

PARTICLE PHYSICS 2011

Luis Anchordoqui

 \mathbf{s}

DIRAC EQUATION

today

WE WILL CONSTRUCT WAVE EQUATION FOR SPIN-1/2 RELATIVISTIC PARTICLES Following Dirac we proceed by analogy with non-relativistic QM WRITE EQUATION WHICH -- UNLIKE KLEIN-GORDON EQUATION-- IS LINEAR IN ∂t IN ORDER TO BE COVARIANT \blacktriangleright IT MUST ALSO BE LINEAR IN \bigvee $\bar{\nabla}$

Hamiltonian has general form

$$
H \; \psi(x) = (\vec{\alpha} \, . \, \vec{p} + \beta \, m) \; \psi(x)
$$

4 COEFFICIENTS $\beta, \alpha_1, \alpha_2$ and α_3

ARE DETERMINED BY REQUIREMENT THAT A FREE PARTICLE -- OF MASS m --

must satisfy relativistic energy momentum relation

$$
H^{2}\psi = (\alpha_{i}p_{i} + \beta m)(\alpha_{j}p_{j} + \beta m)\psi
$$

= $(\alpha_{i}^{2} p_{i}^{2} + (\alpha_{i}\alpha_{j} + \alpha_{j}\alpha_{i}) p_{i}p_{j} + (\alpha_{i}\beta + \beta\alpha_{i}) p_{i}m + \beta_{i}^{2} m^{2}) \psi$

Anticommutation Relations

FROM * WE SEE THAT ALL THE COEFFICIENTS α_i and β anticommute with EACH other and hence they cannot simply be numbers

家 WE ARE LEAD TO CONSIDER MATRICES $\alpha^{k}(k=1,2,3)$ and β which are required to satisfy the condition

$$
\alpha^k\alpha^l+\alpha^l\alpha^k\equiv\{\alpha^k,\alpha^l\}=2\delta^{kl},\;\;\{\alpha^k,\beta\}=0,\text{ and }\beta^2=1
$$

IT TURNS OUT THAT THE LOWEST DIMENSIONALITY MATRICES WHICH GUARANTEE is the unit matrix RELATIVISTIC ENERGY MOMENTUM RELATION ALSO HOLDS TRUE $\leftarrow 4 \times 4$ A FOUR-COMPONENT QUANTITY $\psi_\alpha(x)$ which satisfies the DIRAC EQUATION

$$
i \,\partial_t \,\psi_\rho(x) = -i \left[\alpha_{\rho\sigma} \right]^k \,\partial_{x^k} \,\psi_\sigma(x) + m \,\beta_{\rho\sigma} \,\psi_\sigma(x) \qquad \text{SPhor}
$$

 \cdot Its TRANSFORMATION PROPERTIES ARE DIFFERENT FROM THAT OF A 4-VECTOR

dirac-Pauli & Weyl representations

SPECIFIC REPRESENTATION OF MATRICES α^k and β

 \bigvee DIRAC PAULI REPRESENTATION

$$
\vec{\alpha} = \left(\begin{array}{cc} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{array}\right) \quad \text{and} \quad \beta = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)
$$

V WEYL OR CHIRAL REPRESENTATION 2 x 2 block form

$$
\vec{\alpha} = \left(\begin{array}{cc} -\vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{array}\right).
$$

$$
\text{and} \quad \beta = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)
$$

COVARIANT FORM OF DIRAC EQUATION

ON MULTIPLYING DIRAC'S EQUATION BY β from the left we obtain

$$
\dot{i}\,\beta\,\partial_t\psi = -i\,\beta\,\vec{\alpha}\,.\,\vec{\nabla}\,\psi + m\psi
$$

which can be rewritten as

$$
i\gamma^0\partial_t\psi+i\gamma^k\partial_{x^k}\psi-m\psi=0\,\Big|\,\blacktriangleleft
$$

or equivalently

$$
\left(i\gamma^{\mu}\partial_{\mu}-m\right)\psi=0
$$

we omit spinor subscripts whenever there is no danger of confusion

Dirac matrices

WE HAVE INTRODUCED FOUR DIRACY -MATRICES $\gamma^\mu \equiv (\beta, \beta \vec{\alpha})$ which satisfy the anticommutation relations

$$
\{\gamma^\mu,\gamma^\nu\}=2g^{\mu\nu}
$$

⊠

WE CAN NOW UNEQUIVOCALLY SEE THAT DIRAC'S EQUATION

is actually 4 differential equations

$$
\sum_{\sigma=1}^{4} \left\{ \sum_{\mu} i \left[\gamma_{\rho\sigma} \right]^{\mu} \partial_{\mu} - m \delta_{\rho\sigma} \right\} \psi_{\sigma} = 0
$$

