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DIRAC EQUATION
TODAY =
WE witL CONSTRUCT WAVE EQUATION FOR SPIN-1/2 RELATIVISTIC PARTICLES
FOLLOWING DIRAC WE PROCEED BY ANALOGY WITH NON-RELATIVISTIC QLAA
WRITE EQUATION WHICH == UNLIKE KLEIN-GORDON EQUATION-- IS LINEAR IN Ot
IN ORDER TO BE COVARIANT e 1T RAUST ALSO BE LINEAR IN Y/

HAMILTONIAN HAS GENERAL Form {H W (x) = (a.p+ Bm) Y(x)]
4 COEFFICIENTS 3, (0v1, (vg AND (i3
ARE DETERMINED BY REQUIREMENT THAT A FREE PARTICLE == OF MASS 110 ~-
MUST SATISEY RELATIVISTIC ENERGY MOMENTUM RELATION

H% = (up +6m)(0@pg T Bm)p

= (a2 p?+ (aioy+ aja;) pip; + (B + Bay) pim+ B2 m?) s
v g - _J/ N -~ _/ - - ;
1 0 0 1
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FROM 3 WE SEE THAT

ALL THE COEFFICIENTS (; AND (3 ANTICORMMAUTE WITH EACH OTHER
AND HENCE THEY CANNOT SIMPLY BE NURNBERS

WE ARE LEAD TO CONSIDER MATRICES " (k = 1,2, 3)anp (3
WHICH ARE REQUIRED TO SATISFY THE CONDITION

ool + ala” = {aF, o'} = 26", {aF, 5} =0, and 5% =

IS THE UNIT AMATRIX
1T TURNS OUT THAT THE LOWEST DIMMENSIONALITY RMATRICES WHICH GUARANTEE

RELATIVISTIC ENERGY MORENTUM RELATION ALSO HOLDS TRUE w 4 X 4
A FOUR-COMPONENT QUANTITY 1), () WHICH SATISFIES THE DIRAC EQUATION

10 () = —i [Oépa]k Ok Yo () +m Bpo o () :é,:ﬁ‘,_\;’;g

TS TRANSFORRATION PROPERTIES ARE DIFFERENT FROM THAT OF A 4-VECTOR
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DIRAC-PAULY € WEYL REPRESENTATIONS
SPECIFIC REPRESENTATION OF MMATRICES Oék AND 6

& DW2AC PAULY REPRESENTATION m

V| WEYL OR CHIRAL REPRESENTATION re
Z X 2 BLOCK FORAMN
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COVARIANT FORM OF DIRAC EQUATION

ON AMULTIPLYING DIRAC'S EQUATION BY B FROM THE LEFT WE ( OBTAIN

OR EQUIVALENTLY

rv“c?

WE OANIT SPINOR SUBSCRIPTS WHENEVER THERE IS NO DANGER OF CONFUSION
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DIRAC MATRICES

WE HAVE INTRODUCED FOUR DIRACY ~mATRICESYH = (3, Ba)
WHICH SATISFY THE ANTICOMMUTATION RELATIONS

WE CAN NOW UNEQOUWOCALLY SEE THAT DIRAC'S EQUATION

IS ACTUALLY 4 DWWFERENTIAL EQUATIONS

WHICH COUPLE THE £OUR COMPONENTS OF A SINGLE DIRAC SPINOR zp
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LORENTZ INVARIANCE
GENERAL LORENTZ TRANSFORMATION CONTAINS ROTATIONS AND BECAUSE ()
IS SUPPOSED TO DESCRIBE A FIELD WITH SPIN me UNDER THE TRANSFORAATION

o' — P = AP x¥ WE ALLOW FOR A REARRANGEMENT OF 1(T) CORMPONENTS

BECAUSE BOTH DIRAC EQUATION AND LORENTZ TRANSFORAATION OF COORDINATES
ARE THEMSELVES LINEAR m WE ASK TRANSFORMATION BETWEEN 1) & 1)’ BE LINEAR

S(A) 1$A 4 X 4 MATRIX WHICH OPERATES ON U

TO FIGURE OUT S mDEMAND DIRAC EQ. HAS SARME FORAN IN ANY INERTIAL FRAANE

OR EQUIVALENTLY
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LOP‘ENTZ INVARIANCE

