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Griven bwo Fw&m&s A a Ptame

what s the shortest Fﬂo&h bebween Ehem?
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Shortest Pabth between Two Points
The length of a short segment of the path is

ds = +/dz? + dy?

o Y
dy = dxdx—y( x)dx
Y

ds = \/dz? + dy? = /1 + [/ (x)]? dx

The btotal length of the path bebween points 1 and 2 is

L:/ds—/ V14 [y (x)]? do

This equation puts our prabtem in a mabkhematical form

\

find the function () for which the inkegral is mininum
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Fermal’s principle
What s the path that Light follows between two points?
J

Fermat (1601 - 1668)

|

the path for which the time of travel of the Light is minimum

The tinme for Light ko travel a short distance dsis ds/v
v =c/n speed of Light in a medium with refractive index n

2 2 2
Eime O‘f &T‘O\VQL = / d‘[/‘ v / @ = 1 / A dS
1 s C J1

In general = refractive index can Vary

/ n(z,y)ds = / n(z,y)v/1+ [y (z)]? dy |

1 R
B T T R I o G B o B R T T D U (T R R I R R T TR DR (DD ol 0, et 6. o8 GBS VI SRS A e 4/
- ~ ~_ ~_ ~
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Calculus of Variations
Standard minimization prabi.em of elementary calculus

unknown value of the variable x at which a known function f(x)
has a mininmum

% Recall thak E:f df / dxr = () at xg there are three passibiti&ies

vIFd f/dz® > 0 = f has a mininmum

‘/I“fde/deQ < (0= f has a maxinum

‘/Lf de/d(]jz — there may be a minimum, a maxinmum,

or wheither o probi@m = ohe step more complicated

Caleulus of Variations
how infinitesimal variations of a path change an integral
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tuler-Lagrange Equa&om

Consider an integral of the form
S= [ fly@). v'(a), a)da

y(aj) = unknown curve joining Fo&n&s(ajl, yl) and (CEQ, yg)

[y(ﬂi'l) — yJ [ y(r2) = sz

We have to find the curve that makes S a minimum

f w function of 3 variabi.e.sf o f(y, y', QS‘)
)

but integral follows path ¢ = y(x)

\

iteqrand fly(x),y' (), x| is actually a function of just one variable T
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Euler-Lagrange Equation (contd)

Y () = y(x) + n(z) (wrong)
\

 If y(z) = right solution

S evaluated for Y () is less Ehan for any neighborhood curveY (1)
convenient to write

Y(z) =y(z) + n(z)
stnce Y(I) nust pass through Fm-im&s 1 and 2

nkeg b aies = 0



Euler-Lagrange Equation (contd)
The inteqral talken along the wrong curve Y (1)

must be larger than that along the right curve y(x)

no matter how close is the former to the latter
ko express Elis requiremem& w nbroduce pmame&er

|

Py (2) = (o) + an(a)}

The inteqral S taken along the curve Y () now depends on X

4
S(a)

The right curve y(aj) is obtained bv setbting a = 0
U

reduction to traditional problem from elementary calculus

)
dS/da = 0 when a =0
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Euler-Lagrange Equation (contd)
Sicy 1y 2f(Y,Y’,x)da:‘

L1
L2

= fly+any +an', z)ds
T4
differentiote with respect to o

Y

4 )

of(y +an,y' +an',x)  Of = ,0f

dar Toy T 8y

dS b e of
— = — dx
do
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Euler-Lagrange Equation (contd)
Re-write second bterm on kthe right using LV\EEQT‘O&LOM bv [am"&s

o o1 [P 7 )
[ @ L ar=nwgh) - [T o (aj)das

1 xI1 1
ev\ciporm& term Ls zero

5. 0] L e )
/xlnuajdasu / (@) = (aj)daz

z2 9f d of %
/x n(x)(ﬁy dw@y’> =9

1

This condition must be satisfied for any choice of the function 7(x)

We can conclude that w 9 d of it
oy dxdy

Yo € B = 15

i all the functions concerned are continuous

Leonhard Euler (1707-17%3) Joseph Lagrange (1736-1%13)
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Shortest path between two points in R’
We saw that the Lehg&k o«f a F’o&h be&weem me&s 1 and 2 is

i L :/ ds _/ \/1 + 2 daz

‘ Eko& Ems &h& sEaMdard afcwrm ‘

opiidmr s mperamt (o

& il o /17 4>
it Oia—f C
dx 0y’ l_i Oyt

[2 02(1 _I_y/2) sy y/2 Y 51 = y/(il?) el
m&egra&mn i.ead.s ko
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Greneralized Coordinates
Instead of Cartesian coordinates m consider now