WHICH COUPLE THE FOUR COMPONENTS OF A SINGLE DIRAC SPINOR ψ

Lorentz invariance

GENERAL LORENTZ TRANSFORMATION CONTAINS ROTATIONS AND BECAUSE $\,\psi(x)\,$ IS SUPPOSED TO DESCRIBE A FIELD WITH SPIN \leftarrow UNDER THE TRANSFORMATION WE ALLOW FOR A REARRANGEMENT OF $\psi(x)$ components $x^\mu \rightarrow x'^\mu = \Lambda^\mu_{\nu} x^\nu$ we allow for a rearrangement of $\psi(x)$

Because both Dirac equation and Lorentz transformation of coordinates ARE THEMSELVES LINEAR \leftarrow WE ASK TRANSFORMATION BETWEEN ψ $\neq \psi'$ be linear

$$
\psi'(x') = \psi'(\Lambda x) = S(\Lambda)\,\psi(x) = S(\Lambda)\psi(\Lambda^{-1}x')\,\big|\,
$$

 \bullet

 $S(\Lambda)$ is a 4×4 matrix which operates on ψ

TO FIGURE OUT S - DEMAND DIRAC EQ. HAS SAME FORM IN ANY INERTIAL FRAME

$$
(i\gamma^{\mu}\partial_{\mu}^{\ \prime}-m)\psi^{\prime}(x^{\prime})=0
$$

or equivalently

$$
(i\gamma^{\mu} \Lambda_{\mu}{}^{\nu} \partial_{\nu} - m)S(\Lambda)\,\psi(x) = 0
$$

Lorentz invariance IF WE MULTIPLY BY $S^{-1}(\Lambda)$ from left we get

$$
(i S^{-1} \gamma^{\mu} S \Lambda_{\mu}{}^{\nu} \partial_{\nu} - m) \psi(x) = 0
$$

DIRAC EQ. IS FORM-INVARIANT PROVIDED WE CAN FIND $S(\Lambda)$ such that

$$
S^{-1}(\Lambda)\,\,\gamma^\mu\,\,S(\Lambda)\,\,\Lambda_\mu^{\ \, \nu}=\gamma^\nu
$$

 consider infinitesimal Lorentz Transformation $S(\Lambda) = 1 - \frac{i}{2}$

AFTER A BIT OF ALGEBRA ** REDUCES TO THE CONDITION

$$
[\Sigma^{\mu\nu},\gamma^\beta]=-i(g^{\mu\beta}\gamma^\nu-g^{\nu\beta}\gamma^\mu)
$$

 \Leftrightarrow

A solution is seen to be

$$
\Sigma^{\mu\nu}\equiv\frac{1}{2}\sigma^{\mu\nu}=\frac{i}{4}[\gamma^\mu,\gamma^\nu]
$$

SEE LECTURE NOTES FOR DETAILS

✣

2

 $\omega_{\mu\nu}\Sigma^{\mu\nu}$

HINTS FOR THE CALCULATION

$$
(1+\frac{i}{2}\omega_{\rho\sigma}\Sigma^{\rho\sigma})\gamma^{\mu}(1+\frac{i}{2}\omega_{\rho\sigma}\Sigma^{\rho\sigma})=(1-\frac{i}{2}\omega_{\rho\sigma}\mathcal{J}^{\rho\sigma})_{\nu}^{\mu}\gamma^{\nu}
$$

$$
\text{WITH} = \left(\left(\mathcal{J}^{\rho} \sigma \right)_{\mu\nu} = i \left(\delta^{\rho}_{\mu} \delta^{\sigma}_{\nu} - \delta^{\rho}_{\nu} \delta^{\sigma}_{\mu} \right) \right)
$$

This equation is just the infinitesimal form of

$$
S^{-1}(\Lambda)\,\gamma^{\mu}\,S(\Lambda)=\Lambda^{\mu}_{\nu}\gamma^{\nu}
$$

LORENTZ ALGEBRA

By repeated use of *⊠* it is easily seen that

 \leftrightarrow

satisfies commutation relations of Lorentz algebra

$$
[\Sigma^{\mu\nu}, \Sigma^{\rho\sigma}] = i(g^{\nu\rho}\Sigma^{\mu\sigma} - g^{\mu\rho}\Sigma^{\nu\sigma} - g^{\nu\sigma}\Sigma^{\mu\rho} + g^{\mu\sigma}\Sigma^{\nu\rho})
$$

