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Virtual Photons
In Maxwell's theory of electromagnetism                         
charged particles interact through their electromagnetic fields

For many years it was difficult to conceive                      
how such action-at-a-distance between charges came about

In QFT ☛ we have such a tangible connection

QFT approach visualizes force between electrons                  
as interaction arising in exchange of “virtual” photons             
which can only travel distance allowed by uncertainty principle

Virtual photons cannot live an existence                                         
independent of charges that emit or absorb them

✔

✔

✔

✔

✔
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Perturbative Approach
When calculating scattering cross sections                      
interaction between particles can be described                  
by starting from a free field                                  
-- which describes incoming and outgoing particles --          
and including an interaction Hamiltonian                          
to describe how particles deflect one another

Amplitude for scattering                                           
is sum of each possible interaction history                  
over all possible intermediate particle states

Number of times interaction Hamiltonian acts            
is order of perturbation expansion

Perturbative series                                            
can be written as a sum over Feynman diagrams

☒

☒

☒

☒
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Figure 3.1: Bhabha scattering tree-level diagrams.

a factor like Vni for each interaction vertex and for the propagation of each
intermediate state we have introduced a “propagator” factor like 1/(Ei−En).
[For details, we refer the reader to Eq. (1.6.143).] The intermediate states
are virtual in the sense that the energy is not conserved, En "= Ei, but there
is energy conservation between the initial and final states as indicated by the
delta function δ(Ef −Ei). Throughout this chapter we generalize the pertur-
bative scheme to handle relativistic particles, including their antiparticles.

Figure 3.2: Bhabha scattering one-loop diagrams.
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Lowest order (tree level) diagrams for Bhabha scattering 

(e+e− → e+e−)

Bhabha scattering tree-level diagrams
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Bhabha scattering one-loop diagrams
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Figure 3.1: Bhabha scattering tree-level diagrams.

a factor like Vni for each interaction vertex and for the propagation of each
intermediate state we have introduced a “propagator” factor like 1/(Ei−En).
[For details, we refer the reader to Eq. (1.6.143).] The intermediate states
are virtual in the sense that the energy is not conserved, En "= Ei, but there
is energy conservation between the initial and final states as indicated by the
delta function δ(Ef −Ei). Throughout this chapter we generalize the pertur-
bative scheme to handle relativistic particles, including their antiparticles.

Figure 3.2: Bhabha scattering one-loop diagrams.
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Various virtual contributions containing one-loop  
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Figure 3.3: Bhabha scattering two-loop diagrams with a closed electron loop.

69

Bhabha scattering two-loop diagrams
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Spinless quarks & leptons
In non-relativistic limit of perturbation theory                                 
we have introduced a factor like      for each interaction vertex                    
and for propagation of each intermediate state                                            
we have introduced a propagator factor like

Vni

⚈

1/(Ei − En)

En != Ei

Intermediate states are virtual in sense that energy is not conserved

δ(Ef − Ei)
We’ll generalize perturbative scheme to handle relativistic particles
We illustrate how to use perturbation theory in a covariant way                                                                      
by choosing interacting particles to be spinless charged leptons            
as it is desirable to begin by avoiding complications of their spin
No spinless quark or lepton has ever been observed in an experiment

⚈

⚈

⚈

⚈

⚈

but there is energy conservation between initial and final states
as indicated by delta function

Spinless hadrons exist (e.g.    -meson)                                     
but are complicated composite structures of spin-1/2    & spin-1

π

⚈ Spin-0 leptons are completely fictitious objects                           

(that is leptons satisfying Klein-Gordon equation) 

q g
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spinless electron interacting with 

φi

Aµ

φf

Figure 3.4: A “spinless” electron interacting with Aµ.

We first have to figure out how to use perturbation theory in a covariant
way. We illustrate this, by choosing the interacting particles to be “spinless”
charged leptons, as it is desirable to begin by avoiding the complications
of their spin. This choice requires some explanation. No spinless quark
or lepton has ever been observed in an experiment. Spinless hadrons exist
(e.g., the π-meson), but they are complicated composite structures of spin-1

2

quarks and spin-1 gluons. The spin-0 leptons (that is leptons satisfying the
Klein-Gordon equation) are completely fictitious objects.