> spherical polar coordinates (1, 0, @)

> cylindrical coordinates (0, &, 2)

> or any set of qeneralized coordinates (g1, G2, q3)
satisfying ¢; = i(F) for i = 1, 2, 3and 7 =7(q1, G2, g3)

Next re-write the Lagrangion in terms of these new variables

L= L(q1,92,93, 41,42, G3)

and the action integral

to
S:/ L(QlaQZvQBana@baéB) dt

t1
The value of the inteqgral is unaltered bvj this change of variables

\

The statement that S is stationary for variations of the path
around bthe correct Fw&h musk skill be brue n the new coordinakes
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Lagranglan Density

© We have seen that state of a physical system
consisting of collection of N discrete point particles
can be spa«tvfied bv a set of 3N generalized coordinates ¢

o Action of such a physical system w

is inteqral of so-called Lagrangian function from which
system behavior is determined bv principle of minimal action

e In Local field theory m Lagrangian can be written as
spatial integral of Lagrangian density

where field ¢ itself is a function of continuous parameters 2"
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Lagrangian Field Tkeary

© MLMLML&&ELOM COMdL&LOM on 55 vcetds

—
- / A [05L 5¢+ %mm(@m)]
where w 0(B,0) = Op( + 00) — Op — 0, (00)

o The sa«cow:l &erm in Ehe_ m&egrami can be m&egro&ed bv parts

/d4a? Op,.s L 0, (09) = /d4 6_£¢ aé*if) ,

m&egra&om wp&k rese«c& Eo :L’““ Lé&ds &o

/d4 0,6 Ozt Jo, L 09 . /d4$ 0¢ 0u(9,¢L)

= /d4$ 0u(0p,6L 09) — 09 0,(0,eL)]

spacetime region of integration
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Lagrangian Field Tké(}f'j
The summary from the previous slide is
e s § —— 1:_‘

0 = / Fel0oL 56 = 0,(00,60) 06+0, (aa oL 59

Using Grauss theorem = last term in & can be written as

a surface inteqral over the boumdarj of 4-dimensional
spacetime region of integration

As in particle mechanics case = initial and final confiqurations
are assumed given and so 00 is zero
at temporal beginning and end of this region

Hereafter we reskrick our consideration to deformations 0@ thatk
also vanish on spatial boundary of integration region

Hence w for arbitrary variations 0¢
¢ leads to EML&T“L&Q\‘&MQQ equ&&uon 0{ mo&mm for a field:

- 0u(00,6L) — oL = =0 |
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CANONICAL FORAALISAN
«» THE CANONICAL AMORENTUM FOR THE PARTICLE SYSTEM IS D; = Oy, L
THE CORRESPONDING QUANTITY FOR A FIELD IS T(2) = 0, L
AND 1S CALLED MMOMENTURA DENSITY CONJUGATE TO ¢ ()

o5 THE HARMLTONIAN IS DEFINED BY

AND SO WE CAN WRITE w FH = / d°x H
WHERE w l H(Qj) — 7'('(33) ¢(I) _

|
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CANONICAL QUANTIZATION
THE HEISENBERG COMRNTATION RELATIONS [p;, qj] = —i0;5,
DD e [qz, ql () HAVE AS THEIR FIELD COUNTERPARTS

|7
WITH ALL OTHER PAIRS OF OPERATORS COMMUTING
I THERE ARE VARIOUS CLASSICAL FIELDS TO BE QUANTIZED
EG. ¢(x) AND @"(z) THEEQUATION 0,|09,¢+ L] — Ops L = 0
WILL TOO BE SATISFIED AND THE FIELD @~
WILL HAVE TS CANONICALLY CONJUGATE RAORMMENTURN T~ = O L
THE HAM\!LTON!AN DEN'SZW‘/ WL BE

L) 4

\
N~

} xtgb
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REMARKS ON QUANTIZATION PROCEDURE