INCIDENTALLY
$$
S^{\dagger}(\Lambda) = \gamma^0 S^{-1}(\Lambda) \gamma^0
$$

THE FORM FOR $S(\Lambda)$ WHEN Λ is not infinitesimal is

$$
S(\Lambda) = e^{-(i/2)\omega_{\mu\nu} \Sigma^{\mu\nu}}
$$

 $S(\Lambda) = e^{(1/2) \vartheta \cdot \alpha}$ FOR A ROTATION $\omega_{i0}=0$ and $\omega_{i\,i}=\theta_k$ and because Rotations & Boosts WE GET $S(\Lambda) = e^{-(i/2)\,\theta_+\,\sigma}$ which shows the connection between ω_{ij} and parameters characterizing rotation $(i,\,\,j,\,\,k=1,\,\,2,\,\,3)$ FOR A PURE LORENTZ TRANSFORMATION $\omega_{ij}=0$ and $\omega_{i0}=\vartheta_i$ AND BECAUSE $\sum^{0i}=\frac{\iota}{\Omega}\alpha^i$ we have $\omega_{i0}=0$ and $\omega_{ij}=\theta_k$ and because $\Sigma^{ij}=0$ 1 2 $\epsilon^{ijk}\,\sigma^k$ \boldsymbol{i} 2 α^i

$$
S(\Lambda) = e^{(\frac{1}{2})\sigma \cdot \alpha}
$$

= $1 + \frac{1}{2}\vartheta \cdot \alpha + \frac{1}{2!}(\frac{\vartheta^2}{4}) + \frac{1}{3!}(\frac{\vartheta^2}{4})\frac{\vartheta \cdot \alpha}{2} + \dots$
= $\cosh \frac{\vartheta}{2} + \hat{\vartheta} \cdot \alpha \sinh \frac{\vartheta}{2}$

Hints for the calculation

$$
\alpha \beta = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -\sigma \\ \sigma & 0 \end{pmatrix}
$$

$$
\beta \alpha \beta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -\sigma \\ \sigma & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\sigma \\ -\sigma & 0 \end{pmatrix} = -\alpha
$$

$$
\frac{i}{4} [\gamma^0, \gamma^i] = \frac{i}{4} {\beta^2 \alpha - \beta \alpha \beta} = \frac{i}{2} \alpha
$$

$$
\Sigma^{0i} = \frac{i}{2} \alpha_i \qquad \Sigma^{i0} = -\frac{i}{2} \alpha_i \qquad \omega_{0i} = -\omega_{i0}
$$

$$
\vartheta \cdot \alpha = \vartheta_1 \alpha_1 + \vartheta_2 \alpha_2 + \vartheta_3 \alpha_3
$$

$$
(\sigma_1)^2 = (\sigma_2)^2 = (\sigma_3)^2 \Rightarrow (\vartheta_1 \alpha_1 + \vartheta_2 \alpha_2 + \vartheta_3 \alpha_3)^2 = \vartheta^2
$$

Rotation through imaginary angle FOR SPECIAL CASE WE MAY FIND CONNECTION BETWEEN ϑ and velocity \bar{v} CHARACTERIZING PURE LORENTZ TRANSFORMATION BY LOOKING AT consider Lorentz transformation in which new -prime- frame M_{A} and velocity v along x_3 axis of original -unprimed- frame

$$
t' = \cosh(\vartheta_3) t - \sinh(\vartheta_3) x_3
$$

$$
x'_3 = -\sinh(\vartheta_3) t + \cosh(\vartheta_3) x_3
$$

 w ITH x and y unchanged

$$
\text{HERE} = \begin{bmatrix} \cosh(\vartheta_3) = \frac{1}{\sqrt{1 - v^2}} & \text{and} & \hat{\vartheta} \equiv \frac{\vec{v}}{v} = \hat{k} \end{bmatrix}
$$

WE SEE THAT LORENTZ TRANSFORMATION MAY BE REGARDED AS A ROTATION THROUGH IMAGINARY ANGLE $i\vartheta_3$ in $it - x_3$ plane BECAUSE $\cos(i\vartheta_3) = \cosh(\vartheta_3)$ and $\sin(i\vartheta_3) = \sinh(\vartheta_3)$

Adjoint Dirac Equation

O TO CONSTRUCT CURRENTS \leftarrow WE DUPLICATE KLEIN GORDON CALCULATION taking account that Dirac eq. is matrix Eq. and thus we must consider hermitian rather than complex conjugate eq.

Dirac eq. hermitian conjugate is

$$
-i\partial_t\psi^{\dagger}\gamma^0 - i\partial_{x^k}\psi^{\dagger}(-\gamma^k) - m\psi^{\dagger} = 0 \quad \Longrightarrow
$$

To restore covariant form we need to flip plus sign in 2nd term while leaving 1st term unchanged Since $i\overline{\partial_\mu}\bar{\psi}\gamma^\mu + m\overline{\psi} = 0,$ $\gamma^0\gamma^k=-\gamma^k\gamma^0$ this can be accomplished by multiplying $\ddot*$ FROM THE RIGHT BY γ^0 $\overline{\mathbf{I}}$ Introducing the adjoint --row-- spinor $\bar{\psi}\equiv\overline{\psi}^{\dagger}\gamma^0$ WE OBTAIN

we pause to discuss transformation properties of Dirac Lagrangian

$$
\overline{\psi}(x) \gamma^{\mu} \psi(x)
$$

$$
\bar{\psi}'(x') \gamma^{\mu} \psi'(x') = \bar{\psi}(x) S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda) \psi(x)
$$

