∣∣
lab

=
1

16π2

E′

E

|M|2
4πM

=
(4πα)2

16π2q4
E′

E
LµνWµν

=
4α2E′2

q4

{
W2(ν, q

2) cos2
θ

2
+ 2W1(ν, q

2) sin2
θ

2

}

=
α2

4E2 sin4(θ/2)

{
W2(ν, q

2) cos2
θ

2
+ 2W1(ν, q

2) sin2
θ

2

}

Including flux factor and phase space factor for outgoing electron 

dσ =
1

4 [(k . p)2 −m2M2]1/2

{
e4

q4
Lµν
(e)Wµν4πM

}
d3k′

2E′(2π)3

extra factor of        arises because of          normalization4πM Wµν

♣
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Convenient to express      with respect to invariants    and ν Q2

dσ

dQ2 dν

∣∣∣∣
lab

=
π

EE′
dσ

dE′dΩ

∣∣∣∣
lab

=
4πα2

Q4

E′

E

{
W2(Q

2, ν) cos2
θ

2
+ 2W1(Q

2, ν) sin2
θ

2

}

It will be useful to make a compendium of our results on form factors

We keep to laboratory kinematic and neglect mass of electron

Differential cross section in energy       and angle     of scattered (E) (θ)

can be written as

dσ

dE′dΩ

∣∣∣∣
lab

=
4α2E′2

q4

{ }

where...

Form Factor Summary
dσ

e−
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◆ For a muon target of mass                                                            m
m α2 → α2e2q

{ }

eµ→eµ

=

(
cos2

θ

2
− q2

2m2
sin2

θ

2

)
δ

(
ν +

q2

2m

)

For elastic scattering from a proton target

◆

◆

{ }

ep→ep

=

(
G2

E + τG2
M

1 + τ
cos2

θ

2
+ 2τG2

M sin2
θ

2

)
δ

(
ν +

q2

2M

)

                    and     is mass of protonτ = −q2/4M2 M

When proton target is broken up by bombarding electron

{ }

ep→eX

= W2(ν, q
2) cos2

θ

2
+ 2W1(ν, q

2) sin2
θ

2

◔

▓

⧯

{}

-- or quark target of mass     after substitutions                 --
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Parton structure functions
Making use of delta function     can be integrated over    E′◔

Sign that there are structureless particles inside a complex system             
is that for small wavelengths proton described by                                 
suddenly starts behaving like a free Dirac particle and   turns into ⧯

⧯
◔

Proton structure functions thus become simply

2W point
1 =

Q2

2m2
δ

(
ν − Q2

2m

)
W point

2 = δ

(
ν − Q2

2m

)

            and     is quark mass

Point notation reminds us            
q is structureless particle

Q2 ≡ −q2 m

dσ

dΩ

∣∣∣∣
lab

=

(
α2

4E2 sin4(θ/2)

)
E′

E

[
cos2

θ

2
− q2

2M2
sin2

θ

2

]

Using                      parton structure functions can be rearranged  δ(x/a) = aδ(x)

2mW point
1 (ν, Q2) =

Q2

2mν
δ

(
1− Q2

2mν

)
,

νW point
2 (ν, Q2) = δ

(
1− Q2

2mν

)

to be dimensionless structure functions of ratio           Q2/2mν
(AND not     and    independently) Q2 ν
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Parton  behavior can be contrasted with that for      elastic scatteringep
for simplicity we set           so that                                               κ = 0 GE = GM ≡ G

▓ and      we have⧯

W elastic
1 =

Q2

4M2
G2(Q2) δ

(
ν − Q2

2M

)

W elastic
2 = G2(Q2) δ

(
ν − Q2

2M

)

Elastic scattering form factor

then comparing      

A mass scale is explicitly present  ☛  reflecting inverse size of proton 
cannot be rearranged as function of single dimensionless variableG(Q2)

As      increases above                form factor depresses elastic scattering

Point structure functions depend only on dimensionless variable

(0.71 GeV)2Q2

proton is more likely to break up

 and no scale of mass is present

Q2/2mν

 merely serves as a scale for momentam
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BJORKEN SCALING
In limit          and                (such that                                )Q → ∞ 2Mν → ∞ ω = 2(q . p)/Q2 = 2Mν/Q2