NOTE THAT COMMUTATION RELATIONS ARE ONLY DEFINED AT EQUAL TIAES

ONCE CORMMUTATORS ARE GIVEN w THEWR VALUES AT DIFFERENT TIES
ARE DETERAMINED BY THE EQUATIONS OFf AMOTION

ALt COMRUTATORS INVOLVING STARRED WITH UNSTARED FIELDS
VANISH AT EQUAL TIMES SINCE THESE ARE INDEPENDENT FIELDS

IN THE CORMMUTATION RELATIONS THE TINES WERE SET EQUAL
BOT NOT OTHERWISE SPPECIHIED AND THEREFORE A CHANGE
IN THE ORIGIN OF THAE HAS NO PHYSICAL CONSEQUENCES
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LORENTZ GROUP
ONE PARAMOUNT PREREQUIKITE TO BE IWN\POSED ON A THEORY
DESCRIBING THE BEHAVIOR OF PARTICLES AT HIGH ENERGIES
IS THAT IT BE CONSIKKTENT WITH THE <SPPECIAL THEORY OF RELATIVITY

THIS CAN BE ACHIEVED BY DERMANDING COVARIANCE OF THE EQUATIONS
UNDER LORENTZ-POINCARE TRANSFORAMATIONS

»

»

2 A LORENTZ-POINCARE CHANGE OF REFERENCIAL
1S A LINEAR TRANSFORAMATION OF COORDINATES
CONSERVING NORAN OF INTERVAL BETWEEN DIFFERENT POINTS OF SPACETIANE

A FOR SUCH TRANSEORRNATION m= NEW SPACETIAME COORDINATES 2/
ARE OBTAINED FROAN OLD ONES X! ACCORDING TO z'* = A*  z¥ + o
SATISEYING x;az’ i xuaz“

A

HEREAFTER WE TREAT THE TRANSLATION OF SPACETIANE AXES SEPARATELY
AND GIVE THE NARE OF LORENTZ TRANSFORMATION
TO THE HOMOGENOUS TRANSFORMATIONS witH a = ()
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PROPERTIES OF LORENTZ TRANSFORAMATION
REAL TRANSFORRMATION WAPLIES (A,,) = A,
AND INVARIANCE Of THE NORAM YIELDS

v / v v o 3
| 9 2" 27 = g " 27 = g N, Ng ™ 27
% F v Ay A g = Yap |

9uv = diag(1l, —1, —1, —1) mAETRIC TENSOR

IN ADDITION THERE IS A TRANSFORMATION LAW FOR THE FIELD ¢(7)

SO THAT TRANSFORMED FIELDS ¢ (2)

SATISFY SARME EQUATIONS IN NEW SPACETIAAE COORDINATES
QUANTIZED THEORY wiLL THEN ALSO BE LORENTZ INVARIANT I

~=AS INDEED IS THE CASE--
CORMMARUTATION RELATIONS TRANSFORM COVARIANTLY
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LORENTZ INVARIANCE
IN QFT w IT 1S POSSIBLE TO DISCUSS LORENTZ INVARIANCE
IN A WAY DIVORCED FROM SPECIFIC FORM OF EQUATIONS OF ARAOTION
TO THIS END m= CONSIDER A SYSTEM TO BE FIXED
AND SORAE APPARATUS THAT SERVES TO PREPARE A PHYSICAL STATE [ 4)

CONSIDER NOW ANOTHER APPARATUS WHICH PREPARES PHYSICAL STATE [ 47)
RELATED TO THE FIRST ONE BY A LORENTZ TRANSFORAATION
APPARATUS A AMAY BE A BLACK BOX THAT EAMTS ELECTRONS
APPARATUS A’ wiLL BE SARMNE SOURCE ROTATED THROUGH AN ANGLE 0
ABOUT SOMME AXIS &£ AMOVING WITH FIXED VELOCITY RELATIVE TO APPARATUS A
CONSIDER AMEASURING APPARATUS M WHICH IS BEING USED
TO AMAKE RMEASUREANENTS ON STATE [1) 4) & AAEASURING APPARATUS M/
WHICH DIEFERS FROM M ONLY IN THAT IT IS SHIFTED RELATIVE TO M
BY SARME LORENTZ TRANSEORMATION THAT CONNECTS A’ with A