Consider the scattering of a spinless electron in an electromagnetic poten-
tial, shown in Fig. 3.4. In classical electrodynamics, the motion of a particle
of charge e in an electromagnetic potential Aµ = (φ, #A) is obtained by the
substitution pµ → pµ − eAµ. The corresponding quantum mechanical substi-
tution is therefore i∂µ → i∂µ − eAµ. The Klein-Gordon equation becomes

(∂µ∂
µ + m2)φ = −V φ (3.1.1)

where

V = ie(∂µAµ + Aµ∂µ) − e2A2 (3.1.2)

is the (electromagnetic) perturbation. Working to lowest order, we neglect
the e2A2 term in (3.1.2). The amplitude for the scattering of e− from a state
φi to φf of an electromagnetic potential Aµ is

Tfi = −i

∫
φ∗

f(x) V (x) φi(x) d4x

= −i

∫
φ∗

f ie(Aµ∂µ + ∂µA
µ) φi d4x . (3.1.3)

The derivative in the second term, which acts on both Aµ and φi, can be

70

Aµ

Consider scattering of  spinless electron in electromagnetic potential

In classical electrodynamics              
motion of a particle of charge                          
in electromagnetic potential 

e
Aµ = (φ, "A)

is obtained by substitution pµ → pµ − eAµ

Corresponding quantum mechanical substitution is therefore 

Klein-Gordon equation becomes ☛ (∂µ∂
µ +m2)φ = −V φ

V = ie(∂µA
µ +Aµ∂µ)− e2A2 is (electromagnetic) perturbation

Working to lowest order we neglect        term in e2A2

⧓

⧓

i∂µ → i∂µ − eAµ
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Transition Amplitude

e− electromagnetic potential    φi φf Aµ

Tfi = −i

∫
φ∗
f (x)V (x)φi(x) d

4x

= −i

∫
φ∗
f ie(A

µ∂µ + ∂µA
µ)φi d

4x

Derivative in second term (which acts on both     and    )φiAµ

can be turned around via integration by parts ☛ so that acts on φ∗
f

∫
φ∗
f ∂µ(A

µφi) d
4x = −

∫
∂µ(φ

∗
f ) A

µ φi d
4x

     because  potential is taken to vanish as |!x|, t → ±∞
surface term has been omitted  

(from state     to    ) from     
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Electromagnetic current for       transition
We can now rewrite amplitude in a very suggestive form

Tfi = −i

∫
jfiµ eAµ d4x

ejfiµ (x) = ie[φ∗
f (∂µφi)− (∂µφ

∗
f )φi]

can be regarded as electromagnetic current for         transitioni → f
by comparison with  

If incoming    has four momentum     we have          

--    is normalization constant --

e− pi φi(x) = Nie
−ipi.x

Ni

using  analogous expression for     it follows thatφf

ejfiµ = eNiNf (pi + pf )µ e
i(pf−pi).x

ejµ = i e (φ∗ ∂µφ− φ ∂µφ∗)

♘

♚

i → f
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Figure 3.5: Tree level diagram for electron-muon scattering.

turned around by integration by parts, so that it acts on φ∗
f

∫
φ∗

f ∂µ(Aµφi) d4x = −
∫

∂µ(φ∗
f) Aµ φi d4x (3.1.4)

where the surface term has been omitted as the potential is taken to vanish
as |#x|, t → ±∞. We can now rewrite the amplitude in a very suggestive form

Tfi = −i

∫
jfi
µ eAµ d4x (3.1.5)

where
ejfi

µ (x) = ie[φ∗
f (∂µφi) − (∂µφ∗

f)φi] (3.1.6)

which, by comparison with (1.4.30), can be regarded as the electromagnetic
current for the i → f electron transition. If the incoming e− has four momen-
tum pi, we have φi(x) = Nie−ipi.x, where Ni is the normalization constant.
Using an analogous expression, for φf it follows that

ejfi
µ = eNiNf(pi + pf)µ ei(pf−pi).x . (3.1.7)

Next, using the results for the scattering of the “spinless” electron off
an electromagnetic potential, we can calculate the scattering of the same
electron off another charged particle, say a “spinless” muon. The Feynman
diagram of such a process is shown in Fig. 3.5. The calculation is a straight-
forward extension of the previous one; we just have to identify the electro-
magnetic potential Aµ with its source, the charged “spinless” muon. This
is done with the help of Maxwell’s equations, !2Aµ = jµ