MW1(ν, Q
2) !−→

large Q2 F1(ω) ,

νW2(ν, Q
2) !−→

large Q2 F2(ω)

we have introduced proton mass instead of quark mass 
to define dimensionless variable ω

inelastic structure functions are independent of     at given value of ωQ2

Presence of free quarks is signaled by fact that:  

deep inelastic scattering experiments conducted by SLAC-MIT Collaboration

 showed that at sufficiently large Q2 ! Λ2
QCD

Q2structure functions are approximately independent of 

structure functions would have following property

IN LATE SIXTIES
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Parton Model
Basic idea:  Represent inelastic scattering                                            
as quasi-free scattering from point-like constituents within proton
when viewed from a frame in which proton has infinite momentum

Imagine reference frame in which target   has very large 3-momentum
!p ! M

so-called infinite momentum frame

In this frame ☛ proton is Lorentz-contracted into a thin pancake 
and lepton scatters instantaneously

Proper motion of constituents within    is slowed down by time dilation

We envisage proton momentum   as being made of partons                        
carrying longitudinal momentum 

p
pi = xip

where momentum fractions    satisfyxi

0 ≤ xi ≤ 1 and
∑

partons (i)

xi = 1

p

p
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Kinematics of lepton-proton scattering in parton model

k k′

xp

q

(1 − x)p

p
X

Figure 4.4: Kinematics of lepton-proton scattering in the parton model.

4.2 Parton Model

Now that scaling is an approximate experimental fact, we adopt the spirit
of the parton model.6 The basic idea in the model, shown in Fig. 4.4, is
to represent the inelastic scattering as quasi-free scattering from point-like
constituents within the proton, when viewed from a frame in which the proton
has infinite momentum. Imagine a reference frame in which the target proton
has a very large 3-momentum, i.e, !p ! M the so-called “infinite momentum
frame.” In this frame, the proton is Lorentz-contracted into a thin pancake,
and the lepton scatters instantaneously. Furthermore, the proper motion of
the constituents (i.e., of partons) within the proton is slowed down by time
dilation. We envisage the proton momentum p as being made of partons
carrying longitudinal momentum pi = xip, where the momentum fractions
xi satisfy:

0 ≤ xi ≤ 1 and
∑

partons (i)

xi = 1 . (4.2.41)

Assigning a variable mass xM to the parton is of course out of the question.
Clearly, if the parton’s momentum is xp, its energy can only be xE if we put
m = M = 0. Equivalently, a proton can only emit a parton moving parallel
to it (p⊥ = 0 for both) if they both have zero mass. Moreover, because of
the large momentum transfer (−q2 ! M) interactions between partons can
be neglected and therefore the individual current-parton interactions may be

(1 GeV)2. E. D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969); M. Breidenbach et al.,

Phys. Rev. Lett. 23, 935 (1969); J. I. Friedman and H. W. Kendall, Ann. Rev. Nucl. Part.

Sci. 22, 203 (1972); J. S. Poucher et al., Phys. Rev. Lett. 32, 118 (1974).
6R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969); J. D. Bjorken and E. A. Paschos,

Phys. Rev. 185, 1975 (1969).
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Infinite Momentum Frame
Assigning a variable mass      to parton is of course OUT OF QUESTION!xM

 If parton's momentum is        
xE
xp

its energy can only be       if we put m = M = 0
Equivalently ☛  proton can only emit parton moving parallel to it 

p⊥ = 0

Because of the large momentum transfer ☛                

interactions between partons can be neglected  
and individual current-parton interactions may be treated incoherently

−q2 " M

dσ

dtdu

∣∣∣∣
ep→eX

=
∑

partons(i)

∫
dxfi(x)

dσ

dtdu

∣∣∣∣
eqi→eqi

    indicates probability of finding constituent   inside protonifi(x)

♬

and sum is over all contributing partons
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Mandelstam variables carry hats
Assuming           ☛ invariant variables of unpolarized scattering amplitude                        s ! M