= $\Lambda^{\mu}{}_{\alpha} \bar{\psi}(x) \gamma^{\alpha} \psi(x)$

under a Lorentz transformation

BILINEAR COMBINATION $\bar{\psi}(x) \, \gamma^{\mu} \, \psi(x)$

transforms like a contravariant four-vector

we can write down a Lagrangian for spin-1/2 relativistic particles

$$
\mathcal{L}_{\rm Dirac} = \bar{\psi}(i\gamma^\mu\partial_\mu - m)\psi
$$

CONTINUITY EQUATION
\nBy adding a multiplieb from left by
$$
\bar{\psi}
$$
 and $\hat{\psi}$ from right by ψ
\nwe obtain
$$
\overline{\psi} \gamma^{\mu} \partial_{\mu} \psi + (\partial_{\mu} \bar{\psi}) \gamma^{\mu} \psi = \partial_{\mu} (\bar{\psi} \gamma^{\mu} \psi) = 0
$$
\nshowing that probability and flux densities $j^{\mu} = \bar{\psi} \gamma^{\mu} \psi$
\nsatisry continuity equation
\nMoreover
$$
\rho \equiv j^{0} = \bar{\psi} \gamma^{0} \psi = \psi^{\dagger} \psi = \sum_{i=1}^{4} |\psi_{i}|^{2}
$$
 is now positive
\nhiv this respect quantity $\psi(x)$ resembles Schrobinberg wave function
\nDirac Eq. many sense is a one particle Eq.

IN THAT ROLE --HOWEVER-- COEFFICIENT OF $-ix^0$ in Fourier decomposition

$$
\psi(x) = \int dp \, \psi(p) \, e^{-ip \, . \, x}
$$

plays role of energy and there is no reason why negative energies should be excluded

Plane wave solutions

NEXT \leftarrow WE DISCUSS PLANE WAVE SOLUTIONS OF DIRAC EQUATION

WE WILL TREAT POSITIVE AND NEGATIVE FREQUENCY TERMS SEPARATELY AND

therefore write ψ(x) = u(p)e−*ipx* + v(p) e*ipx*

$$
\psi(x) = u(p)e^{-ipx} + v(p)e^{ipx}
$$

SINCE ψ also satisfies KLEIN GORDON EQUATION \blacktriangleright $p^\mu p_\mu = m^2$ so that $p^0 = +\sqrt{\bar{p}}$ $\vec{p}^{\,2} + m^2 \equiv E$ We will call *e*−*iEx*⁰ positive frequency solution IT IS NECESSARY THAT

From Dirac eq. it follows that

$$
\left[i\gamma^{\mu}(-ip_{\mu})-m\right]u(p) e^{-ipx} + \left[i\gamma^{\mu}(ip_{\mu})-m\right]v(p) e^{ipx} = 0
$$

or equivalently

$$
\begin{array}{rcl}\n(\gamma^{\mu}p_{\mu}-m) u(p) & = & 0\\ \n(\gamma^{\mu}p_{\mu}+m) v(p) & = & 0\n\end{array}
$$

because positive and negative frequency solutions are independent

Positron spinors

 \blacktriangleright two negative energy solutions $u^{(3,4)}$ ARE TO BE ASSOCIATED WITH AN ANTIPARTICLE \leftarrow SAY THE POSITRON Using antiparticle prescription POSITRON OF ENERGY E and momentum \bar{p} IS DESCRIBED BY ONE OF $-E$ and $-\vec{p}$ electron solutions

$$
u^{(3,4)}(-p) e^{-i[-p] \cdot x} \equiv v^{(2,1)}(p) e^{ip \cdot x}
$$

where $p^0 \equiv E > 0$

 \triangleright positiron spinors v are defined just for notational convenience

Solution for free particles at rest It is useful to INTRODUCE THE NOTATION \blacktriangleleft "slash" quantities satisfy $\{\cancel{a}, \cancel{b}\}=a_\mu b_\nu \{\gamma^\mu, \gamma^\nu\}=2a_\mu b^\mu\equiv 2a.b$ Dirac eq. for a plane wave solution may thus be written as It is easily seen that $\bm{\mathcal{J}}$ WHEN $\vec{p}=0$ and $p_0=m$ equations take form $\bm{\mathsf{F}}\left(\gamma^0+1\right)\,m\,v(0) \;\;=\;\; 0$ \checkmark THERE ARE TWO POSITIVE AND TWO NEGATIVE FREQUENCY SOLUTIONS \bullet $\gamma^{\mu}p_{\mu} \equiv \gamma_{\mu}p^{\mu} \equiv p^{\prime}$ $(\cancel{p} - m) u(p) = 0$ $(\not p + m) v(p) = 0$ $\bar{u}(p)$ ($p \hspace{-.07cm}/ - m$) = 0 $\bar{v}(p)$ ($p + m$) = 0 (γ⁰ − 1) m u(0) = 0 $u^{(1)}(0) =$ $\overline{}$ $\overline{}$ 1 0 0 0 $\sum_{i=1}^{n}$ $u^{(2)}(0) =$ $\overline{1}$ $\overline{}$ 0 1 0 0 $\sum_{i=1}^{n}$ $v^{(2)}(0) =$ $\overline{1}$ $\overline{}$ 0 0 1 0 $\sum_{i=1}^{n}$ $v^{(1)}(0) =$ $\overline{1}$ $\overline{}$ 0 0 0 1 $\sum_{i=1}^{n}$ $\Big\}$

