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Perturbation Theory
Free-particle states have been eigenstates of Hamiltonian 
we have seen no interactions and no scattering

✫

There is no known method -other than perturbation theory- 
that could be used to include nonlinear terms in Hamiltonian                                                                            

✫

✫

In order to obtain closer description of real world                
we are forced to resort to approximation methods

In perturbation theory we divide Hamiltonian into two parts✫

H0

V (!x, t)

☛ is a Hamiltonian for which we know how to solve equations of motion

H0|φn〉 = En|φn〉 with 〈φm|φn〉 =
∫

V
φ∗
m φn d

3x = δmn

☛ is a perturbing interaction

✫

-- or Lagrangian --
that will couple different Fourier modes to one another              

--and the particles that occupy them-- 
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 normalized solution to one particle in a box of volume V✦

Since  only soluble field  theory is  free-field theory          
take for       sum of all free particle Hamiltonians

✦
H0

-with  physical masses appearing in them-

for sake of simplicity consider theory with one scalar field✦

✦objective is to solve Schrodinger equation
..

[H0 + V (!x, t)]ψ = i∂tψ

 in presence of an V (!x, t)

✦

interaction potential 

Any solution  can be expressed as

|ψ〉 =
∑

n

cn(t)|n〉e−iEn t =
∑

n

cn(t)φn(#x) e
−iEnt

Nonrelativistic perturbation theory

✦
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When     is substituted in Schrodinger equation✦  
we get an equation for  coefficients cn(t)

..

∑

n

cn(t)V (!x, t)|n〉e−iEnt = i
∑

n

ċn(t)|n〉e−iEnt

or equivalently
∑

n

cn(t)V (!x, t)φn(!x)e
−iEnt = i

∑

n

ċn(t)φn(!x)e
−iEnt

Multiplying by                                                       
integrating over volume 
and using orthogonality relation     

obtain coupled linear differential equations for coefficients

ċf = −i
∑

n

cn(t)

∫
φ∗
fV φn d

3x ei(Ef−En)t

φ∗
f

✫

♛

Nonrelativistic Perturbation Theory
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Hints for the calculation

∑

n

Encn(t)φn("x)e−iEnt +
∑

n

cn(t) V ("x, t) φn("x)e−iEnt = i
∑

n

ċn(t) φn("x) e−iEnt

+ i(−iEn)cn(t)φn("x)e−iEnt
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Assume that before potential    acts                                     
particle is in an eigenstate of unperturbed Hamiltoniani

V

We therefore set at time           

every

t = −T/2

cn(−T/2) = 0 n != ifor ci(−T/2) = 1and

The relation ☛ |ψ〉 =
∑

n

cn(t)|n〉

shows that system state |ψ〉 = |i〉 as desired

Replacing the initial condition into we get

ċf = −i

∫
d3x φ∗

fV φi e
i(Ef−Ei)t

♛

❍

❍

❍

❍

Nonrelativistic perturbation theory

Thursday, September 22, 2011



 provided that potential is small and transient 

To find amplitude for  system to be in state |f〉 t
project out eigenstate

at
|f〉 from |ψ〉  by calculating

Assume that these initial conditions  remain true at all times
--as a first approximation--

❏

cf (t) = −i

∫ t

−T/2
dt′

∫
d3x φ∗

fV φi e
i(Ef−Ei)t

′

 at time  after interaction has ceased we have

Tfi ≡ cf (T/2) = −i

∫ T/2

−T/2
dt

∫
d3x

[
φf ("x)e

−iEf t
]∗

V ("x, t)[φi("x)e
−iEit]

which can be rewritten in covariant form 

T/2

❏

expression for         is only a good approximation ifcf (t) cf (t) ! 1

as this has been assumed in obtaining result

❏

Nonrelativistic perturbation theory

✪

✖

Tfi = −i

∫
d4x φ∗f (x)V (x) φi(x)
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It is tempting to identify |Tfi|2 with probability that particle 

is scattered from an initial state |i〉 to a final state |f〉
To see whether this identification is possible   