(2), which determine
the electromagnetic field Aµ associated with the current

ejµ
(2) = eNBND(pD + pB)µ ei(pD−pB).x , (3.1.8)

71

tree level diagram for electron-muon scattering

Spinless electron-muon scattering
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Source Current
Using results for scattering of spinless electron off                  
we  calculate scattering of same    off another charged particle    
say a spinless muon
Calculation is a straightforward

Aµ
extension of previous one

we just have to identify electromagnetic potential    
with its source charged spinless muon
This is done with help of Maxwell's equations !2Aµ = jµ(2)
which determine     Aµ associated with current

ejµ(2) = eNBND(pD + pB)
µ ei(pD−pB).x

where momenta are defined in Feynman diagram
Using !2eiq.x = −q2 eiq.x we obtain 

Aµ = − 1

q2
jµ(2) with q = pD − pB

♜

Aµ

e

Thursday, October 6, 2011



Spinless electron-muon scattering @ tree level
Inserting this field due to muon into♘
we find tree level amplitude for electron muon scattering

Tfi = −ie2
∫

j(1)µ (x)

(
−1

q2

)
jµ(2) d

4x

Substituting    and      and carrying out    integration x♚♜

Tfi = −iNA NB NC ND (2π)4 δ(4)(pD + pC − pB − pA)M

where

−iM = [−ie(pA + pC)
µ]

(
−i

gµν
q2

)
[−ie(pB + pD)ν ]

☯

☬
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Invariant Amplitude 
A consistency check on    shows that

considering muon scattering off produced by electron
☯

☬

Aµ

Consequently      (as defined by    ) is called invariant amplitudeM
delta function expresses energy-momentum conservation for process

Photon propagator carries Lorentz indices because is spin-1 particle

Four-momentum    of photon                                            
is determined by four-momentum conservation at vertices

q

We see that          and we say photon is virtual or off-mass shellq2 != 0
Each vertex factor contains electromagnetic coupling                  
and a 4-vector index to connect with photon index

e

Particular distribution of minus signs and factors   has been made  
to give correct result for higher order diagrams

i

Note that multiplicative of three factors gives−iM
Whenever same vertex or internal line occurs in Feynman diagram 
corresponding factor will contribute multiplicatively 

−iMto amplitude        for that diagram

⚈

⚈

⚈

⚈

⚈

⚈

⚈

⚈

⚈

⚈

we would have obtained  same amplitude    
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Boundary Conditions
To relate these calculations to experimental observables 
we must set normalization    of free particle wave functionsN

φ = N ei(!p.!x−Et)

✘

✘ Recall that probability density of particles described by     is

ρ = 2E|N |2
φ

Proportionality of    to     was just what we needed  ✘

and to keep number of particles        unchanged

to compensate for Lorentz contraction of volume element   
ρ E

d3x

ρd3x

✘ We then work with a volume         V

∫

V
ρ dV = 2E

and normalize to      particles within that volume2E

N =
1√
V

✤
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Cross-Section
Transition rate per unit volume of process

Wfi =
|Tfi|2

TV

A+B → C +D is

     is interval of interaction and transition amplitude is given by T ☯
Upon squaring one delta function remains 
and         times(2π)4 TVother gives
Making use of    we obtain✤

Wfi = (2π)4
δ(4)(pA + pB − pC − pD)|M|2

V 4

Experimental results on               scattering                       
quoted as cross section ☛ related to transition rate according to

AB → CD

cross section =
Wfi

(initial flux)
(number of final states)

factors in brackets ☛ density of incoming and outgoing states

✿

❧
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Normalization
For single particle ☛ quantum physics restricts # of final states inV

d3p V d3p/(2π)3with momenta in element      to be     
but we have      particles in   2E V

No. of final states/particle =
V d3p

(2π)3 2E
For particles        scattered into momentum elementsC, D d3pC , d

3pD

No. of available final states =
V d3pC

(2π)32EC

V d3pD
(2π)32ED

It is easiest to calculate initial flux in lab frame

# of beam particles passing per unit area per unit time ☛ 

 # of target particles per unit volume ☛

|!vA|2EA/V

2EB/V
normalization-independent measure of ingoing density by taking

Initial flux = |!vA|
2EA

V

2EB

V

♣

✜☛
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Differential Cross Section

