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Given two points in a plane 

what is the shortest path between them?

⦁

⦁
⦁

⦁

ds =
√

dx2 + dy2
1

2

y1

y2

x2x1

x

y

y = y(x)
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The length of a short segment of the path is
Shortest Path between Two Points 

ds =
√

dx2 + dy2

⇓
dy =

dy

dx
dx ≡ y′(x)dx

⇓
ds =

√
dx2 + dy2 =

√
1 + [y′(x)]2 dx

The total length of the path between points 1 and 2 is

L =

∫ 2

1
ds =

∫ x2

x1

√
1 + [y′(x)]2 dx

This equation puts our problem in a mathematical form

find the function
⇓

y(x) for which the integral is minimum
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Fermat’s principle
What is the path that light follows between two points?

Fermat (1601 - 1665)
⇓

⇓
the path for which the time of travel of the light is minimum

The time for light to travel a short distance    is ds ds/v
speed of light in a medium with refractive indexv ≡ c/n n

time of travel=
∫ 2

1
dt =

∫ 2

1

ds

v
=

1

c

∫ 2

1
n ds

 In general ☛ refractive index can vary

∫ 2

1
n(x, y)ds =

∫ x2

x1

n(x, y)
√
1 + [y′(x)]2 dy
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Thursday, October 14, 2010

x0 x0 x0
x

Calculus of Variations
Standard minimization problem of elementary calculus

unknown value of the variable   at which a known function x f(x)
has a minimum

❖ Recall that if             at    there are three possibilities    df/dx = 0 x0

✓If                      has a minimum

✓If                      has a maximum

✓If                      there may be a minimum, a maximum,  
or neither

d2f/dx2 > 0 ⇒ f

d2f/dx2 < 0 ⇒ f

d2f/dx2 = 0 ⇒ f

New problem ☛ one step more complicated
Calculus of Variations

how infinitesimal variations of a path change an integral

f(x)
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 Euler-Lagrange Equation 

We have to find the curve that makes a minimums

Consider an integral of the form

S =

∫ x2

x1

f [y(x), y′(x), x] dx

☛ unknown curve joining points          andy(x) (x1, y1) (x2, y2)

y(x1) = y1 y(x2) = y2

f f = f(y, y′, x)

y = y(x)

⇓

⇓

☛ function of 3 variables 

but integral follows path 

integrand                     is actually a function of just one variable f [y(x), y′(x), x] x
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 Euler-Lagrange Equation (cont’d)

⦁

⦁

1

2

y1

y2

x2x1

x

y

y(x)(right)

    If       ☛ right solutiony(x)
⇓

evaluated for      is less than for any neighborhood curve
convenient to write

since        must pass through points 1 and 2 
⇓

Y (x)

S y(x) Y (x)

η(x1) = η(x2) = 0

Y (x) = y(x) + η(x)

Y (x) = y(x) + η(x) (wrong)
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 Euler-Lagrange Equation (cont’d)
The integral taken along the wrong curve 

must be larger than that along the right curve 
no matter how close is the former to the latter
to express this requirement ☛ introduce parameter

⇓

Y (x)
y(x)

Y (x) = y(x) + α η(x)

The integral   taken along the curve       now depends onY (x) αS
⇓

S(α)

y(x) α = 0
⇓

⇓
dS/dα = 0 α = 0when

The right curve      is obtained by setting

reduction to traditional problem from elementary calculus
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differentiate with respect to 

  Euler-Lagrange Equation (cont’d)

α
⇓

∂f(y + αη, y′ + αη′, x)

∂α
= η

∂f

∂y
+ η′

∂f

∂y′

⇓
dS

dα
=

∫ x2

x1

∂f

∂α
dx

= 0

=

∫ x2

x1

(
η
∂f

∂y
+ η′

∂f

∂y′

)
dx

S(α) =
∫ x2

x1

f(Y, Y ′, x) dx

=
∫ x2

x1

f(y + αη, y′ + αη′, x) dx
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Euler-Lagrange Equation (cont’d)
∫ x2

x1

η′(x)
∂f

∂y′
dx = η(x)