ŝ = (k + xp)2 ! x(2k . p) ! xs ,

t̂ = (k − k′)2 = t = q2 ,

û = (k′ − xp)2 ! x(−2k′ . p) ! xu

therefore − t

s+ u
= − q2

2p . q
=

Q2

2Mν
= x

Consequently ☛  x(s+ u) + t = 0 ŝ+ û+ t̂ = 0or
             Invariant scattering amplitude becomes 

|M|2 = 2 (4παeq)
2 ŝ2 + û2

t̂2

become

|M|2 =
8e4

(k − k′)4
[(k′ . p′)(k . p) + (k′ . p)(k . p′)]

= 2e4
s2 + u2

t2
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Differential Cross Section

                               with 
dσ

dΩ

∣∣∣∣
c.m.

=
|M|2

64π2s

dσ

dt̂
=

2πα2e2q
ŝ2

(
ŝ2 + û2

t̂2

)
lead to an expression for differential cross section

Using invariant relations of Mandelstam variables    

dσ

dtdu

∣∣∣∣
eqi→eqi

= x
dσ

dt̂dû

= x
d

dû

∫
2πα2e2q

ŝ2

(
ŝ2 + û2

t̂2

)
δ(ŝ+ û+ t̂)dû

= x
2πα2e2q

t2

(
s2 + u2

s2

)
δ(x(s+ u) + t))

✈

|M|2 =
1
4

∑

spins

|M|2 = 64π2ŝ
dσ

dΩ
= 16πŝ2 dσ

dt̂

∣∣∣∣
ij→kl
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Tensor Product

 We can rewrite 

in terms of invariant variables 

Lµν
(e)Wµν = −2W1t+

W2

M2

[
−su+M2t

]

and because we assume            we haves ! M2

Lµν
(e)Wµν =

2

M(s+ u)
[x(s+ u)2F1 − suF2]

where t = −x(s+ u), F1 ≡ MW1 F2 ≡ νW2and

♖

Lµν
(e)Wµν = 4W1(k . k

′) +
2W2

M2
[2(p . k)(p . k′)−M2k . k′]
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Tensor Product Substitution
Substituting    into 

dσ

dtdu

∣∣∣∣
ep→eX

=
4πα2

t2s2
1

s+ u

[
(s+ u)2xF1 − usF2

]

 Using kinematic relations in lab frame

and

s = 2ME, u = −2ME′, t = −Q2 = −4EE′ sin2(θ/2)

dΩdE′ = 2πd(cos θ)dE′ =
4πM2

su
dt

(
− 1

2M
du

)

♖

we have ☛

dσ

dE′dΩ

∣∣∣∣
lab

=
1

16π2

E′

E

|M|2
4πM

=
(4πα)2

16π2q4
E′

E
LµνWµν

=
4α2E′2

q4

{
W2(ν, q

2) cos2
θ

2
+ 2W1(ν, q

2) sin2
θ

2

}

=
α2

4E2 sin4(θ/2)

{
W2(ν, q

2) cos2
θ

2
+ 2W1(ν, q

2) sin2
θ

2

}

✣

✈
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Parton Model’s Master Formula
Substituting     and    into    and comparing coefficients of     &   ✈ ✣ ♬ s2 + u2

we obtain master formula of parton model

us

2xF1(x) = F2(x) =
∑

i

e2qi x fi(x)

We see that      and       are functions only of scaling variableF1 F2 x
-- here fixed by delta function in      --✈

 Using lab frame kinematic relation      

sin2
θ

2
=

Q2

4EE′ =
2Mνx

4E′ν/y
=

xyM

2E′

and cos2
θ

2
=

E

E′

(
1− y − Mxy

2E

)
where y =

p . q

p . k
=︸︷︷︸

(lab)

ν

E

we obtain ☛

q2 ! −2k . k′ ! −2EE′(1− cos θ) = −4EE′ sin2(θ/2)