STATEMENT OF RELATIVISTIC INVARIANCE IS THAT MEASURERMENTS AMADE BY
M ON STATE |10 4) YIELD SARME RESULTS AS THOSE AMADE BY VI ON STATE |10 4/)
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, >
LORENTZ INVARIANCE -~ CONT'D -
T0 OBTAIN FORMAL CONSEQUENCES OF THIS STATEAMENT - WE RECALL THAT
IN A QUANTURR AAECHANICAL AMEASUREAMENT WE GENERALLY DETERMINE
PROBABILITY THAT PHYSICAL SYSTEM IS IN SOME STATE |0)
E.G. WE AMAY ASK FOR PROBABILITY THAT ELECTRONS EANTTED HAVE MOMENTURA D
. o , 2
THE PROBABILITY OF THAT HAPPENING WiLL BE |(Pp |10 4)|° wHERE | )
DESCRIBES STATE IN WHICH JUST THIS PARTICULAR AMOAENTUAMN
IS FOUND FOR ELECTRON
FOR TRANSFORM SOURCE AND RAEASURING APPARATUS
CORRESPONDING PROBABILITY IS w | (0 [t 4/ ) |2
/
(O ) e STATE FOR WHICH ELECTRON HAS RAORMMENTUM D CONNECTED TO P
BY SAANE LORENTZ TRANSFORMATION THAT CONNECTS A AND A’
BECAUSE VECTOR $PACE OF STATES CONTAINS ALL POSSIBLE PHYSICAL STATES

174) AND |1 A7) AAUST BE RELATED BY SOME TRANSFORAATION [/ (A)
THAT DEPENDS ON THE LORENTZ TRANSFORMATION A

BECAUSE MEASURING APPARATUS V] AND M ARE CONNECTED BY THE SARNE
LORENTZ TRANSFORRATION w WE RAUST HAVE BOTH

Ya) =U(A) [a) awp  |dp) = U(A) |dp)
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LORENTZ TRANSFORRNATION OF ‘gCALP lELD

THE INVARIANCE REQUIREAENT WAPLIES THAT \‘<¢p \¢A/>|2 = |<%|¢A>\2 ﬁ

DEDUCE THAT U(A) MUST BE AN UNITARY -OR Amﬂumrmsw TRANSFORMATION

TIME-REVERSAL INVARIANCE IS ONLY SYRANETRY REQUIRING ANTIUNITARITY
HERE WE TAKE [/ TO BE UNITARY

¥ CONSIDER MEASUREMENT OF EXPECTATION VALUE OF SCALAR FIELD O(T)
FOR A STATE |1 4) THIS wite BE (1) 4| (x)|1)a)
FOR STATE YA/ IT WILL BE MEASURERNENT OF EXPECTATION VALUE OF FIELD
AT TRANSFORMED POINT LE » (W 4/ |p(x )|¢ A7)
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Note 1: Hermitian adjoint
Adjoints of operators generalize conjuqate transposes of square malrices
to (Fossibij) infinike-dimensional spaces
Adjoint operator Ais also called Hermition conjugate (denoted by A¥or ATY

Cownsider a Hilbert spaaeH with thner produa& (.,.) and a continuous Linear
operator A:H—> Hw A* : H = H is such that

(Ax,y) = (x, A™y) Ve,y € H

proper&es

v Ad S

v If Ais invertible then so is A™ with (A*)—l A (A_l)*
v(A+B)"=A" + B*

V(AA)" = X"A" with A” e complex conjugate of complex number \
v (AB)" = B A3
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NOTE 2: UNITARY ODPERATOR
A unitary operator is a bounded Linear operatorU : H — H on a Hilbert spa«ceH

satisfying U*U = UU* =1, where U * is the adjoint of J
and [: H —> H isthe Lciev\EL&j opera&on

U preserves the thner produ.c:& <7 > on the Hilbert space

Le. for all vectors T and g in the Hilbert space (Ux,Uy) = (z,y)

Thus unitary operators are just automorphisms of Hilbert spaces

Le. they preserve the structure (i Ehis case, the Linear space structure,
the nner prodw:&, and hence the Eopoi.ogv) of the space ol which they act
The group of all unitary operators from a given Hilbert space 1
to ikself is sometimes referred to as the Hilbert group of H denoted Hilb (H)

The weaker condition U*J = [ defines an Esoma&r:}
Ancther condition U™ = defines a coisomekbr
Under a unitarity Eransformation m Linearity requires Eko&
anhy operator 1 of H satisfies T'(cp) = cT'(p)
An operator T such that T(cgp) =0 (Tgo) is said to be anti-linear
and if it conserves magnitude of scalar product \(TQO, TSOH =0, V)