IF WE MOLTIPLY BY S L(A) FROM LEFT WE GET

DIRAC. EQ. 1S FORM-INVARIANT PROVIDED WECAN FIND S( A) SUCH THAT

ose

*

CONSIDER INFINITESIMMAL LORENTZ TRANSFORAATION

AFTER A BIT OF ALGEBRA 3¢ REDUCES TO THE CONDITION

A SOLUTION IS SEEN TO BE

<>

b SEE LECTURE NOTES FOR DETAILS



HINTS FOR THE CALCULATION

—_——

(1+ %wpazpahu(l T %Wpazpa) = (1 - %Wpajpg)ﬁ

WITH e |




LORENTZ ALGEBRA

BY REPEATED USE OF [X] 1T IS EASILY SEEN THAT

& SATISFIES CORMMUTATION RELATIONS OF LORENTZ ALGEBRA

INCIDENTALLY ST(A) = V(_) SR L)

THE FoRA FOR S(A) WHEN A 1 NOT INFINITESIRRAL 1S
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ROTATIONS £ BoOsTS

FOR A ROTATION w;o = OAND w;; = 0} AND BECAUSE X" = %eij gl
we 6T S(A) = e /2?7 yincu sHowS THE CONNECTION BETWEEN W,
AND PARAMETERS CHARACTERIZING ROTATION (4, 4, k=1, 2, 3)

FOR A PURE LORENTZ TRANSFORMATION w;; = 0 AND w;o = U;
3 0 2 Sl e
AND BECAUSE YV? — 504 WE HAVE

S(A) - 6(1/2)19.04

1+ 29, L LN L () v,
YT o\ 4 3i\ 4 /) 2 T

) . 9
cosh — + ¥ .«¢ sinh —
2 2
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HINTS FOR THE CALCULATION
il 1 R,
P = .0 0 = e ()
Os.. .l 0 —0o 0 —0
ﬁa6:<_1 o><a O>:<—0 o)z_o‘

( ; ( 2
A ] A {520& s 5045} = g
ZOi = %O&i Zio — —%Oéq; Wo; — — W40

VRS 291041 s 192042 i 1930(3

(01)2 = (02)? = (03)2 = (V101 + V209 + I303)% = ¥*
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I20TATION THROUGH WNAGINARY ANGLE
FOR SPECIAL CASE WE AMAY FIND CONNECTION BETWEEN 9 AND VELOCITY v

CHARACTERIZING PURE LORENTZ TRANSFORAMATION BY LOOKING AT *3°

CONSIDER LORENTZ TRANSFORANATION IN WHICH NEW ~PRIME- FRAME
AMOVES WITH VELOCITY U ALONG T3 AXIS OF ORIGINAL ~UNPRINMED~ FRAME

er_;’_: Cosh(ﬁg) . 81h29)3
G = —Smh(ﬁg) t + cosh(ﬁg) 5173

HERE =

Becavse cos(it)3) = cosh(d3) AND sin(ids) = sinh(¥3)

WE SEE THAT LORENTZ TRANSFORRMATION AAAY BE REGARDED
AS A ROTATION THROUGH WAAGINARY ANGLE 103 IN it — x3 PLANE
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ADJOINT DIRAC EQUATION
TO CONSTRUCT CURRENTS w WE DUPLICATE KLEIN GORDON CALCULATION
TAKING ACCOUNT THAT DIRAC EQ. IS AMATRIX EQ. AND THUS WE AUST CONSIDER
HERMMITIAN RATHER THAN COMPPLEX CONJUGATE EQ.