⚑

Thursday, November 10, 2011



Callan-Gross Relation
Substituting  previous trigonometric relations into    we get

dσ

dxdy
=

8MEπα2

Q4

[
xy2F1 +

(
1− y − Mxy

2E

)
F2

]

where we have used identity

dE′dΩ =
π

EE′ dQ
2 dν =

2ME

E′ π y dx dy

Substituting    into     we obtain Callan-Gross relation

♻

♻

dσ

dxdy
=

2πα2

Q4
s [1 + (1− y)2]

∑

i

e2qi x fi(x) , (E " Mx)

⚑

♣

specific to scattering of e from massless fermions[1 + (1− y)2]Behavior

This relation gave evidence that partons involved in DIS were fermions 
at a time when relation between partons and quarks was still unclear
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Kinematic Region for DIS
Independent variables  (though dependence on latter is trivial)

Convenient to plot allowed kinematic region in                       plane (Q2/2ME)− (ν/E)

Boundary of physical region is given by requirements that

0 ≤ θ ≤ π, 0 ≤ ν ≤ E, 0 ≤ x ≤ 1

Because  
x x

x = Q2/2Mν = (Q2/2ME)/(ν/E)
are straight lines through origin with slope contours of constant

Relation between     and    follows from     Q2
θ

and is given by

Q2

2ME
=

1

M
(E − ν)(1− cos θ)

q2 ! −2k . k′ ! −2EE′(1− cos θ) = −4EE′ sin2(θ/2)

(E′, θ,φ)
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Kinematic Region of DIS (cont’d)

v/E

Q2___

2ME

x=1

Q
2

max
for

0 1

2E__

M

!="

!=

E__

M

#

x=_
2
1

x=_
2
1

"_
2

Figure 4.5: The triangle is the allowed kinematic region for deep inelastic

scattering. The dot-dashed lines are curves of constant scattering angle θ.

The dashed lines are lines of constant x. In the deep inelastic limit, the

intercept of the constant θ lines with the vertical axis → ∞.

the order of a few GeV2. We discuss this next.

4.3 QCD Improved Parton Model

The simple parton model described in the previous section is not true in
QCD, because the properties we assumed for the hadronic blob are explicitly
violated by certain classes of graphs in perturbation theory. Nevertheless,
much of the structure of the parton model remains in perturbation theory,
because of the property of factorization. Factorization permits scattering
amplitudes with incoming high energy hadrons to be written as a product of a
hard scattering piece and a remainder factor which contains the physics of low
energy and momenta. The former contains only high energy and momentum
components and, because of asymptotic freedom, is calculable in perturbation
theory. The latter piece describes non-perturbative physics, but is described

117

Triangle is allowed kinematic region for deep inelastic scattering

Dot-dashed lines are curves of constant scattering angle θ

Dashed lines are lines of constant x
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HERA

Hadrons-Elektron-Ring-Anlage (HERA) at DESY 
  First storage ring to collide positrons or electrons with protons 

It started operating at end of 1991 and ceased running in June 2007

Two experiments (H1 and ZEUS) collected data from collisions of 

e+with an energy of or 27.5 GeV
820 GeV

920 GeV
with an energy of 

until 1997

starting from 1998 onwards
This corresponds to

Similar measurement in fixed target experiment requires          beam50 TeV

s = 4× 28× 820 (920) (GeV)2

allowing measurements of structure functions down to x ≈ 10−4

One of first important results of H1 and ZEUS measurements: 
observation of steep rise of proton structure function       

towards low values of Bjorken variable x
F2

This phenomenon has been successfully described by pQCD 
(perturbative QCD calculations)

e−

pand
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Factorization
Simple parton model is not true in QCD                                    
because properties we assumed for hadronic blob                            
are explicitly violated by certain classes of graphs in perturbation theory

much of structure of parton model remains in perturbation theory 
because of property of factorization

permits scattering amplitudes with incoming high energy hadrons                 
to be written as a product of a hard scattering piece                        
and remainder factor which contains physics of low energy & momenta
Former contains only high energy and momentum components             
and (because of asymptotic freedom) is calculable in perturbation theory

Latter piece describes non-perturbative physics                                
with single process independent function for each type of parton    
known as  parton distribution function (PDF)
Without property of factorization we would be unable to make predictions 
for processes involving hadrons using perturbation theory