Ehen s called am&imumiﬁarj



PROPER LORENTZ GROVP
I A% S (0 w TRANSFORAMATION IS CALLED ORTHOCHRONOUS
BECAUSE I CONSERVES SENSE OF TIWMELIKE VECTORS

ADDITIONALLY w I det (A ) = 1 TRANSFORRMATION
ALSO CONSERVES SENSE OF CARTESIAN SYSTERNS IN ORDINARY SPACE

THE ENSEMBLE OF THESE TRANSFORMATIONS FORMS A GROUP
DUBBED PROPER LORENTZ GROUP w IT IS A LIE GROUP

THE CRUCIAL PROPERTY HERE IS THAT ALL TRANSFORMATIONS CAN BE
EXPRESSED AS A SUCCESSION OF INFINITESHMAL TRANSFORAMNATIONS

e — e

ARBITRARILY CLOSE TO IDENTITY WHERE QUANTITIES W' ARE INFINITESIWNALS
AND THUS WE ONLY KEEP TERMS LINEAR IN W'
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INFINITESHAAL LORENTZ TRANSFORMATION

FOR INFINITESHAAL TRANSFORANATION r= CONDITION 9w Ao A5 = Gap WMPLIES

LE. INFINITESINALS ARE REAL ANTISYRMNETRIC TENSORS Wy, + Wy, = 0

e we Now wrRITE U (A) = 11— 1S HERANITIAN AND REDUCES TO ZERD
| FOR IDENTITY TRANSEORRMATION

FOR AN INFINITESINAL TRANSFORMATION (') = U (A)p(z)UT(A) BECOMES

EXPANDING THE RIGHT HAND SIDE IN TERMS OF (W WE OBTAIN

WHERE IN THE LAST LINE WE HAVE USED THE ANTISYRMAETRY OF w!”
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HINTS FOR THE CALCULATION

d(a") = U(A) ¢(x)U'(A)

TAKING U (A) = €7 AND EXPANDING TO FIRST ORDER IN 7]

YN o P
WX e e e

THE INDECES MV ARE DURMANY SO WE CAN INTERCHANGE THERMN TO OBTAIN
W e e o)

k 1
el — §(wavau SRECUL i e iw“”(xyﬁu = 0,)
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GENERATORS OF LORENTZ ALGEBIRRA
1

IDENTIEYING 1) = §w“”JW WE OBTAIN mumy

NOTE THAT FOR U,V = 1, 2, 3 QUANTH"E'QLl = L23, L2 e L31 &;Lg e L12
ARE DWFERENTIAL OPERATORS REPRESENTING ORBITAL ANGULAR AMNOMENTUOM

£OR ANY CONTINUOUS GROUP == TRANSFORRNATIONS THAT LIE INFINITESIANALLY
CLOSE TO IDENTITY DEFINE A VECTOR SPACE~~ CALLED LIE ALGEBRA OF GROUP
BASIS VECTORS FOR THIS VECTOR SPACE ARE CALLED GENERATORS OF LIE ALGEBRA
E.G. EACH ROTATION CAN BE LABELED BY A SET OF CONTINUOUSLY VARYING

PARAMETERS (61, 65, 63) THAT CAN BE REGARDED AS CORMPONENT OF A VECTOR
DIRECTED ALONG AXIS OF ROTATION WITH AAAGNITUDE GIVEN BY ANGLE OF ROTATION
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GENERATORS OF LORENTZ ALGEBRA ~CONTD-
GENERATORS OF LIE ALGEBRA ARE ANGULAR RAORAENTUM oJ " WHICH SATISEY
THE COMAUTATION RELATIONS |J;, J;| = i€;i% K
eiin =+1(—1) W ijk ARE A CYCLIC (ANTICYCLIC) PERAMUTATION OF [ 2 3
€iik = 0 OTHERWISE
IN LOWEST-DIRMMENSION NON-TRIVIAL REPRESENTATION OF ROTATION GROUP
GENERATORS ANAY BE WRITTEN ,J, = 5T WHERE 0; ARE PAULI IMATRICES

EIGENVECTORS OF 03 THAT IS COLUAMN VECTORS ((1)) AND ((1))