Solution for arbitrary momentum ◆ SINCE $(p + m)(p - m) = p^2 - m^2 = 0$ WE MAY WRITE THE SOLUTION FOR ARBITRARY p in the form

$$
u^{(r)}(p) = C (m + p) u^{(r)}(0)
$$

$$
v^{(r)}(p) = C' (m - p) v^{(r)}(0)
$$

 $r=1,2$ and C' and C' are normalization constants For fermions we choose covariant normalization in which we have

2*E* particles/unit volume just as we did for bosons

$$
\int_{\text{unit vol.}} \rho \, dV = \int \psi^{\dagger} \, \psi \, dV = u^{\dagger}(p) \, u(p) = 2E
$$

where we have used

$$
\bullet \ \rho \equiv j^0 = \bar{\psi} \gamma^0 \psi = \psi^{\dagger} \psi = \sum_{i=1} |\psi_i|^2
$$

4

$$
\bullet \; \psi(x) = u(p)e^{-ipx} + v(p)e^{ipx}
$$

Orthogonality Relations **WE THIS LEADS TO THE ORTHOGONALITY RELATIONS WE BY SUMMAING** w e obtain $\leftarrow 2\,\bar{u}(p) \; p_0 \; u(p) - 2\, m\, u^\dagger(p) \; u(p) = 0$ and where we have used relation $\qquad \gamma^0 \gamma^k = - \gamma^k \gamma^0$ **WE ORTHOGONALITY RELATIONS THEN BECOME** $\bar{u}(p)\,\gamma^0(\gamma^\mu p_\mu-m)\,u(p)=0$ $\bar{u}(p)\left(\gamma^{\mu}p_{\mu}-m\right)\gamma^{0}\,u(p)=0$ $\bar{u}^{(r)}(p) \, u^{(s)}(p) = \frac{m}{\hbar}$ $\frac{d^{n}u}{E}u^{(r)\dagger}(p) u^{(s)}(p) = 2m\delta_{rs}$ $\bar v^{(r)}(p) \; v^{(s)}$ $(p) = -\frac{m}{E}$ $\frac{d^{n}v^{(r)}(p)}{E}v^{(r)}(p) = -2m\delta_{rs}$ $u^{(r)\dagger}(p)\,\,u^{(s)}(p)=2E\delta_{rs}\,,\quad v^{(r)\dagger}(p)\,\,v^{(s)}(p)=2E\delta_{rs}$

Normalization Constant O Using $p/p/p = p^2$ we obtain

$\bar{u}^{(r)}(p) u^{(s)}(p) = |C|^2 \bar{u}^{(r)}(0) (m+p)(m+p) u^{(s)}(0)$ $= 2m |C|^2 \bar{u}^{(r)}(0)$ (m+ $p \bar{u}^{(s)}(0)$

- $= 2m |C|^2 \bar{u}^{(r)}(0) (m + \gamma^0 p_0 + \alpha^k p_k \beta) u^{(s)}(0)$
- $= 2m |C|^2 (m+E) \bar{u}^{(r)}(0) u^{(s)}(0)$
- $= 2m |C|^2 (m+E) \, \delta_{rs}$

and determine the normalization constant

A STRAIGHTFORWARD CALCULATION LEADS TO

HINTS FOR THE CALCULATION

$$
(\cancel{p} + m)(\cancel{p} + m) = m^2 + 2m \cancel{p} + \cancel{p}^2 = 2m^2 + 2m \cancel{p}
$$

$$
\gamma^{0} p_{0} + \gamma^{k} p_{k} = \begin{pmatrix} E & 0 & 0 & 0 \\ 0 & E & 0 & 0 \\ 0 & 0 & -E & 0 \\ 0 & 0 & 0 & -E \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & p_{1} \\ 0 & 0 & p_{1} & 0 \\ 0 & p_{1} & 0 & 0 \\ p_{1} & 0 & 0 & 0 \end{pmatrix}
$$

$$
+ \begin{pmatrix} 0 & 0 & 0 & -ip_{2} \\ 0 & 0 & ip_{2} & 0 \\ 0 & -ip_{2} & 0 & 0 \\ ip_{2} & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & p_{3} & 0 \\ 0 & 0 & 0 & -p_{3} \\ p_{3} & 0 & 0 & 0 \\ 0 & -p_{3} & 0 & 0 \end{pmatrix}
$$

$$
= \begin{pmatrix} E & 0 & p_{3} & p_{1} - ip_{2} \\ 0 & E & p_{1} + ip_{2} & -p_{3} \\ p_{3} & p_{1} - ip_{2} & -E & 0 \\ p_{1} + ip_{2} & -p_{3} & 0 & -E \end{pmatrix}
$$