V (!x, t) = V (!x)consider case in which is time independent

1

2π

∫ ∞

−∞
dq eiqp = δ(p)

✪ becomes

Tfi = −iVfi

∫ ∞

−∞
dt ei(Ef−Ei)t

= −2πi Vfi δ(Ef − Ei)

with

☛

Vfi ≡
∫

d3x φ∗
f ("x)V ("x)φi(x)

☛ then using

♻

Transition probability per unit time 
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 -funtion in      expresses that energy of particle is conservedδ ♻
 in transition i →

By uncertainty principle 
this means that infinite time separates states i f

|Tfi|2and is therefore not a meaningful quantity

and

Define instead a transition probability per unit time

W = lim
T→∞

|Tfi|2

T
Squaring ♻

W = lim
T→∞

2π
|Vfi|2

T
δ(Ef − Ei)

∫ +T/2

−T/2
dt ei(Ef−Ei)t

= lim
T→∞

2π
|Vfi|2

T
δ(Ef − Ei)

∫ +T/2

−T/2
dt

= 2π|Vfi|2δ(Ef − Ei)

This equation can only be given physical meaning                                     
after integrationover a set of initial and final states

f

Transition probability per unit time
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Hints for the calculation

[δ(Ef − Ei)]2 = δ(Ef − Ei) lim
T→∞

1
2π

∫ +T/2

−T/2
dt ei(Ef−Ei)t

= δ(Ef − Ei) lim
T→∞

T

2π
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In particle physics we usually deal with situations where we begin

We denote with            the density of final states ρ(Ef )

ρ(Ef )dEf (Ef , Ef + dEf )is  number of states in  energy interval

Integration over this density -- imposing energy conservation -- 
leads to the transition rate

i.e.

with a specified initial state and end up in one set of final states

✔

✔

✔

Wfi = 2π

∫
dEf ρ(Ef ) |Vfi|2 δ(Ef − Ei)

= 2π|Vfi|2 ρ(Ei)

This is famous Fermi's golden rule 

 ✇

Transition Rate
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Clearly we can improve on above approximation 
by inserting result for  in right-hand side of ♛

where dots represent first order result

ċf (t) = · · ·+ (−i)2
[
∑

n

Vni

∫ t

−T/2
dt′ ei(En−Ei)t

′

]
Vfn e

i(Ef−En)t

Tfi = · · · −
∑

n

Vfn Vni

∫ ∞

−∞
dt ei(Ef−En)t

∫ t

−∞
dt′ ei(En−Ei)t

′

cn(t)

Correction to Tfi is

To make integral over       meaningful                                                  
must include a term in  exponent involving a small quantity      
which we let go to zero after integration

dt′

∫ t

−∞
dt′ ei(En−Ei−iε)t′ = i

ei(En−Ei−iε)t

Ei − En + iε

Iterative Process 

ε > 0
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 second order correction to  is given by

Tfi = · · · − 2πi
∑

n

VfnVni

Ei − En + iε
δ(Ef − Ei)

Tfi

 rate for  transition is given by Fermi’s Golden rule 

with replacement

this  equation is the perturbation series for the amplitude 
order in V. . . with terms to first, second,

Vfi → Vfi +
∑

n

Vfn
1

Ei − En + iε
Vni + . . .

✇

❋

❋

Higher order corrections 

i→ f
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Symmetries and Invariants
Remarkable connection between symmetries and conservation laws 

are summarized in Noether's theorem:

Any differentiable symmetry of the action of a physical system 

has a corresponding conservation law    

Theorem grants observed selection rules in nature to be expressed

directly in terms of symmetry requirements in Lagrangian density

Under infinitesimal displacement x′
µ = xµ + εµ

☛ Lagrangian changes by the amount δL = L′ − L = εµ ∂µL

 if     is translationally invariant 

☛ it has no explicit coordinate dependence

L
L(φ, ∂µφ)

e.g. translational symmetry
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Recalling