1
DESCRIBING A QPW*% PARTICLE OF SPIN PROJECTION UP (T = 5 Or i)
1
AND SPIN PROJECTION DOWN (1T = — 5 Or ) ALONG 3-AXIS, RESPECTIVELY
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~ ‘ )
GENERATORS OF LORENTZ ALGEBRA ~CONT D~
*1* WE wiLL SOON SEE THAT SIX J it OPERATORS GENERATE THREE BOOKTS
AND THREE ROTATIONS OFf LORENTZ GROUDP

o2 TO DETERAMINE COMAUTATION RULES OF LORENTZ ALGEBRA WE CAN NOW
SIAPLY CORMPUTE COMMUTATORS OF DIFFERENTIAL OPERATORS JHY

o THE RESULT K

[J,LW’ JPU] — '(g'/p JHho _ gup g g”" JHP 1 gw Jl/p)

ANY AMMATRICES THAT ARE TO REPRESENT THIS ALGEBRA ANUST OBEY
THESE SARME COMMUTATION RULES
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NONRELATIVISTIC QUANTUM RMECHANICS

WE BEGIN BY RECALLING PRESCRIPTION £OR OBTAINING SCHRODINGER EQUATION
FOR FREE PARTICLE OF MMASS TN =
SUBSTITUTE INTO CLASSICAL ENERGY RMORMENTURA RELATION (

THE DIFFERENTIAL OPERATORS |

RESULTING OPERATOR Ecwmom ACT'EZ ON commax ¢(X t) WAVEFUNCT!ON
**wn’u h = ] =

BB
ot a

WHERE WE INTERPRET w f 0= |

1Y[2d> T GIVES PROBABILITY OF FINDING PARTICLE IN A VOLURNE ELERENT (51
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NONRELATIVISTIC QUANTUM ARECHANICS (CONT'D)

WE ARE OFTEN CONCERNED WITH AMOVING PARTICLES
FOR EXARMPLE w THE COLLISION OF ONE PARTICLE WITH ANOTHER

WE THEREFORE NEED TO BE ABLE TO CALCULATE j —
DENSITY FLUX OF A BEAM OF PARTICLES
FROM CONSERVATION OF PROBABILITY
RATE OF DECREASE OF NUMBER OF PARTICLES IN A GIVEN VOLURE
EQUALS TOTAL FLUX OF PARTICLES OUT OF THAT VOLURAE

ENCLOSING VOLURME V' AND LAST EQUALITY IS GAUSS'S THEOREM

PROBABILITY AND FLUX DENSITIES ARE THEN RELATED BY CONTINUITY EQUATION

| !
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TO DETERAMNE FLUX WE FIRST FORM Op/Ot
BY SUBTRACTING WAVE EQUATION {# MULTIPLIED BY —i)*
FROAN CORPLEX CONJUGATE EQUATION MULTIPLIED BY — 1)

WE THEN OBTAIN

WHICH DESCRIBES A FREE PARTICLE OF ENERGY [/ AND RAORMENTUARN P HAS
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KLEIN-GORDON EQUATION
~ WAVE EQUATION (# VIOLATES LORENTZ COVARIANCE AND IS NOT SUITABLE
FOR PARTICLE AMOVING RELATIVISTICALLY
v RELATIVISTIC ENERGY-RORMENTUM RELATION I8 B2 = p? + m?

v RECALL FORMULAE HH — <%, —V> AND 0, = (%, V)

i 10 .
v RBAAKING THE OPERATOR SUBSTITUTIONS F/ — Zha AND P — —1hV
\ J

(p" — i0")

WE OBTAIN KLEIN-GORDON EQUATION w |

v BY SUBTRACTING KLEIN-GORDON EQUATION RNULTIPLIED BY — i)
FROM COMPLEX CONJUGATE EQUATION RMULTIPLIED BY —¢)
WE THEN OBTAIN

0L [i(6" 04 — 6 0u8")| +9. [-i(9" Fo - 9 T")] =0 |

D Y e —— D ——— 3
p J ;
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HINTS FOR THE CALCULATION

Ou(9™0"9) = 00" 0" + ¢70,0" ¢

—i¢* 0, 0" ¢ —i¢"m>¢ + 190, 0" " +igm?P* = —i*0,0"¢ +i¢d,0" d"
0
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KLEIN-GORDON EQUATION (CONT’D)

BY COMPARISON WITH K WE IDENTIFY PROBABILITY AND FLUX DENSITIES
WITH THE TERMS IN SQUARE BRACKETS
EXAMPLE m FOR A FREE PARTICLE OF ENERGY FJ AND MORMENTUMA D

DESCRIBED BY THE KLEWGOPDON t:;owﬂom

WE FIND FROAN % THAT

= i(~2iE)|N|?> = 2E|N|?