∂f

∂y′

∣∣∣∣
x2

x1

−
∫ x2

x1

η(x)
d

dx

(
∂f

∂y′

)
dx

Re-write second term on the right using integration by parts

endpoint term is zero
⇓

⇓

∫ x2

x1

η′(x)
∂f

∂y′
dx = −

∫ x2

x1

η(x)
d

dx

(
∂f

∂y′

)
dx

∫ x2

x1

η(x)

(
∂f

∂y
− d

dx

∂f

∂y′

)
dx = 0

This condition must be satisfied for any choice of the function η(x)

 We can conclude that ☛ ∂f

∂y
− d

dx

∂f

∂y′
= 0

∀x ∈ x1 ≤ x ≤ x2

if all the functions concerned are continuous
Leonhard Euler (1707-1783)  Joseph Lagrange (1736-1813)
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 Shortest path between two points in R³
We saw that the length of a path between points 1 and 2 is

that has the standard form

integration leads to

f(y, y′, x) =
√

1 + y′2

L =

∫ 2

1
ds =

∫ x2

x1

√
1 + y′2 dx

⇓
d

dx

∂f

∂y′
= 0 ⇒ ∂f

∂y′
= C

y′2 = C2(1 + y′2) ⇒ y′2 = C̃ ⇒ y′(x) = m
⇓

y(x) = mx+ b

∂f

∂y
= 0

∂f

∂y′
=

y′√
1 + y′2
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➤ spherical polar coordinates

➤ cylindrical coordinates

➤ or any set of generalized coordinates

satisfying and

Next re-write the Lagrangian in terms of these new variables

and the action integral

The value of the integral is unaltered by this change of variables

The statement that    is stationary for variations of the path 
around the correct path must still be true in the new coordinates

Generalized Coordinates
Instead of Cartesian coordinates ☛ consider now 

(r, θ, φ)

(ρ, φ, z)

(q1, q2, q3)

qi = qi(!r) i = 1, 2, 3 r = r(q1, q2, q3)for

S
⇓

L = L(q1, q2, q3, q̇1, q̇2, q̇3)

S =
∫ t2

t1

L(q1, q2, q3, q̇1, q̇2, q̇3) dt
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Lagrangian Density
• We have seen that state of a physical system  

• Action of such a physical system ☛

is integral of so-called Lagrangian function from which  
system behavior is determined by principle of minimal action

• In local field theory ☛ Lagrangian can be written as   

where field    itself is a function of  continuous parameters 

qi3N
N

φ xµ

spatial integral of Lagrangian density

consisting of collection of    discrete point particles             
can be specified by a set of     generalized coordinates 

S =

∫
L(qi, ∂tqi)dt

S =
∫
L(φ, ∂µφ) d4x
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Lagrangian Field Theory
• Minimization condition on     yieldsδS

δ(∂µφ) = ∂µ(φ+ δφ)− ∂µφ = ∂µ(δφ)where ☛ 
• The second term in the integrand can be integrated by parts

integration with respect to    leads toxµ

where    denotes the boundary of the four dimensional 
spacetime region of integration

!

∫
d4x ∂∂µφL ∂µ(δφ) =

∫
d4x

∂L
∂µφ

∂(δφ)

∂xµ

∫
d4x

∂L
∂µφ

∂(δφ)

∂xµ
= ∂∂µφL δφ

∣∣∣∣
!
−

∫
d4x δφ ∂µ(∂∂µφL)

=

∫
d4x [∂µ(∂∂µφL δφ)− δφ ∂µ(∂∂µφL)]

0 = δS

=

∫
d4x [∂φL δφ+ ∂∂µφLδ(∂µφ)]
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Lagrangian Field Theory 
The summary from the previous slide is

Using Gauss theorem ☛  last term in ♝ can be written as          
a surface integral over the boundary of 4-dimensional 
spacetime region of integration
As in particle mechanics case ☛ initial and final configurations 
are assumed given and so     is zero                                       
at temporal beginning and end of this region

Hereafter we restrict our consideration to deformations     that 
also vanish on  spatial boundary of  integration region

Hence ☛ for arbitrary variations                                  
♝ leads to Euler-Lagrange equation of motion for a field:

δφ

δφ

0 =

∫
d4x[∂φL δφ− ∂µ(∂∂µφL) δφ+ ∂µ(∂∂µφL δφ)]