Translational Symmetry
δφ = φ(x+ ε)− φ(x) = εν ∂νφ(x)

we have δL = ∂φL δφ+ ∂∂µφL δ(∂µφ)

= ∂φL δφ+ ∂∂µφL ∂µ(δφ)

= ∂φL δφ+ ∂∂µφL ∂µ(εν∂
νφ)

integration by parts leads to

δL = ∂µ(∂∂µφL εν∂
νφ)− δφ ∂µ(∂∂µφL) + ∂φL δφ

using Euler-Lagrange equation

δL = ∂µ(∂∂µφL εν∂
νφ) = εµ∂

µL

therefore ☛ ∂µ(∂∂µφL εν∂
νφ)− εµ∂

µL = 0

because this holds for arbitrary displacements εµ

∂µ[∂∂µφL ∂νφ− gµν L] = 0
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Energy momentum 4-vector
define ☛ energy-momentum stress tensor 

Jµν = −gµν L+ ∂∂µφL ∂νφ

From this differential conservation law one finds

and so ∂tPν = 0
We have already seen that is Hamiltonian densityJ00

J00 = π φ̇− L = H
∫

d3x J00 = H

Therefore ☛ we can identify operator      Pν

as  conserved energy-momentum 4-vector

and  

Pν =

∫
d3x J0ν =

∫
d3xπ ∂νφ− g0ν L
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Gauge Invariance
 importance of connection between  symmetry properties 
and invariance of physical quantities can hardly be overemphasized

Homogeneity and isotropy of spacetime imply                           
Lagrangian is invariant under time displacements                                       
is unaffected by translation of entire system                                   
and does not change if system is rotated an infinitesimal angle

✔

✔

✔

✔these particular measurable properties of spacetime                       
lead to conservation of energy, momentum, and angular momentum

However these are only 3 of various invariant symmetries in nature 
which are regarded as cornerstones of particle physics

✔ we will focus attention on conservation laws                                       
associated with “internal” symmetry transformations                        
that do not mix fields with internal spacetime properties                       
i.e. ☛ transformations that commute                                                    
with  spacetime components of wave function
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Charge Conservation 
free fermion of mass      is described by a complex field m ψ(x)

Inspection of Dirac's Lagrangian                                           

ψ(x)

LDirac = ψ̄(iγµ∂µ −m)ψ

shows that         is invariant under global phase transformation 

ψ(x) → exp(iα) ψ(x)

where single parameter    could run continuously over real numbersα
Noether's theorem implies the existence of a conserved current

To see ☛ this we need to study invariance of     L
U(1) ψ → (1 + iα)ψunder infinitesimal          transformations

Invariance requires the Lagrangian to be unchanged  ☛ that is

δL = ∂ψL δψ + ∂∂µψL δ(∂µψ) + δψ̄ ∂ψ̄L+ δ(∂µψ̄) ∂∂µψ̄L
= ∂ψL (iαψ) + ∂∂µψL (iα∂µψ) + . . .

= iα
[
∂ψL − ∂µ(∂∂µψL)

]
ψ + iα∂µ(∂∂µψL ψ) + . . . ♞

♚
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Charge Conservation

term in square brackets vanishes by virtue of Euler-Lagrange Eq.
-- for ψ ψ̄and similarly for     -- 

♞ reduces to  eq. for a conserved current ∂µj
µ = 0

jµ = − i

2

(
∂∂µψL ψ − ψ̄ ∂∂µψ̄L

)
= ψ̄γµψ

using ☛ LDirac = ψ̄(iγµ∂µ −m)ψ

It follows that  the charge Q =

∫
d3x j0

must be a conserved quantity 

U(1)because of           phase invariance 
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A global phase transformation is surely not most general invariance

We thus generalize  to include local phase transformations

ψ → ψ′ ≡ exp[iα(x)] ψ

♚

 derivative ∂µα(x) breaks  invariance of Dirac  Lagrangian
which acquires an additional phase change at each point