All in all ☛      for scattering into dσ d3pC d3pD

dσ =
V 4

|"vA|2EA 2EB

1

V 4
|M|2 (2π)

4

(2π)6
δ(4)(pA + pB − pC − pD)

d3pC
2EC

d3pD
2ED

 Arbitrary normalization volume cancels

 
Normalize to      particles/unit volume 

V

2E

N = 1

drop    and work in unit volume

Normalization factor of wave function is 
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pD    integration over     enforcing 3-momentum conservation sets              !pC = −!pD

dQ =
1

4π2

d3pC
2EC

1

2ED
δ(EA + EB − EC − ED)

=
1

4π2

p2C dpC dΩ

4ECED
δ(W − EC − ED)

is element of solid angle about       dΩ !pC &
√
s ≡ W = EA + EB

Using W = EC + ED = (p2f +m2
C)

1/2 + (p2f +m2
D)1/2

dW

dpf
= pf

(
1

EC
+

1

ED

)

♟

♟and rewrite as

dQ =
1

4π2

pf
4

(
1

EC + ED

)
dW dΩ δ(W − EC − ED)

=
1

4π2

pf
4
√
s
dΩ |!pC | = |!pD| = pfwith

Lorentz invariant phase space
dQ = (2π)4 δ(4)(pA + pB − pC − pD)

d3pC
(2π)3 2EC

d3pD
(2π)3 2ED

δ
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Differential cross section in c.m. frame
Incident flux for a general collinear collision between    and    readsA B

F = |!vA − !vB | 2EA 2EB

= 4(|!pA|EB + |!pB |EA)

= 4[(pA.pB)
2 −m2

Am
2
B)]

1/2

and hence differential cross section in center-of-mass is

dσ

dΩ

∣∣∣∣
c.m.

=
1

64π2s

pf
pi

|M|2 where ☛ |!pA| = |!pB | = pi

In special case where all four particles have identical masses 
(including commonly seen limit          )     reduces tom → 0

♨

♨

dσ

dΩ

∣∣∣∣
c.m.

=
|M|2

64π2s
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For electron-electron scattering we need                             
account for identical particles in the initial and final states, 
amplitude should be symmetric under interchange of particle labels 

C ↔ D and A ↔ B
e−

e−

e−

e−
pB

pA

pD

pC

t-channel

e−

e−

e−

e−
pB

pA

pC

pD

u-channel

Figure 3.6: Lowest-order Feynman diagrams for Møller scattering.

where |!pC | = |!pD| = pf .
On the other hand, the incident flux for a general collinear collision be-

tween A and B reads,

F = |!vA − !vB| 2EA 2EB

= 4(|!pA|EB + |!pB|EA)

= 4[(pA.pB)2 − m2
Am2

B)]1/2 , (3.1.25)

and hence the differential cross section in the center-of-mass is

dσ

dΩ

∣∣∣∣
c.m.

=
1

64π2s

pf

pi
|M|2 (3.1.26)

where |!pA| = |!pB| = pi. In the special case where all four particles have
identical masses (including the commonly seen limit m → 0), Eq. (3.1.26)
reduces to

dσ

dΩ

∣∣∣∣
c.m.

=
|M|2

64π2s
. (3.1.27)

In closing we note that for electron-electron scattering we need to take
into account that we have identical particles in the initial and final states, and
hence the amplitude should be symmetric under the interchange of particle
labels C ↔ D and A ↔ B. Therefore, we have two Feynman diagrams
shown in Fig. 3.6. The tree level invariant amplitude for the scattering of a
spinless electron is then

−iM = −i

(
−

e2(pA + pC)µ(pB + pD)µ

(pD − pB)2
−

e2(pA + pD)µ(pB + pC)µ

(pC − pB)2

)
.

(3.1.28)
Note that the symmetry under pC ↔ pD ensures that M is also symmetric
under pA ↔ pB.