Hints for the calculation (cont'd)

$$
\bar{u}^{(1)}(0)(\gamma^{0}p_{0} + \gamma^{k}p_{k})u^{(1)}(0) = (1 \ 0 \ 0 \ 0 \ 0) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}
$$

$$
\times \begin{pmatrix} E & 0 & p_{3} & p_{1} - ip_{2} \\ 0 & E & p_{1} + ip_{2} & -p_{3} \\ p_{3} & p_{1} - ip_{2} & -E & 0 \\ p_{1} + ip_{2} & -p_{3} & 0 & -E \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$

$$
= (1 \ 0 \ 0 \ 0 \ 0) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} E \\ 0 \\ p_{3} \\ p_{1} + ip_{2} \end{pmatrix}
$$

$$
= (1 \ 0 \ 0 \ 0 \ 0) \begin{pmatrix} E \\ 0 \\ -p_{1} - ip_{2} \end{pmatrix}
$$

GENERAL SOLUTION OF DIRAC EQUATION INTRODUCING TWO-COMPONENT SPINORS $\chi^{(r)}$ where $\chi^{1}=(^{1}_{0})_{\text{AND}}$ $\chi^{2}=(^{0}_{1})$ WE MAY EXAMINE EXPLICIT FORM OF SOLUTION OF DIRAC EQUATION

$$
u^{(r)}(p) = \frac{m + p}{\sqrt{m + E}} \chi^{(r)}
$$

=
$$
\frac{m + \sigma_3 E - i \sigma_2 \sigma \cdot \vec{p}}{\sqrt{m + E}} \chi^{(r)}
$$

=
$$
\frac{1}{\sqrt{m + E}} \begin{pmatrix} m + E & -\sigma \cdot \vec{p} \\ \sigma \cdot \vec{p} & m - E \end{pmatrix} \begin{pmatrix} \chi^{(r)} \\ 0 \end{pmatrix}
$$

=
$$
\sqrt{E + m} \begin{pmatrix} \chi^{(r)} \\ (E + m)^{-1} \sigma \cdot \vec{p} \chi^{(r)} \end{pmatrix}
$$

and so positive-energy four spinor solutions of Dirac's equation are

$$
u_1(E, \vec{p}) = \sqrt{m+E} \begin{pmatrix} 1 \\ 0 \\ (m+E)^{-1} \sigma.\vec{p} \\ u_2(E, \vec{p}) = \sqrt{m+E} \begin{pmatrix} 0 \\ 1 \\ (m+E)^{-1} \sigma.\vec{p} \\ (m+E)^{-1} \sigma.\vec{p} \end{pmatrix}
$$

For low moment

upper two components are a great deal larger than the lower ones

Friday, October 21, 2011

FOR $E > 0$ WE HAVE

negative energy solutions

\div FOR THE $E < 0$

$$
u^{(r+2)}(p) = \frac{1}{\sqrt{m+E}} \left(\begin{array}{cc} m+E & -\sigma.\vec{p} \\ \sigma.\vec{p} & m-E \end{array} \right) \left(\begin{array}{c} 0 \\ \chi^{(r)} \end{array} \right)
$$

SOLUTIONS OF DIRAC EQ. ARE

$$
u_3(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} -(m - E)^{-1} \sigma . \vec{p} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} -(m - E)^{-1} \sigma . \vec{p} & \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) = \sqrt{m - E} \begin{pmatrix} 0 & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ u_4(E, \vec{p}) =
$$

PROJECTION OPERATORS & COMPLETENESS

To obtain completeness properties of solutions consider positive and negative solutions separately WE USE THE EXPLICIT SOLUTIONS ALREADY OBTAINED \odot

$$
(\Lambda_{+})_{\alpha\beta} = \frac{1}{2m} \sum_{r=1}^{2} u_{\alpha}^{(r)}(p) \bar{u}_{\beta}^{(r)}(p)
$$

\n
$$
= \frac{1}{2m(m+E)} \left[\sum_{r} (\not p + m) u^{(r)}(0) \bar{u}^{(r)}(0) (\not p + m) \right]_{\alpha\beta}
$$

\n
$$
= \frac{1}{2m(m+E)} \left[(m+\not p) \frac{1+\gamma^{0}}{2} (m+\not p) \right]_{\alpha\beta}
$$