δLDirac = ψ̄ iγµ [i∂µα(x)] ψ

Dirac Lagrangian         LDirac = ψ̄(iγµ∂µ −m)ψ
is not invariant under local gauge transformations                                      
but if we seek a modified derivative

Maxwell-Dirac Lagrangian 

more convenient to have independent phase changes at each point

L = ψ̄ (i !D −m) ψ

= ψ̄ (i !∂ −m) ψ − e ψ̄ !A(x) ψ

∂µ → Dµ ≡ ∂µ + ieAµ

which tranforms covariantly under phase transformations

Dµψ → eiα(x)Dµψ ☛  then local gauge invariance can be restored 

❦
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Maxwell-Dirac Lagrangian 
Namely ☛ if andψ → ψ′ A → A′ we have

L′ = ψ̄′ (i !∂ −m) ψ′ − e ψ̄′ !A′ ψ′

= ψ̄ (i !∂ −m) ψ − ψ̄ [ !∂α(x)] ψ − e ψ̄ !A′ ψ

we can ensure              if we demand       L = L′

vector potential Aµ       to change by a total divergence

A′
µ(x) = Aµ(x)−

1

e
∂µα(x)

which does not change the electromagnetic field strength Fµν

In other words ☛ by demanding local phase invariance in ψ

Aµwe must introduce a gauge field

                                                                                                  
in exactly same way as photon field
that couples to fermions of charge e

♪
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Wilson Line

Alternative approach to visualize consequences of local gauge invariance 

Wave function undergoes a phase change

e A B

ΦAB = exp

(
−ie

∫ B

A
Aµ(x)dx

µ

)

parametrizes infinitesimal phase change in−eAµ(x) (xµ, xµ + dxµ)                 

 integral in 

☁

☁ for points at finite separation is known as a Wilson line

A crucial property of Wilson line is that it depends on path taken

and therefore ΦAB  is not uniquely defined

as particle  of charge    moves in spacetime from point      to point 
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if     is a closed path that returns to     -- i.e.  a Wilson loop --
Wilson Loop

ΦC = exp

(
−ie

∮
Aµ(x)dx

µ

)
C A

phase becomes a nontrivial function of        Aµ
that is by construction locally gauge invariant

Note that for a Wilson loop                                                       
any change in contribution to from integral up to given point                                                                       ΦC x0

µ

x0
µ

will be compensated by and equal and opposite contribution 
from integral departing from     
To verify this claim  ☛ we express closed path integral

☀

as a surface integral via Stokes' theorem
☀

∮
Aµ(x)dx

µ =

∫
Fµν(x)dσ

µν

dσµν☛ element of surface area

✔

✔

✔

✔ One can now check by inspection that Wilson loop
is invariant under changes Aµ(x)of by a total divergence
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Abelian Gauge Theory
To obtain QED Lagrangian we need to include kinetic term ☛ 

L = −1

4
FµνF

µν + ψ̄(i "∂ −m)ψ − eψ̄ "Aψ

If electromagnetic current is defined as ☛

this Lagrangian leads to Maxwell's equations

Local phase changes form a          group of transformations

Since such transformations commute with one another

Electrodynamics is thus an  Abelian gauge theory

ejµ ≡ eψ̄γµψ

U(1)

group is said to be  Abelian

❦

εµνρσ∂νFρσ = 0, ∂µF
µν = e jν

LMaxwell = −1

4
FµνF

µν + eAµj
µ

that accounts for energy and momentum of free electromagnetic fields
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Yang-Mills Theories

by starting from more general fundamental symmetries

from red to blue or change its flavor from    to     --
Such a kind of transformation requires a generalization 

u d

Coefficient        of infinitesimal displacement        should be replaced eAµ dxµ

n× n −g(x) ≡ −gAa
µ(x)ta

 acting in  -dimensional space of particle’s degrees of freedom

should be replaced by a            matrix 

g
n

 is coupling constant
ta define a linearly independent basis set of matrices ☛

are their coefficientsAa
µ

If by imposing local phase invariance on Dirac's Lagrangian we are
we are lead to interacting theory of QED ☛ then in an analogous way
one can hope to infer structure of other interesting theories