75

tree level invariant amplitude for scattering of a spinless electron i

−iM = −i

(
−e2(pA + pC)µ(pB + pD)µ

(pD − pB)2
− e2(pA + pD)µ(pB + pC)µ

(pC − pB)2

)

symmetry under            pC ↔ pD
M pA ↔ pBensures that      is also symmetric under

invariant amplitude 

Lowest-order 
Feynman 

diagrams for 
Møller scattering

e−e− → e−e−
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Scattering of spin-1/2 particles

Free electron of 4-momentum    is described by                  pµ ψ = u(p)e−ip.x

(γµp
µ −m)ψ = 0

Electron in an electromagnetic field                               
obtained by substitution                                              
where we have again taken    to be charge of the electron

Aµ

pµ → pµ − eAµ

e

We find ☛ (γµp
µ −m)ψ = γ0V ψ

 perturbation is given by γ0V = eγµA
µ

Introduction of     is to make    of formγ0
(E + . . . )ψ = V ψ

◉

◉

so that potential energy enters in same way as in Schrodinger eq...

satisfying
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Using first-order perturbation theory                     

4584/75

amplitude for scattering of an electron from state    to state    isψi ψf

Tfi = −i

∫
d4x φ∗(x)V (x)φi(x)

Tfi = −i

∫
ψ†
f (x)V (x)ψi(x) d

4x

= −ie

∫
ψf γµ Aµ ψi d

4x

= ie

∫
jfiµ Aµ d4x

e jfiµ ≡ eψf γµ ψi

= e uf γµ ui e
i(pf−pi).x

is electromagnetic transition current between states   and i f

where ☛

Spin-1/2 transition current
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Tree level transition amplitude for electron-muon scattering 

Tfi = −ie2
∫

j(1)µ (x)

(
−1

q2

)
jµ(2) d

4x

= −i(euCγµuA)

(
−1

q2

)
(euDγµuB) (2π)

4 δ(4)(pA + pB − pC − pD)

q = pA − pC

Recall that the invariant amplitude     is defined byM

Tfi = −i(2π)4δ(4)(pA + pB − pC − pD)M

and so we have

−iM = (−ieuCγ
µuA)

(
−igµν
q2

)
(−ieuDγνuB)
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Spin average
To calculate unpolarized cross section                               
we must amend cross section formulae of spinless particles

By unpolarized we mean that                                        
no information about electron spins is recorded in experiment

To allow for scattering in all possible spin configurations
we therefore have to make replacement

|M|2 → |M|2 ≡ 1

(2sA + 1)(2sB + 1)

∑

spins

|M|2

where     ,     are spins of incoming particlessA sB

We average over spins of incoming particles                   
and sum over spins of particles in final state

▩
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How to obtain unpolarized cross section
To obtain (unpolarized) cross section take square of modulus of

M = −e2u(k′) γµ u(k)

(
1

q2

)
u(p′) γν u(p)

and  carry out spin sums 
with momenta pA = k, pB = p, pC = k′, pD = p′ q = k − k′and

Convenient to separate sums over electron and muon spins 

|M|2 =
e4

q4
Lµν
(e)L

(µ)
µν

 tensor associated with electron vertex

Lµν
(e) ≡

1

2

∑

e−spins

[u(k′)γµu(k)][u(k′)γνu(k)]∗

and with a similar expression for L(µ)
µν
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[u†(k′) γ0 γν u(k)]† = [u†(k) γν† γ0 u(k′)]

= [u(k)γνu(k′)]

using γν†γ0 = γ0γν

✷

✷

Lµν
(e) =

1

2

∑

s′

u(s′)
α (k′) γµ

αβ

∑

s

u(s)
β (k)u(s)

γ (k)

︸ ︷︷ ︸
(k/+me)βγ

γν
γδ u

(s′)
δ (k′)
mass of 
electron

Lµν
(e) ≡

1

2

∑

e−spins

[u(k′)γµu(k)][u(k′)γνu(k)]∗

A little bit of algebra

becomes

spin summations look like a forbidding task                                             
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Think Pink
Lµν
(e)

becomes trace of product of       matrices4× 4

Lµν
(e) =

1

2
Tr[(k/′ +me) γ

µ (k/+me) γ
ν ]

Lµν
(e) =

1

2
Tr(k/′γµk/γν) +

1

2
m2

eTr(γ
µγν)

= 2(k′µkν + k′νkµ − (k′.k −m2
e)g

µν)

Using trace theorems                                            
evaluation of tensor associated with electron vertex   