DIRAC EQ. HERANTIAN CONJUGATE I8

—i0,T AV — i k)T (—F) —mypT =0

TO RESTORE COVARIANT FORAM WE NEED TO FLIP PLUS SIGN IN ZND TERAM
WHILE LEAVING [sT TERAN ONCHANGED
0L k" " R
SINCETY 7V = =7 7V THIS CAN BE ACCORMPLISHED BY MULTIPLYING &
0
FROMN THE RIGHT BY 7/

INTRODUCING THE ADJOINT ~-ROW-= SPINOR 1) = 1)1~/"
WE OBTAIN w b i
10,y + myp =0
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DIRAC LAGRANGIAN

WE PAUSE TO DISCUSS TRANSFORMATION PROPERTIES OF

—

0(x) S~ ()7 S(A) ()

Ao y(@) 7" P(z)

UNDER A LORENTZ TRANSFORMATION $
BILINEAR COMBINATION () VM ()

TRANSFORMS LIKE A CONTRAVARIANT FOUR-VECTOR

WE CAN WRITE DOWN A LAGRANGIAN FOR SPIN-1/2 RELATIVISTIC PARTICLES
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CONTINUITY EQUATION

By ADDING #® fAULTIPLIED FROM LEFT BY U AND 3K FROMN RIGHT BY 1
AGLUE N V" 0,0 + (9,0)7" = 0, (Yy"'eh) = 0

SHOWING THAT PROBABILITY AND FLUX DENSITIES ]/ = YyH )
SATISEY CONTINUITY EQUATION

4
AOREOVER w P = jO e &WO@D — WLID — Z |¢z|2
1=1

IS NOwW POSITIVE
DEFINITE

IN THIS RESPECT QUANTITY 1)(x) RESEMBLES SCHRODINGER WAVE FUNCTION
DIRAC EQ. AMAY SERVE AS A ONE PARTICLE EQ.

IN THAT ROLE —~HOWEVER-- COEFFICIENT OF —1X 4 IN FOURIER DECOANPOSITION

PLAYS ROLE OF ENERGY
AND THERE 1S NO REASON WHY NEGATIVE ENERGIES SHOULD BE EXCLUDED
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[PLANE WAVE SOLUTIONS
NEXT w WE DISCUSS PLANE WAVE SOLUTIONS OF DIRAC EQUATION
WE wWiLL TREAT POSITIVE AND NEGATIVE FREQUENCY TERAMS SEPARATELY AND

THEREFORE WRITE =

SINCE 1)) ALSO SATISFIES KLEIN GORDON EQUATION

2 =
IT 1S NECESSARY THAT PH'D), = m~ co that p° = +4/p2 +m2 = E
WE Wit CALL e “FT0 POSITIVE FREQUENCY SOLUTION

£ROAM DIRAC EQ. IT FOLLOWS THAT

OR EQUIVALENTLY |

BECAUSE POSITIVE AND NEGATIVE FREQUENCY SOLUTIONS ARE INDEPPENDENT
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[POSITRON SPINORS

3,4
> TWO NEGATIVE ENERGY soLuTions 1>

ARE TO BE ASSOCIATED WITH AN ANTIPARTICLE m SAY THE POSITIRON
> USING ANTIPARTICLE PRESCRIPTION
POSITRON OF ENERGY ) AND RMMORMENTURA D

IS DESCRIBED BY ONEOF —F AND — ﬁ ELECTRON SOLUTIONS

wHERe p° = E > 0

> [POSITRON SPINORS U ARE DEFINED JUST FOR NOTATIONAL CONVENIENCE

Friday, October 21, 2011



SOLUTION FOR FREE PARTICLES AT REST
v It 1$ USEFUL TO INTRODUCE THE NOTATION V' Py = YuD" =P
v “sLASH” QUANTITIES sATisEY 14, Bt —ai@iioe o = 20,0 = 2a.D
v DIRAC EQ. FOR A PLANE WAVE sowﬂom ARAY THU*Q BE WRITTEN AS
(G—m ) = o

(]é o m) ~ .)
V1 1S EASILY SEEN THAT grmmmmmmemeranm

VWHEN = 0 AND Po = M EQUATIONS TAKE FORM w- | (-0 (

J fHEPE APE TWO PO‘QTPVE AND TWO NEGAﬂVE FPEQUENC)/ 'SZOLUT!ON‘SZ .