Pioneer work by Yang and Mills considered that a charged particle
moving along in spacetime could undergo not only phase changes 
but also changes of identity  --a quark can change its color 

of local phase rotation invariance 
to invariance under any continuous symmetry group

☛

☛
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Wilson lines can be generalized to Yang-Mills transformations

careful must be taken as some subtleties arise                               
because integral in exponent now contains matrices            
which do not necessarily commute with one another                                
at different points of spacetime                                      
consequently a {path-ordering           is needed
we introduce a parameter    of path                                                      
which runs from zero at            to one at

(P{})
Ps

x = A

Aµ(x)

x = B

Wilson line is then defined as power series expansion of exponential 
with matrices in each term ordered so that                                        
higher values  of     stand to the left

ΦAB = P
{
exp

(
ig

∫ 1

0
ds

dxµ

ds
Aµ(x)

)}

If basis matrices      do not commute with one another
theory is said to be non-Abelian

ta

Non-abelian Gauge theories

s
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to ensure that changes in phase or identity conserve probability
requirements

ΦABwe demand be a unitary matrix ☛ Φ†
ABΦAB = I

to separate out pure phase changes from  remaining transformations 
Aµ(x)-- in which                 is a multiple of unit matrix -- 

  consider only transformations such that det (ΦAB) = 1
This becomes evident if we note that near identity any unitary matrix

can be expanded in terms of Hermitian generators of SU(N)
 hence for infinitesimal separation between A Band

we can write ☛ ΦAB = I+ iε(gAa
µta) +O(ε2)

I = Φ†
ABΦAB

= I+ igε[Aµ(x)
† −Aµ(x)] +O(ε2)

det (eig Aa
µ ta) = eig Aa

µTr(ta)

= 1

or equivalently

This shows that we must consider only transformations such that 

corresponding to tracelessAµ(x)
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Cheat Sheet Allowed

U(N) = SU(N)× U(1)
SU(N) is a compact group                                                                                     

e.g.              gives rotations on sphere of radius 1      SU(2)

U(1) is non-compact                                                                                     e    
leads to changes on the amplitude of a vector    

to separate pure phase changes from the remaining transformations             
we must take                groups                                                                          SU(N)
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SU(N)
The n× n basis matrices ta must be Hermitian and traceless

n2 − 1There are  of them
SU(N)corresponding to number of independent                generators

Basis matrices satisfy commutation relations

[ti, tj ] = icijktk
where the cijk are structure constants characterizing group

In fundamental representation of SU(2)
generators are proportional to Pauli matrices (ti = σi/2)
structure constants are defined by Levi-Civita symbol (cijk = εijk)

Generators of are Gell-Mann matrices

SU(3)
ti = λi/2

        normalized (λiλj) = 2δijsuch that Tr

In fundamental representation of

structure constants                                                                          
are fully antisymmetric under interchange of any pair of indices

cijk = fijk

f123 = 1, f458 = f678 =
√

3
2

, f147 = f165 = f246 = f257 = f345 = f376 =
1
2

✔

✔

✔
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Non-abelian field strength

By considering an infinitesimal closed-path transformation

 we write field-strength tensor

Aµ(x)analogous to     but for matrices  that do not commute ☀

Fµν = F a
µνta

for a non-abelian transformation:

Fµν = ∂µAν − ∂νAν − ig[Aµ,Aν ]

F i
µν = ∂µA

i
ν − ∂νA

i
µ + gcijkA

j
µA

k
ν

or equivalently
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Yang-Mills Lagrangian 
alternative way to introduce non-Abelian gauge fields  

demand that theory involving fermions by analogy with 

 be invariant under local transformations,

ψ(x) → ψ′(x) = V (x)ψ(x) ≡ exp [iαa(x)t
a] ψ(x)

where     is an arbitrary unitary matrix 

which we show parametrized by its general form

A summation over repeated suffix     is implied

♚

⚉

V

ψ

(V †V = I)

a
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Duplicating preceding discussion for 
Yang-Mills Lagrangian 