= —i(2ip)|N|2 = 2p|N |

WE SEE THAT PROBABILITY DENSITY IS PROPORTIONAL TO L

¥

RELATIVISTIC ENERGY OF PARTICLE
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KLEIN-GORDON EQUATION (CONT'D)

A W 1S ADVANTAGEOUS TO EXPRESS THESE RESULTS IN 4-VECTOR NOTATION
A NOT ONLY ARE THEY AMORE CONCISE BUT ALSO COVARIANCE BECORES EXPLIQIT

A USING D’ALEMBERTIAN OPERATOR KLEIN-GORDON EQUATION BECOANES

\«

WE HAVE w
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K'LEIN-GORDON EQUATION (CONT'D)
* WE NOTED THAT THE PROBABILITY DENSITY O
IS THE TWAE-LIKE COMPONENT OF A 4-VECTOR m 0 X B

F RESULT AMAY BE ANTICHPATED SINCE UNDER LORENTZ BOOST OF VELOCITY U

VOLUME ELERMENT SUFFERS LORENTZ CONTRACTIONd 1 — dx \/ 1 — o2

* T0 KEEP pd>x INVARIANT WE REQUIRE
P TO TRANSFORM AS TIME-LIKE CORPONENT OF 4-VECTOR p — p//1 — 02

So fav, so good

* WHAT ARE ENERGY EMGENVALUES OF KLEIN-GORDON EQUATION?

1
* SUBSTITUTION &7 INTO " GIVES w | [ = +(p* + m?*)2

% IN ADDITION TO ACCEPTABLE [ > () SOLUTIONS
WE HAVE NEGATIVE ENERGY SOLUTIONS
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HISTORICAL INTERLUDE
IN I927 DIRAC DEVISED RELATIVISTIC WAVE EQUATION LINEAR IN O/Ot AND
AAORE ON THIS NEXT CLASS..
PRESCRIPTION FOR HANDLING NEGATIVE ENERGY STATES WAS PROPOSED BY
Stiickelberg(1941) AND Feynman (1948)
NEGATIVE ENERGY SOLUTION DESCRIBES PARTICLE PROPAGATING BACKWARD IN THAE

-~

EXPRESSED ANOST SIAAPLY we IDEA IS THAT

«

POSITIVE ENERGY ANTIPARTICLE PROPAGATING FORWARD IN TIAE
CONSIDER AN ELECTRON OF ENERGY I/, 3-mMORMENTUMN P, AND CHARGE —€

ELECTROMAGNETIC 4-VECTOR CURRENT IS w j/ (e ) = —2¢|N|?(E, p)
NOwW TAKE ANTIPARTICLE (A POSITRON) wITH SAME 2 AND P
SINCE ITS CHARGE IS +-e w j#(eT) = +2¢|N|?(E, p)

WHICH 1S EXACTLY SARME AS CURRENT jHM FOR ELECTRON WITH — F/ AND —p
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HISTORICAL INTERLUDE (@ONTD)
AS FAR AS A SYSTEM IS CONCERNED - ERNISSION OF POSITRON WITH ENERGY [

1S SAMME AS THE ABSORPTION OF AN ELECTRON OF ENERGY — B
PICTORIALLY WE HAVE w

IN OTHER WORDS wr | _ S
NEGATIVE-ENERGY PARTICLE SOLUTIONS GOING BACKWARD IN TIRAE

DESCRIBE POSIIVE-ENERGY ANTIPARTICLE SOLUTIONS GOING EORWARD IN TIAE
OF COURSE m REASON WHY THIS IDENTIFICATION CAN BE AMADE IS SIWAPLY BECAUSE

' e—z(—E)(—t) - e—zEt
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' IF I ROTATE MY HAMMER FAST ENOUGH., IT
| WILL EMIT ANTI- MATTER PARTICLES THERE--
| IT 1S WORKING /
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