Nevertheless 

Factorization
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QCD Improved  Parton Model
Assuming property of factorization holds                                      
we can derive QCD improved parton model
Result for any process with a single incoming hadron leg is

σ(|q|, p) =
∑

i

∫ 1

0
dx σ̂(|q|, xp,αs(µ

2)) fi(x, µ
2)

    is large momentum scale which characterizes hardness of interaction 
sum   runs over all partons in incoming hadron 
and    is short distance cross section                                    
calculable as a perturbation series in QCD coupling

µ2

i
σ̂

αs

It is referred to as short distance cross section                               
because singularities corresponding to a long distance physics              
have been factored out and abosorbed in structure functions fi

Structure functions themselves are not calculable in perturbation theory

In order to perform factorization we have introduced a scale    
which separates high and low momentum physics

µ2
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DGLAP equation
No physical results can depend on particular value of factorization scale

This implies that any dependence on    in    has to vanish                     
at least to order in      considered

µ σ
αs

d

d lnµ2
σ(n) = O(αn+1

s )

Evolution of parton distributions with changes of scale               
predicted by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation

µ

d

d lnµ2
fi(x, µ

2) =
αs(µ2)

2π

∑

j

∫ 1

x
dz dζ δ(x− zζ) Pij(z,αs(µ

2)) fj(ζ, µ
2)

 matrix    is calculable as a perturbation seriesP

Pij(z,αs) = P (0)
ij (z) +

αs

2π
P (1)
ij (z) + . . .

♚
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Illustration through Feynman diagrams
PExamples of Feynman diagrams contributing to    in leading order QCD 

Pqq(z)
p

zp

Pqg(z)
p

zp

Pgq(z)
p

zp

Pgg(z)
p

zp

Figure 4.6: Sample of Feynman diagrams for parton-parton splitting in lead-

ing order QCD. We indicate the collinear momentum flow (p incoming and

zp outgoing) as it enters the calculation of the corresponding splitting func-

tion Pij.

dg(x, µ2)

d lnµ2
=

αs(µ2)

2π

∑

j

∫ 1

x

dz

z

[
qj(x/z, µ2)Pgq(z) + g(x/z, µ2)Pgg(z)

]
.

(4.3.68)
The physical interpretation of the PDFs fj(x, µ2) again relies on the infinite
momentum frame. In this frame fj(x, µ2) is the number of partons of type j
carrying a fraction x of the longitudinal momentum of the incoming hadron
and having a transverse dimension r < 1/µ. As we increase µ, the DGLAP
equation predicts that the number of partons will increase. Viewed on a
smaller scale of transverse dimension r′, such that r′ ! 1/µ, a single parton
of transverse dimension 1/µ is resolved into a greater number of partons.

The DGLAP kernels Pij have an attractive physical interpretation as
the probability of finding parton i in a parton of type j with a fraction
z of the longitudinal momentum of the parent parton and transverse size
less than 1/µ. The interpretation as probabilities implies that the DGLAP
kernels are positive definite for z < 1. They satisfy the following relations:∫ 1

0 dz Pqq(z) = 0,
∫ 1

0 dz x[Pqq(z)+Pgq(z)] = 0, and
∫ 1

0 dz z[2 nf Pqg +Pgg] = 0,
where nf is the number of flavors. These equations correspond to quark
number conservation and momentum conservation in the splittings of quarks
and gluons.
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p zpWe indicate collinear momentum flow (   incoming and     outgoing) 
as it enters the calculation of corresponding splitting function 
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Splitting functions
First 2 terms of     are needed for NLO predictions                       
which is standard approximation                                               

Splitting functions      are currently known to NNLOPij

ζ

d

d lnµ2

(
qi(x, µ2)
g(x, µ2)

)
=

αs(µ2)

2π

∑

j

∫ 1

x

dz

z

(
Pqiqj (z) Pqig(z)
Pgqj (z) Pgg(z)

)

×
(

qj(x/z, µ2)
g(x/z, µ2)

)