◪

L(µ)
µν = 2(p′µpν + p′νpµ − (p′.p−m2

µ)gµν)

Evaluation of       is identical

      is mass of muon mµ

Lµν
(µ)

♆

▣
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Tr I = 4

trace of an odd number of       vanishes                      

Tr(!a !b) = 4 a . b

Tr(!a !b !c !d) = 4[(a . b)(c . d)− (a . c)(b . d) + (a . d)(b . c)]

Tr(γ5) = 0

γµ

Tr(γ5 !a !b) = 0

Tr(γ5 !a !b !c !d) = 4i εµνλσ aµ bν cλ dσ

Hints 4 Calculation: Trace Theorems
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Spin average               amplitude

Forming product of     and    

|M|2 =
8e4

q4
[(k′ . p′)(k . p) + (k′ . p)(k . p′)

+ m2
ep

′ . p−m2
µk

′ . k + 2m2
em

2
µ]

e−µ− → e−µ−

▣

In extreme relativistic limit neglect terms containing m2
em2

µ and

♆
obtain exact form for spin average amplitude
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Mandelstam Variables
Cross sections and decay rates can be written                                 
using kinematic variables that are relativistic invariants
For any two particle to two particle process (     )                        
we have at our disposal 4-momenta associated with each particle  
invariant variables are scalar products

m2
µ

pA . pB , pA . pC , pA . pD

 conventional to use related (Mandelstam) variables

i.e. only two of the three variables are independent

s = (pA + pB)
2 = (pC + pD)2

t = (pA − pC)
2 = (pB − pD)2

u = (pA − pD)2 = (pB − pC)
2

Because p2i = m2
i (with i = A, B, C, D ) and pA + pB = pC + pD

due to energy momentum conservation

s+ t+ u =
∑

i

m2
i + 2p2A + 2pA.(pB − pC − pD)

=
∑

i

m2
i
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To get a better feel for      and   let us evaluate them explicitly s, t, u

m

s = (pA + pB)
2 = 4(k2 +m2),

t = (pA − pC)
2 = −(!ki − !kf )

2 = −2k2(1− cos θ)

u = (pA − pD)2 = −(!ki + !kf )
2 = −2k2(1 + cos θ)

Forward and Backward Scattering
Taking

pA = (E,!ki), pB = (E,−!ki), pC = (E,!kf ), pD = (E,−!kf ), E = (k2 +m2)1/2

is center-of-mass scattering angle

i.e. !ki .!kf = k2 cos θ

As
and since we have

we have

and 

k2 ≥ 0 s ≥ 4m2

−1 ≤ cos θ ≤ 1 t ≤ 0 u ≤ 0

Note that     t = 0(u = 0) corresponds to forward (backward) scattering

in center-of-mass frame for particles all of mass 
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Hints for Calculation        

In                energy component cancels so              (pA − pC)2

(pA − pC)2 = −(!ki − !kf )2
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Unpolarized scattering amplitude
In extreme relativistic limit Mandelstam variables become

s ≡ (k + p)2 " 2k . p " 2k′ . p′ " 4k2 ,

t ≡ (k − k′)2 " −2k . k′ " −2p . p′ " −2k2(1− cos θ) ,

u ≡ (k − p′)2 " −2k . p′ " −2k′ . p " −2k2(1 + cos θ)

where pA ≡ k, pB ≡ p, pC ≡ k′ and pD ≡ p′

At high energies unpolarized             e−µ− → e−µ− scattering amplitude

|M|2 =
8e4

(k − k′)4
[(k′ . p′)(k . p) + (k′ . p)(k . p′)]

= 2e4
s2 + u2

t2
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(kµ − k′
µ)2 = −2kµk′

µ = −2k . k′ = 2(|!k||!k′|− !k .!k′)

In massless limit relativistic energy relation becomes                E2 = p2

so

Hints for calculation
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Crossing
Amplitude for                     e−e+ → µ+µ−

e−µ− → e−µ−

required interchange is            in                                           
that is        ☛ we obtain

k′ ↔ −p
s ↔ t

|M|2 = 2e4
t2 + u2

s2

e−

e+

µ−

µ+

s-channel

p

k

p′

k′

Figure 3.7: Feynman diagram for e+e− → µ+µ−.