U(1)gauge group 

L → L′

 where

L′ ≡ ψ
′
(i "∂ −m)ψ′

= ψV †(i "∂ −m)V ψ

= ψ(i "∂ −m)ψ + iψV †γµ(∂µV )ψ

Last term --as in abelian case-- spoils invariance of L
As before  it can be compensated if we replace 

∂µ → Dµ ≡ ∂µ − igAµ(x)

we demand 

 under transformation    Lagrangian⚉ L = ψ(i !D−m)ψ

becomes L′ ≡ ψ
′
(i "D′ −m)ψ′

= ψV †(i "∂ + g "A′ −m)V ψ

= L+ ψ[g(V † "A′V − "A) + iV †( "∂V )]ψ

A′
µ = VAµV

† − i

g
(∂µV )V †Lwhich is equal to      if we take ☛
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Covariant derivative acting on    transforms in same way as 

Full Yang-Mills  Lagrangian 

under a gauge transformation ☛
itself 

Dµψ → Dµ
′ψ′ = VDµψ

ψ ψ

Field strength Fµν transforms as Fµν → F′
µν = V FµνV

†

As in abelian case it can be computed via [Dµ,Dν ] = −igFµν

Both sides transform as              under a local gauge transformationV ( )V †

To obtain propagating gauge fields we follow steps of QED 

add kinetic term −(1/4)F i
µνF

iµν  to Lagrangian

written for gauge group generators normalized such that

 Recall 

(titj) = δij/2

Full Lagrangian for gauge fields interacting with matter fields

✔

✔

✔

 Tr 

☛

L = − 1
2Tr(Fµν Fµν) + ψ(i "D−m)ψ

Fµν = F i
µν
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Non-abelian self interactions
Interaction of a gauge field with fermions
corresponds to interaction Lagrangian ∆L = gψ̄(x)γµAµ(x)ψ(x)

Aµ,Aν Fµνterm in leads to self-interactions of non-Abelian fields
 arising solely from the kinetic term

They have no analogue in QED  
arise on account of non-abelian character of gauge group                                                       
yielding three-and four-field vertices 

of form ∆L(3)
K = (∂µA

i
ν)gcijkA

µjAνk

and ∆L(4)
K = − g2

4 cijkcimnA
µjAνkAm

µ An
ν

respectively

are a paramount property of non-Abelian gauge theories
 drive remarkable asymptotic freedom of QCD,

which leads to its becoming weaker at short distances 
allowing application of perturbation theory

These self-interactions     
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Isospin
Isospin arises because nucleon may be view as having 

internal degree of freedom with two allowed states ☛ proton and neutron

which nuclear interaction does not distinguish

Consider description of two-nucleon system

Each nucleon has spin     -- with spin states    and     -- 
1

2
↑ ↓

following rules for addition of angular momenta

composite system may have total spin S = 1 S = 0or

Composition of these spin triplet and spin singlet states is





|S = 1,Ms = 1〉 =↑↑
|S = 1,Ms = 0〉 =

√
1
2 (↑↓ + ↓↑)

|S = 1,Ms = −1〉 =↓↓

|S = 0,MS = 0〉 =
√

1
2 (↑↓ − ↓↑)
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Each nucleon is similarly postulated to have isospin

Isospin 
T =

1

2
T3 = ±1

2 for protons and neutrons respectivelywith

states of nucleon-nucleon system

can be constructed in exact analogy to spin

T = 1 T = 0and          






|T = 1, T3 = 1〉 = ψ(1)
p ψ(2)

p

|T = 1, T3 = 0〉 =
√

1
2 (ψ

(1)
p ψ(2)

n + ψ(1)
n ψ(2)

p )

|T = 1, T3 = −1〉 = ψ(1)
n ψ(2)

n

|T = 0, T3 = 0〉 =
√

1
2 (ψ

(1)
p ψ(2)

n − ψ(1)
n ψ(2)

p )
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 most positively charged particle is chosen to have 