— O — O ~— O

ey (0) = ey (0) = O v(2) (0) = 1 ey (0) = O

t oo o~

Friday, October 21, 2011




SOLUTION FOR ARBITRARY AMOMENTUAMN
¢ SINCE (P +m)(—m) =p° —m* =0
WE ANAY WRITE THE SOLUTION FOR ARBITRARY D IN THE FORM
u(p) = C(m+ ¥) u'"(0)
i p)

€ FOR FERMIONS WE CHOOSE COVARIANT NORANALIZATION IN WHICH WE HAVE
2 PARTICLES/UNIT VOLUANE JUST AS WE DID £OR BOSONS

WHERE WE HAVE USED

o= =Y =nlp=> Jy
1=1

© P(z) = u(p)e™*"" + v(p)
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ORTHOGONALITY RELATIONS
% THIS LEADS TO THE ORTHOGONALITY RELATIONS
u(r)T(p) u(s)(p) — 2E§, U(T)T(p) U(s)(p) — 2F8§,.

a(p) ¥ (v'pu — m) u(p) = 0
% BY SURMANING _

a(p) (Y*pp — m) ¥’ u(p) =0

wE OBTAIN w2 7(p) po u(p) —2mu’(p) u(p) =0

WHERE WE HAVE USED RELATION w ’yo’y S sl k’)/ :

*  ORTHOGONALITY RELATIONS THEN BECORAE

T
a" (p) u' (p) = - u"(p) u'*(p) = 2m0,.

AND

(e’
17(p) v () = — v 71(p) v (p) = —2mé,
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AND DETERMMNE THE Nopmmzmom c,ommm _,

® A STRAIGHTFORWARD CALCULATION LEADS TO w
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HINTS FOR THE CALCULATION

pP3
E p1 + 12
p1 — P2 —F
0

Friday, October 21, 2011



HINTS FOR THE CALCULATION (CONT'D)
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()
\(m+E)_1 o.p (O

¢ w(E,D)=vVm+E : ((1)>
\ (m+E)top < |

UPPER TWO CORMPONENTS ARE A GREAT DEAL LARGER THAN THE LOWER ONES
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© TO OBTAIN COMPLETENESS PROPERTIES OF SOLUTIONS
CONSIDER POSITIVE AND NEGATIVE SOLUTIONS SEPARATELY

‘ (Ay)ag
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ANORE ON PROJECTION OPEPM‘D% S COMPLETENESS

O SINMLARLY W WE DEFINE A_ BY m (A _ )3 = g vi( ‘S“) (p)
1
- GET = A_ o0 T —— e o
WE GET m (A )5 5 (m— Pap

O COMPLETNESS RELATION IS THAT
2
1
i P} () kLN )y = () i
Ay +A- = o= ;Zlﬁ[u(& (p) @g"(p) —ve,’(p) g (p)] = 1

O mMATRICES A AND A HAVE PROPERTIES OF PROJECTION OPERATORS
BECAUSE AT = Ay aw AjA =A AL =0

O OPERATORS A_- PROJECT POSITIVE AND NEGATIVE FREQUENCY SOLUTIONS
BUOT BECAUSE THERE ARE FOUR SOLUTIONS THERE w ANUST STILL BE ANOTHER

PROJECTOR OPERATOR WHICH SEPARATES 7 — 1,2 <OLUTIONS

O THIS PROJECTOR OPERATOR h ANUST BE SUCH THAT
AT R =6, A" and [ AL]=0 X
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HELIQITY OPERATOR
CINCE TWO SOLUTIONS HAVE SORETHING TO DO WITH TwO POSSIBLE POLARIZATION
DIRECTIONS OF 'QP!N*I/ Z PARTICLE w WE MAY EXPECT THE OPERATOR TO BE
SOME SORT OF GENERALIZATION OF NON-RELATIVISTIC OPERATOR THAT PROJECTS
OUT THE STATE POLARIZED IN A GIVEN DIRECTION F+0R TwO COAPONENT SPINORS

ON INSPECTION w WE SEE THAT THE THE HELIQITY OPERATOR

SATISFIES 3¢ WHERE D = p/|p]

HELICITY OPERATOR CORMMUTES witH H
SO I SHARES TS EVGENSTATES WwitH H
AND TS EIGENVALUES ARE CONSERVED
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EIGENVALUES OF HELICITY OPERATOR