Performing   integration we obtain

which is a system of coupled integro-differential equations 
corresponding to different possible parton splittings

dqi(x, µ2)

d lnµ2
=

αs(µ2)

2π

∫ 1

x

dz

z

[
qi(x/z, µ

2)Pqq(z) + g(x/z, µ2)Pqg(z)
]

dg(x, µ2)

d lnµ2
=

αs(µ2)

2π

∑

j

∫ 1

x

dz

z

[
qj(x/z, µ

2)Pgq(z) + g(x/z, µ2)Pgg(z)
]

♚

♝

♘

(although often still with large uncertainties)
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Physical interpretation of PDFs            

fj(x, µ
2)

fj(x, µ
2)

In this frame             is number of partons of type   j

x

r < 1/µ

As we increase    µ

Viewed on smaller scale of transverse dimension   r′

r′ ! 1/µ

1/µ single parton of transverse dimension         

 into a greater number of partons is resolved

will increase

and having a transverse dimension 

carrying fraction    of longitudinal momentum of incoming hadron 

again relies on infinite momentum frame
⚈

⚈

⚈

⚈

DGLAP equation predicts that number of partons

such that

fj(x, µ
2)
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DGLAP kernels
DGLAP kernels      have an attractive physical interpretation: 
probability of finding parton   in a parton of type                                              
with a fraction   of longitudinal momentum of parent parton                   
and transverse size less than
Interpretation as probabilities implies that DGLAP kernels                   
are positive definite for
They satisfy following relations:

and

is number of flavors

These equations correspond to quark number conservation                   
and momentum conservation in splittings of quarks and gluons

Pij
i j

1/µ

z < 1

nf    

∫ 1

0
dz Pqq(z) = 0,

∫ 1

0
dz x[Pqq(z) + Pgq(z)] = 0

∫ 1

0
dz z[2nf Pqg + Pgg] = 0

z
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DGLAP kernels at LO

Pqq(z) =
4

3

1 + z2

1− z

Pgq(z) =
4

3

1 + (1− z)2

z

Pqg(z) =
z2 + (1− z)2

2

Pgg(z) = 6

(
z

1− z
+

1− z

z
+ z(1− z)

)
and ☛
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The rise of the gluon
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Figure 4.7: Gluon momentum distributions xf(x, Q2) in the proton as mea-

sured by the ZEUS and H1 experiments at various Q2.
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Gluon momentum distributions              in proton xf(x,Q2)
as measured by ZEUS and H1 experiments at various Q2

♛
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PDFs

Valence, sea and gluon momentum distributions              in protonxf(x,Q2)

as measured by ZEUS and H1 experiments at                    Q2 = 10 GeV2

are compared to MSTW (left) and CTEQ (right) parametrizations
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Figure 4.8: The valence, sea and gluon momentum distributions xf(x, Q2) in

the proton as measured by the ZEUS and H1 experiments at Q2 = 10 GeV2

are compared to the MSTW (left) and CTEQ (right) parametrizations.
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Figure 4.9: Evolution of gluon and quarks momentum distributions xf(x, Q2)

in the proton from a low scale at Q2 = 10 GeV (left) to LHC energies at

Q2 = 104 GeV (right).

123

0

0.2

0.4

0.6

0.8

1

-410
-3

10 -210 -110 1
0

0.2

0.4

0.6

0.8

1

 HERAPDF0.1(prel.)

 MSTW08 68% CL

x

x
f 2 = 10 GeV2Q

vxu

vxd

 0.05)!xS (

 0.05)!xg (

vxu

vxd

 0.05)!xS (

 0.05)!xg (

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-410
-3

10 -210 -110 1
0

0.2

0.4

0.6

0.8

1

 HERAPDF0.1(prel.)