U

(
ψp(x)
ψn(x)

)
U−1 =

(
u11 u12

u21 u22

)(
ψp(x)
ψn(x)

)
≡ U

(
ψp(x)
ψn(x)

)

Isospin 
maximum value of T3

nucleon field operators will transform according to

Preservation of commutation relations requires that      be unitaryU
Such 2× 2 unitary matrix is characterized by four parameters

when common phase factor is taken out -- we have 3 parameters -- 

-- ommiting phase factor -- 

conventional way of writing general form for      is U

U = e(i/2)α . τ

where three traceless hermitian canonical            matrices2× 2

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)

☛ are just Pauli spin matrices

✾

Thursday, September 22, 2011



Isospin
Close similarity between      and way we  express rotational invariance✾

 suggests a way of characterizing invariance
We will speak of an invariance under rotations in an internal space

Isospin     is analog of angular momentumT U = eiα .T

Rotational invariance implies that isospin is conserved
For an infinitesimal rotation      reads✾

ψ(x) + iαi[Ti, ψ(x)] = ψ(x) + 1
2 iαiτi ψ(x)

i.e.
[Ti, ψ(x)] =

1

2
τiψ(x)

where we represent                

(
ψp(x)
ψn(x)

)
ψ(x)

It is easily seen that these relations are satisfied by

by 

T =
1

2

∫
d3xψ†(x) τ ψ(x)
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Isospin

T3 =
1

2

∫
d3x [ψ†

p(x)ψp(x)− ψ†
n(x)ψn(x)]

Note that

Q =

∫
d3x ψ†

p(x)ψp(x) =

∫
d3x ψ†(x) 1+τ3

2 ψ(x)

Hence, charge operator for nucleons        may be written asQ

We may introduce baryon-number operator        by definitionNB

NB =

∫
d3x [ψ†

p(x)ψp(x) + ψ†
n(x)ψn(x) + . . . ]

extra terms -- not written down -- are similar contributions
from other fields carrying baryon number

If we consider only protons and neutrons ☛ Q = 1
2NB + T3

[Ti, Tj ] = iεijkTk

It follows from easily derived commutation relations

that [Q, Ti] != 0 i = 1, 2

so that charge violates isospin conservation
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antiparticle isospin multiplets
Construction of antiparticle isospin multiplets requires care
It is well illustrated by a simple example
Consider a particular isospin transformation of nucleon doublet
a rotation through about the 2-axis leads toπ

(
ψ′
p

ψ′
n

)
= e−iπ(τ2/2)

(
ψp

ψn

)
= −iτ2

(
ψp

ψn

)
=

(
0 −1
1 0

)(
ψp

ψn

)

We define antinucleon states using particle-antiparticle

conjugation operator C, Cψp = ψp̄, Cψn = ψn̄

Applying   C to

✺

✺
(

ψ′
p̄

ψ′
n̄

)
=

(
0 −1
1 0

)(
ψp̄

ψn̄

)
✣
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antiparticle isospin multiplets
We want antiparticle doublet 
to transform in exactly same way as particle doublet
 We must therefore make two changes

reorder doublet so that most positively charged particle has T3 = +
1

2
introduce  minus sign to keep matrix  transformation identical to ✣

We obtain (
−ψ′

n̄

ψ′
p̄

)
=

(
0 −1
1 0

)(
−ψn̄

ψp̄

)

That is  antiparticle doublet     (−ψn̄, ψp̄)

transforms exactly as particle doublet (ψp, ψn)

This is a special property of SU(2)
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A composite system of a nucleon-antinucleon pair 
has isospin states

Isospin of nucleon antinucleon pair 






|T = 1, T3 = 1〉 = −ψpψn̄

|T = 1, T3 = 0〉 =
√

1
2 (ψpψp̄ − ψnψn̄)

|T = 1, T3 = −1〉 = ψnψp̄

|T = 0, T3 = 0〉 =
√

1
2 (ψpψp̄ + ψnψn̄)

Thursday, September 22, 2011



Thursday, September 22, 2011