\n
$$
= \frac{1}{2m(m+E)} \left\{ m(\not p + m) + \frac{1}{2} (\not p + m)[(m-\not p)\gamma^{0} + 2E] \right\}_{\alpha\beta}
$$

\n
$$
= \frac{1}{2m} (\not p + m)_{\alpha\beta}
$$

More on projection Operators & completeness 2

O SIMILARLY IF WE DEFINE Λ_- by $-(\Lambda_-)_{\alpha\beta}=-\frac{1}{2\pi}$

$$
\text{WE GF} \leftarrow (\Lambda_-)_{\alpha\beta} = \frac{1}{2m} (m - p)_{\alpha\beta}
$$

completness relation is that

 $\Lambda_+ + \Lambda_- =$ 1 2*m* $\sqrt{}$ 2 $r=1$ $[u_{\alpha}^{(r)}(p) \ \bar{u}_{\beta}^{(r)}(p) - v_{\alpha}^{(r)}(p) \ \bar{v}_{\beta}^{(r)}(p)] = 1$

2*m*

 \sum

 $v_\alpha^{(r)}(p) \, \, \bar v_\beta^{(r)}(p)$

 $r=1$

O MATRICES Λ_+ AND Λ_- HAVE PROPERTIES OF PROJECTION OPERATORS BECAUSE $\Lambda_{\pm}^2 = \Lambda_{\pm}$ and $\Lambda_{+}\Lambda_{-} = \Lambda_{-}\Lambda_{+} = 0$

O OPERATORS Λ_+ PROJECT POSITIVE AND NEGATIVE FREQUENCY SOLUTIONS but because there are four solutions there must still be another PROJECTOR OPERATOR WHICH SEPARATES $r=1,2$ solutions

O THIS PROJECTOR OPERATOR h MUST BE SUCH THAT

 $h^{(r)} h^{(s)} = \delta_{rs} h^{(r)}$ and $[h^{(r)}, \Lambda_{\pm}] = 0$ **%**

HELICITY OPERATOR

Since two solutions have something to do with two possible polarization DIRECTIONS OF SPIN- $1/2$ particle \bullet we may expect the operator to be some sort of generalization of non-relativistic operator that projects out the state polarized in a given direction for two component spinors

ON INSPECTION w we see that the the helicity operator

$$
h \equiv \hat{p} \cdot \mathbf{\Sigma} = \frac{1}{2} \hat{p}_k \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix}
$$

SATISFIES IS WHERE $\hat{p} \equiv \vec{p}/|\vec{p}|$

Helicity operator commutes with *H* SO IT SHARES ITS EIGENSTATES WITH H and its eigenvalues are conserved

Eigenvalues of helicity operator

To find the eigenvalues of the helicity operator we calculate

$$
h^{2} = \frac{1}{4} \begin{pmatrix} (\sigma \cdot \hat{p})^{2} & 0 \\ 0 & (\sigma \cdot \hat{p})^{2} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} \hat{p}^{2} & 0 \\ 0 & \hat{p}^{2} \end{pmatrix}
$$

Thus, the eigenvalues of the helicity operator are

$$
h = \begin{cases} +\frac{1}{2} \text{ positive helicity} & \implies \\ -\frac{1}{2} \text{ negative helicity} & \Longleftrightarrow \end{cases}
$$

The spin component in the direction of motion 1 2 \hat{p} . σ

is thus a good quantum number and can be used to label the solutions

Particle's spin up and spin down Assuming a particle has a momentum \vec{p} and choosing $x_3 - \text{axis}$ ALONG THE DIRECTION OF \vec{p} we can determine which of the four spinor u_1, u_2, v_1 and v_2 have spin up and spin down WITH THESE ASSUMPTIONS $\sigma \cdot \vec{p} = \sigma_3 p_3, |\vec{p}| = p_3$ AND THE HELICITY OPERATOR SIMPLIFIES TO $h =$ 1 $\int \sigma_3 \hat{p}_3$ 0 " \equiv 1 $\int \sigma_3 = 0$

WE THEN FIND

$$
hu_1 = \frac{\sqrt{E+m}}{2} \begin{pmatrix} 1 & -1 \\ & -1 \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 \\ (E+m)^{-1} \sigma, \vec{p} \\ (E+m)^{-1} \sigma, \vec{p} \\ (E+m)^{-1} \sigma, \vec{p} \end{pmatrix} = \frac{1}{2} u_1
$$

\n
$$
hu_2 = \frac{\sqrt{E+m}}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ (E+m)^{-1} \sigma, \vec{p} \\ (E+m)^{-1} \sigma, \vec{p} \end{pmatrix} = \frac{1}{2} u_1
$$

\n
$$
= \frac{\sqrt{E+m}}{2} \begin{pmatrix} 0 \\ -1 \\ (E+m)^{-1} \sigma, \vec{p} \end{pmatrix} = -\frac{1}{2} u_2
$$