∂µ(∂∂µφL)− ∂φL = 0

δφ

♝
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The canonical momentum for the particle system is pi = ∂q̇iL

the corresponding quantity for a field is π(x) = ∂φ̇L
and  is called  momentum density conjugate to φ(x)

The Hamiltonian is defined by

❖

❖

H =
3N∑

i=1

pi q̇i − L(qi, q̇i)

and so we can write ☛ H =

∫
d3x H(x)

H(x) = π(x) φ̇(x)− L(φ, ∂µφ)where ☛

Canonical Formalism

Thursday, September 8, 2011



The Heisenberg commutation relations

[π("x, t), φ("y, t)] = −iδ(3)("x− "y)

[pi, qj ] = −iδij ,
[pi, pj ] = [qi, qj ] = 0 have as their field counterparts

❑

with all other pairs of operators commuting
❑ If there are various classical fields to be quantized 

and the additional commutation relation

will be assumed to hold

φ(x) φ!(x) ∂µ[∂∂µφ!L]− ∂φ!L = 0
φ!

π! = ∂φ̇!L

H = π(x) φ̇+ π!(x) φ̇! − L(φ, φ!, ∂µφ, ∂µφ
!)

[π!("x, t), φ!("y, t)] = −iδ(3)("x− "y)

and the equation
will too be satisfied and the field 

 will have its canonically conjugate momentum

The Hamiltonian density will be❑

Canonical Quantization

E.G.
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note that commutation relations are only defined at equal times

All commutators involving starred with unstared fields     
vanish at equal times since these are independent fields

Once commutators are given ☛ their values at different times      
are determined by the equations of motion

In the commutation relations the times were set equal                     
but not otherwise specified and therefore a change                               
in the origin of time has no physical consequences

Remarks on Quantization Procedure
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Lorentz Group
One paramount prerequisite to be imposed on a theory                   
describing the behavior of particles at high energies                           
is that it be consistent with the special theory of relativity

This can be achieved by demanding covariance of the equations 
under Lorentz-Poincare transformations

A Lorentz-Poincare change of referencial                                         
is a real linear transformation of coordinates                        
conserving norm of interval between different points of spacetime

For such transformation ☛ new spacetime coordinates

⏏

⏏

⏏

⏏ x′µ

 are obtained from old ones xµ
according to x′µ = Λµ

ν x
ν + aµ

 satisfying x′
µx

′µ = xµx
µ

⏏ Hereafter we treat the translation of spacetime axes separately  
and give the name of Lorentz transformation                                         
to the homogenous transformations with aµ = 0
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    real transformation implies

Properties of Lorentz transformation

and  invariance of the norm yields 

gµν x
µ xν = gµν x

′µ x′ν = gµνΛ
µ
α Λν

β x
α xβ

(Λµν)
∗
= Λµν

i.e. gµν Λµ
α Λν

β = gαβ

gµν ≡ diag(1,−1,−1,−1)☛metric tensor

In addition there is a transformation law for the field φ(x)

 so that transformed fields φ′(x′)

satisfy same equations in new spacetime coordinates

Quantized theory will then also be Lorentz invariant if        
--as indeed is the case--                                                        

commutation relations transform covariantly
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in QFT ☛ it is possible to discuss Lorentz invariance 

Lorentz Invariance

To this end ☛ consider a system to be fixed 
|ψA〉

Consider now another  apparatus which prepares physical state                   |ψA′〉
and some apparatus that serves to prepare a physical state

related to the first one by a Lorentz transformation
AApparatus     may  be a black box that emits electrons

apparatus     will be same source rotated through an angle    A′ θ
Aabout some axis & moving with fixed velocity relative to apparatus

by same Lorentz transformation that connects      with

statement of relativistic invariance is that measurements made by

in a way divorced from specific form of equations of motion

M ′

A′ A

M

|ψA〉
Consider  measuring apparatus      which is being used

to make measurements on state          &  measuring apparatus 
 which differs from      only in that it is shifted relative to      M M

on state         yield same results as those made by      on stateM |ψA〉 M ′ |ψA′〉
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Lorentz Invariance - cont’d -
To obtain formal consequences of this statement ☛  we recall that

probability that physical system is in some state
in a quantum mechanical measurement we generally determine

e.g. we may ask for probability that electrons emitted have momentum p
The probability of that happening will be

|φ〉

|〈φp|ψA〉|2 where |φp〉
describes state in which just this particular momentum 
is found for electron