where now e−e+ → µ+µ− is the s-channel process. The corresponding tree
level diagram is drawn in Fig. 3.7. This result can be translated into a
differential cross section for e−e+ → µ+µ− scattering using (3.1.27). In the
center-of-mass frame we have

dσ

dΩ

∣∣∣∣
cm

=
1

64π2s
2e4[12(1 + cos2 θ)] , (3.3.50)

where the quantity in square brackets is (t2 + u2)/s2. Using α = e2/4π, this
becomes

dσ

dΩ

∣∣∣∣
cm

=
α2

4s
(1 + cos2 θ) . (3.3.51)

To obtain the reaction cross section, we integrate over θ and φ

σe+e−→µ+µ− =
4πα2

3s
. (3.3.52)

A comparison of these results with PETRA data2 is shown in Figs. 3.8
and 3.9. The PETRA accelerator consists of a ring of magnets which simul-
taneously accelerate an electron and a positron beam circulating in opposite
directions. In selected spots these beams are crossed, resulting in e+e− inter-
actions with

√
s = 2Ebeam, where Ebeam is the energy of each beam. Equation

(3.3.52) can be written in numerical form as

σe+e−→µ+µ− =
20(nb)

E2
beam/GeV2 . (3.3.53)

2H. J. Behrend et al. [CELLO Collaboration], Z. Phys. C 14, 283 (1982); Phys. Lett.

B 191, 209 (1987); Phys. Lett. B 222, 163 (1989); W. Bartel et al. [JADE Collaboration],

Z. Phys. C 26, 507 (1985); Phys. Lett. B 161, 188 (1985).
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e−e+ → µ+µ− ☛ -channel processs

Feynman tree level diagram

result forby crossing
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                means                      and                    yieldingk′ ↔ −p k′ → −k′ p→ −p

s = (k − p)2

t = (k + k′)2

Hints for Calculation        
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Differential cross section for                   scatteringe−e+ → µ+µ−

using dσ

dΩ

∣∣∣∣
c.m.

=
|M|2

64π2s

In center-of-mass frame we have dσ

dΩ

∣∣∣∣
cm

=
1

64π2s
2e4[ 12 (1 + cos2 θ)]

quantity in square brackets is (t2 + u2)/s2

Using α = e2/4π this becomes dσ

dΩ

∣∣∣∣
cm

=
α2

4s
(1 + cos2 θ)

To obtain total cross section we integrate over θ φand

σe+e−→µ+µ− =
4πα2

3s

⎋
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Positron-Electron Tandem Ring Accelerator 

PETRA accelerator          

e+e−

 collisions at 
√
s = 2Ebeam

σe+e−→µ+µ− =
20(nb)

E2
beam/GeV2

Corrections to    of order              from higher order diagrams

⌬

⌬ α3, α4, . . .

beams
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Figure 3.8: The e+e− → µ+µ− angular distribution for 〈
√

s〉 = 39 GeV. The

dot-dashed line shows the relativistic limit of lowest order QED prediction.

There are, of course, corrections to (3.3.53) of order α3, α4, . . . , arising due to
interference with, or directly from, the amplitudes of higher order diagrams.

We can now use the procedure sketched in Sec. (3.2) to calculate the
(lowest-order) amplitude for Møller scattering. As noted in the analysis
of spinless electrons, for e−e− → e−e−, we have identical particles in the
initial and final states, and so the amplitude should be symmetric under the
interchange of particle labels C ↔ D (and A ↔ B), i.e., we have to calculate
the t- and u-channel diagrams drawn in Fig. 3.6. To obtain the amplitude
for e−e+ → e−e+, we can simply use the antiparticle prescription to “cross”
the result for e−e− → e−e−. Furthermore, one can immediately check by

82

−·− relativistic limit of lowest order QED prediction

angular distribution fore+e− → µ+µ− (
√
s) = 39 GeV
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Figure 3.9: Solid (open) symbols indicate the cross section for e+e− → µ+µ−

(e+e− → τ+τ−) measured at PETRA versus the center-of-mass energy. The

dot-dashed line shows the relativistic limit of lowest order QED prediction.

83

solid (open) symbols 

Cross section

e+e− → µ+µ− (e+e− → τ+τ−)

cross section measured at PETRA versus center-of-mass energy

−·− relativistic limit of lowest order QED prediction
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CU on Tuesday
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