2

 $0 \qquad \sigma_3 \hat{p}_3$

2

 $0 \quad \sigma_3$

"

Antiparticle's spin up and spin down FOR ANTIPARTICLES WITH NEGATIVE ENERGY AND MOMENTUM $-\vec{p},\sigma.\vec{p}=\sigma_3(-p_3)$ and the helicity operator simplifies to $h =$ 1 2 $\int -\sigma_3 \hat{p}_3$ 0 $0 \qquad -\sigma_3 \hat{p}_3$ " $\frac{1}{\sqrt{2}}$ 1 2 $\begin{pmatrix} -\sigma_3 & 0 \end{pmatrix}$ $0 \quad -\sigma_3$ " $\sum_{i=1}^{n}$

WE THEN FIND

$$
hv_1 = \frac{\sqrt{E+m}}{2} \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} (E+m)^{-1} \sigma . \vec{p} & \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}
$$

$$
= \frac{\sqrt{E+m}}{2} \begin{pmatrix} (E+m)^{-1} \sigma . \vec{p} & \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \frac{1}{2}v_1
$$

$$
hv_2 = \frac{\sqrt{E+m}}{2} \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} (E+m)^{-1} \sigma . \vec{p} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}
$$

$$
= \frac{\sqrt{E+m}}{2} \begin{pmatrix} (E+m)^{-1} \sigma . \vec{p} & \begin{pmatrix} -1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} -1 \\ 0 \end{pmatrix} \end{pmatrix} = -\frac{1}{2}v_2
$$

Homework

Use Euler-Lagrange equation to derive:

KLEIN-GORDON EQUATION FROM $\blacktriangleright \mathcal{L}_{\mathrm{KG}} =$ 1 2 $\partial_\mu \phi \,\, \partial^\mu \phi - \frac{1}{2}$ 2 $m^2\phi^2$

AND DIRAC EQUATION FROM \blacktriangleright $\mathcal{L}_{\text{Dirac}} = \psi(i\gamma^{\mu}\partial_{\mu} - m)\psi$

Bilinear Covariants

To construct most general form of Lorentz covariant currents

 need to tabulate bilinear quantities of form $\bar{\psi}(4\times4)\psi$

which have definite properties under Lorentz transformations

TO SIMPLIFY THE NOTATION \blacktriangleright WE INTRODUCE

$$
\int \gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3
$$

It follows that

$$
\gamma^{5^{\dagger}} = \gamma^5, \quad (\gamma^5)^2 = \mathbb{I}, \quad \gamma^5 \gamma^{\mu} + \gamma^{\mu} \gamma^5 = 0
$$

In Dirac-Pauli representation

$$
\left[\gamma^5 = \left(\begin{array}{cc} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{array}\right)\right]
$$

We are interested in behavior of bilinear quantities under:

proper Lorentz transformations --that is rotations and boosts--

under space invertion --parity operation--

Explicit form of Bilinear covariants

Table 1.3: Bilinear covariants. The list is arranged in increasing order or increasing order order order order IF FIVE MATRICES WERE USED ► AT LEAST TWO WOULD BE THE SAME IN WHICH CASE PRODUCT WILL BE REDUCED TO THREE AND BE ALREADY INCLUDED IN AXIAL VECTOR LIST ARRANGED IN INCREASING ORDER OF γ^μ MATRICES THAT ARE SANDWICHED BETWEEN $\bar{\psi}$ and ψ pseudoscalar is the product of four matrices

Examples

Because of anticommutation relations, tensor is antisymmetric $\{\gamma^{\mu},\gamma^{\nu}\}=2\gamma^{\mu\nu}$

$$
\sigma^{\mu\nu}=\frac{i}{2}\left(\gamma^\mu\gamma^\nu-\gamma^\nu\gamma^\mu\right)
$$

From $\bar{\psi}'(x')\,\gamma^{\mu}\,\psi'(x') = \bar{\psi}(x)\,S^{-1}(\Lambda)\,\gamma^{\mu}\,S(\Lambda)\,\psi(x)$ $= \begin{array}{cc} \Lambda^{\mu}_{\alpha}\,\bar{\psi}(x) \, \gamma^{\alpha}\,\psi(x) \end{array}$

IT FOLLOWS IMMAEDIATELY THAT $\bar{\psi}\psi$ is a Lorentz scalar

THE PROBABILITY DENSITY $\rho=\psi^\dagger\psi\,$ is not a scalar, but is the timelike COMPONENT OF THE FOUR VECTOR $\overline{\psi\gamma^{\mu}}\psi$

BECAUSE $\gamma^5 S_P = - S_P \gamma^5$ the presence of γ^5 the pseudo-nature of the axial vector and pseudoscalar gives rise to i.e., a pseudoscalar is a scalar under proper Lorentz transformations but, unlike a scalar, changes sign under parity