For transform source and measuring apparatus

corresponding probability is ☛ |〈φp′ |ψA′〉|2
|φp′〉☛ state for which electron has momentum pconnected top′

by same Lorentz transformation that connects     and A′A
Because vector space of states contains all possible physical states 
|ψA〉 |ψA′〉 must be related by some transformation U(Λ)
 that depends on the Lorentz transformation 

and
Λ

Because measuring apparatus      and      are connected by the sameM M ′

Lorentz transformation ☛ we must have both

and|ψA′〉 = U(Λ) |ψA〉 |φp′〉 = U(Λ) |φp〉
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The invariance requirement implies that |〈φp′ |ψA′〉|2 = |〈φp|ψA〉|2

Deduce that          must be an unitary -or antiunitary- transformationU(Λ)

Time-reversal invariance is only symmetry requiring antiunitarity

 here we take     to be unitaryU

 consider measurement of expectation value of scalar field φ(x)✳

for a state |ψA〉 this will be 〈ψA|φ(x)|ψA〉
ψA′for state       it will be measurement of expectation value of field 

〈ψA′ |φ(x′)|ψA′〉

We thus have

at transformed point i.e ➨

〈ψA|φ(x)|ψA〉 = 〈ψAU
†(Λ)|φ(x′)|U(Λ)ψA〉

scalar field in a Lorentz invariant theory would transform according to

φ(x′) = U(Λ)φ(x)U†(Λ) with

Lorentz transformation of Scalar Field

x′ = Λ x
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Note 1: Hermitian adjoint

Adjoints of operators generalize conjugate transposes of square matrices 

to (possibly) infinite-dimensional spaces

Adjoint operator   is also called Hermitian conjugate (denoted by    or    ) A A∗ A†

Consider a Hilbert space   with inner product      and a continuous linearH 〈., .〉
operator A : H → H A∗ : H → H is such that☛

properties

If    is invertible then so isA A∗ with (A∗)−1 = (A−1)∗

(λA)∗ = λ∗A∗ with λ∗
☛ complex conjugate of complex number λ

✔

✔

✔

✔

✔ (AB)∗ = B∗A∗

(A+B)∗ = A∗ +B∗

A∗∗ = A

〈Ax, y〉 = 〈x, A∗y〉 ∀x, y ∈ H
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A unitary operator is a bounded linear operator             on a Hilbert space                    U : H → H H

U∗U = UU∗ = I U∗ U

I : H → H

satisfying                   , where      is the adjoint of    

and                  is the identity operator. 

preserves the inner productU on the Hilbert space〈, 〉
i.e.  for all vectors    and    in the Hilbert spacex y 〈Ux,Uy〉 = 〈x, y〉

to itself is sometimes referred to as the Hilbert group of   denoted Hilb 

H

(H)

Thus unitary operators are just automorphisms of Hilbert spaces

i.e. they preserve the structure (in this case, the linear space structure, 
the inner product, and hence the topology) of the space on which they act

The group of all unitary operators from a given Hilbert space 

H
The weaker condition           defines an isometryU∗U = I
Another condition             defines a coisometryUU∗ = I

Under a unitarity transformation ☛ linearity requires that  
T H T (cϕ) = cT (ϕ)any operator     of     satisfies

then is called anti-unitary

An operator T̃ such that T̃ (cϕ) = c∗(T̃ϕ) is said to be anti-linear
and if it conserves magnitude of scalar product |〈T̃ϕ, T̃ϕ〉| = |〈ϕ, ϕ〉|

Note 2: Unitary Operator
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If                 ☛ transformation is called orthochronous 

because it conserves sense of timelike vectors

Λ00 > 0

Additionally ☛ if                          transformation 

also conserves sense of Cartesian systems in ordinary space

The ensemble of these transformations forms a group

dubbed proper Lorentz group ☛ It is a Lie group

The crucial property here is that all transformations can be

expressed as a succession of infinitesimal transformations

arbitrarily close to identity  where quantities           are infinitesimals 
and thus we only keep terms linear in 

xµ → x′µ = Λµ
ν x

ν = (δµν + ωµ
ν)x

ν

ωµ
ν

ωµ
ν

Proper Lorentz Group

det(Λµ
ν) = 1
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For infinitesimal transformation ☛ condition                               impliesgµν Λµ
α Λν

β = gαβ

gµβω
µ
σ + gσνω

ν
β = 0

i.e. infinitesimals are real antisymmetric tensors ωµν + ωνµ = 0

 If we now write is hermitian and reduces to zero 
for identity transformation

for an infinitesimal transformation                                           becomesφ(x′) = U(Λ)φ(x)U†(Λ)

U(Λ) = eiη

φ(x) + i[η, φ(x)] + · · · = φ(xµ + ωµ
νx

ν) . . .