 CTEQ6.5M 68%CL

x
x

f 2 = 10 GeV2Q

vxu

vxd

 0.05)!xS (

 0.05)!xg (

vxu

vxd

 0.05)!xS (

 0.05)!xg (

0

0.2

0.4

0.6

0.8

1

Figure 4.8: The valence, sea and gluon momentum distributions xf(x, Q2) in

the proton as measured by the ZEUS and H1 experiments at Q2 = 10 GeV2

are compared to the MSTW (left) and CTEQ (right) parametrizations.
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 we have not faced problem of how quarks turn into hadrons hitting detector

quarks must fragment into hadrons with unit probability 

This gives

For more detailed calculations ☛ this problem cannot be sidestepped

σe+e−→hadrons =
∑

q

σe+e−→qq̄

= 3
∑

q

e2q σe+e−→µ−µ+

produced     separate with equal and opposite momentum in c.m. frame                                                                              
and materialize into back-to-back jets of hadrons                              
which have momenta roughly collinear with original   and    directions

q̄q

q

q̄

e+ε− → qq̄

Hadrons may be misaligned by momentum transverse to   or   direction        
by an amount not exceeding about 300MeV

It was sufficient to state that

So far 

E.G. in

q̄

q

Jets
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We can visualize jet formation as e.g. hadron bremsstrahlung 

once   and     separate by a distance of aroundq q̄ 1 fm

    becomes large and strong color forces pull on separating andαs qq̄

           to that introduced to describe quarks inside hadrons

For cross section          of some hadronic final state    we can writeXσpp→X

σpp→X =
∑

ijk

∫
dx1 dx2 dz fi(x1, µ

2) fj(x2, µ
2)

× σ̂ij→k(x1, x2, z,Q
2,αs(µ

2), µ2)Dk→X(z, µ2)

is fragmentation functionDk→z(z, µ
2)

have a clear interpretation

To describe fragmentation of quarks into hadrons  
we use an analogous formalism                   

and all other functions

Fragmentation Functions
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Fragmentation function        describes transition

structure function       describes embedding

D(z) (parton → hadron)

(hadron → parton)

f D
f(x)

Like   functions     functions are subject to constraints                       
imposed by momentum and probability conservation: 

∑

h

∫ 1

0
zDh

q (z)dz = 1

∑

q

∫ 1

zmin

[Dh
q (z) +Dh

q̄ (z)]dz = nh

in same way 

Fragmentation Functions (cont’d)

dnh/dz ≈ (15/16) z−3/2 (1− z)2

Main features of jet fragmentation process can be derived from 

which provides a reasonable parametrization for 10−3 < z < 1
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Table 4.1: Properties of jet hadronization.

z1 z2

∫ z2

z1
(dnh/dz) dz

∫ z2

z1
z (dnh/dz) dz zequivalent

0.0750 1.0000 3 0.546 0.182

0.0350 0.0750 3 0.155 0.052

0.0100 0.0350 9 0.167 0.018

0.0047 0.0100 9 0.062 0.007

0.0010 0.0047 30 0.069 0.002

take on a much simpler aspect at high energies, and that there is no major
impediment to detailed analyses.

4.4.1 Hadroproduction of Direct Photons

Hadronic reactions producing large-k⊥ direct photons provide remarkable
tests of perturbative QCD.18 Because of the point-like coupling of the photons
to the quarks, the trigger photon represents the full jet; therefore, no (non-
perturbative) decay function enters into the prediction. Moreover, starting at
leading order only two subprocesses are relevant: namely the QCD Compton
process qg → qγ, q̄g → q̄γ and the annihilation process qq̄ → gγ, shown in
Fig. 4.10. These two subprocesses may even be disentangled by taking cross
section differences of the type σpp̄→γ+jet − σpp→γ+jet; the valence-quark and
gluon properties in the incident particles can then be studied separately.19

In this section we show that, at the LHC, Compton scattering becomes the
dominant process contributing to the prompt photon production over most
of the kinematical region. Thus, the reaction pp → γ + jet provides a quite
sensitive probe of the gluon distribution. (The quark distributions can be
taken from deep-inelastic scattering.)

18G. R. Farrar, Phys. Lett. B 67, 337 (1977); F. Halzen and D. M. Scott, Phys. Rev.

Lett. 40, 1117 (1978); Phys. Rev. D 18, 3378 (1978).
19P. Aurenche, R. Baier, M. Fontannaz, J. F. Owens and M. Werlen, Phys. Rev. D 39,

3275 (1989).
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