TO FIND THE EVGENVALVUES OF THE HELICITY OPERATOR WE CALCULATE

hQ—l (U-ﬁ)Q 0 _1 252 0
4 0 (op)* ) 4\ 0 p°

THUS, THE EVGENVALUES OF THE HELIQITY OPERATOR ARE

+% positive helicity =—

_ 1
2

negative helicity <—

1
THE SPIN COMPONENT IN THE DIRECTION OF AMOTION G 0 0

IS THUS A GOOD QUANTUM NUMBER AND CAN BE USED TO LABEL THE SOLUTIONS
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[PARTICLE’S SPIN UP AND SPIN DOWN
ASSURMNG A PARTICLE HAS A MAORMENTURN D AND CHOOSING '3 — aXIs
ALONG THE DIRECTION OF D WE CAN DETERMINE WHICH OF THE FOUR SPINOR
U1, U2, V1 AND U2 HAVE SPIN UP AND SPIN DOWN
WITH THESE ASSURMPTIONS o - p = o3p3, |p] = p3

1 5 0 1 0
AND THE HELIQITY OPERATOR SIAPLIFIES TO h = — ( (’SOp?’ i ) s ( 3 )

2

WE THEN FIND w

Friday, October 21, 2011



ANTIPARTICLE'S SPIN UP AND SPIN DOWN

FOR ANTIPARTICLES WITH NEGATIVE ENERGY AND AAOARENTUAN —p,0.p =03 (_p?))

AND THE HELICITY OPERATOR SIMPLIFIES TO
. 1 ( —03P3

WE THEN FIND m
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HOMEWORK

OSE EULER-LAGRANGE EQUATION TO DERIVE:

_ 1 1
KLEIN-GORDON EQUATION FROM w L1cy = 5 u¢ 0" o — 57712 ¢2

AND DIRAC EQUATION £R0M w LDirae = Y (170, — m)y

Friday, October 21, 2011



BILINEAR COVARIANTS
TO CONSTRUCT ANOST GENERAL FORM OF LORENTZ COVARIANT CURRENTS
NEED TO TABULATE BILINEAR QUANTITIES OF FORM (4 x 4)1)
WHICH HAVE DEFINITE PROPERTIES UNDER LORENTZ TRANSFORMATIONS

WE ARE INTERESTED IN BEHAVIOR OF BILINEAR QUANTITIES UNDER:

PROPER LORENTZ TRANSEORMATIONS ~-THAT IS ROTATIONS AND BOOSTS-
AND

ONDER SPACE INVERTION —-PARITY OPERATION--



EXPLICIT FORAN OF BILINEAR COVARIANTS

LIST ARRANGED IN INCREASING ORDER OFY" mMATRICES

THAT ARE SANDWICHED BETWEEN 1) AND ¥

PSEUDOSCALAR IS THE PRODUCT OF FOUR RMATRICES

I FIVE MATRICES WERE USED e AT LEAST TWO WOULD BE THE SARNE
IN WHICH CASE PRODUCT WiLL BE REDUCED TO THREE

AND BE ALREADY INCLUDED IN AXIAL VECTOR

No. of Compts. Space Inversion, P

Scalar ) 1 -+ under P
Vector Pyt

Space compts. — under P

Axial vector  ySyHa)
Pseudoscalar 9%

Space compts. + under P
— under P

4
Tensor Yot 6
4
1

Friday, October 21, 2011



EXARNPLES
BECAUSE OF ANTICOMMUTATION RELATIONS, {7, 7" } = 29"
TENSOR 1S ANTISYMMANETRIC

From ()M (a') = w(x) STHA) Y S(A) P()
= A, 9(x) v Y(x)
IT FOLLOWS IMMAMEDIATELY THAT zﬁw 1S A LORENTZ SCALAR
THE PROBABILITY DENSITY 0 = U110 15 NOT A SCALAR, BUT 1S THE TINELIKE
COMPONENT OF THE FOUR VECTOR WY
BECAU<E 7°Sp = —Spy° THE PRESENCE OF 7Y > GIVES RISE T0
THE PSEUDO-NATURE OF THE AXIAL VECTOR AND PSEUDOSCALAR
LE., A PSEUDOSCALAR 1S A SCALAR UNDER PROPER LORENTZ TRANSFORAMATIONS
BUT, UNLIKE A SCALAR, CHANGES SIGN UNDER PARITY
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