Expanding the right hand side in terms of      we obtainω

where in the last line we have used the antisymmetry of ωµν

i[η, φ(x)] ! φ(x) + ωµ
νx

ν∂µφ− φ(x)

! ωµ
νx

ν∂µ φ

! 1

2
ωµν(xν∂µ − xµ∂ν)φ(x)

Infinitesimal Lorentz  transformation
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Hints for the calculation

φ(x′) = U(Λ) φ(x)U†(Λ)

U(Λ) = eiη and expanding to first order in η

φ(x′) = (1 + iη + . . . )φ(x)(1− iη + . . . )

φ(x′) = φ(x) + i[η, φ] + . . .

ωµ
ν xν∂µ = ωµνxν∂µ

ωνµxµ∂ν = −ωµνxµ∂ν

ωµνxν∂µ =
1
2
(ωµνxν∂µ + ωνµxµ∂ν) =

1
2
ωµν(xν∂µ − xµ∂ν)

the indeces      are dummy so we can interchange them to obtain µν

taking
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identifying η =
1

2
ωµνJµν we obtain

[Jµν , φ(x)] = i(xµ∂ν − xν∂µ)φ(x) ≡ Lµν φ(x)

Note that for µ, ν = 1, 2, 3 quantities L1 = L23, L2 = L31 L3 = L12&

are differential operators representing orbital angular momentum

For any continuous group -- transformations that lie infinitesimally

close to identity define a vector space-- called lie algebra of group

basis vectors for this vector space are called generators of Lie algebra

e.g. each rotation can be labeled by a set of continuously varying 

parameters (θ1, θ2, θ3) that can be regarded as component of a vector 

directed along axis of rotation with magnitude given by angle of rotation 

Generators of Lorentz Algebra 
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generators of Lie algebra are angular momentum Jk  which satisfy

the commutation relations [Ji, Jj ] = iεijkJk

εijk = +1(−1) are a cyclic (anticyclic) permutation of 1 2 3  if ijk

εijk = 0 otherwise

In lowest-dimension non-trivial representation of rotation group

generators may be written ☛ where are Pauli matricesJi =
1

2
σi σi

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

basis for this representation is conventionally chosen to be

σ3 that is column vectors (10) (01)

describing a spin-

 eigenvectors of and

1

2
 particle of spin projection up (m =

1

2
or ↑)

and spin projection down (m = −1

2
or ↓)  along 3-axis, respectively

Generators of Lorentz Algebra -cont’d-
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We will soon see that six          operators generate three boosts 

and three rotations of Lorentz group

Jµν

To determine commutation rules of Lorentz algebra we can now

simply compute commutators of differential operatorsJµν

❖

❖

❖ The result is

Any matrices that are to represent this algebra must obey
these same commutation rules

[Jµν , Jρσ] = i(gνρ Jµσ − gµρ Jνσ − gνσ Jµρ + gµσ Jνρ)

Generators of Lorentz Algebra -cont’d-
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Nonrelativistic Quantum Mechanics
We begin by recalling prescription for obtaining Schrodinger equation 
for free particle of mass                                                               
substitute into classical energy momentum relation

the differential operators

resulting operator equation acts on  complex              wavefunction  

            --with            --

where we interpret 

gives probability of finding 

m

ψ(x, t)
h ≡ 1

|ψ|2d3x d3xparticle in a volume element        

E =
p2

2m

E → i! ∂

∂t
p→ −i!∇

i
∂ψ

∂t
+

1
2m
∇2ψ = 0

ρ = |ψ|2



as probability density  
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We are often concerned with moving particles                         
for example  the collision of one particle with another

Nonrelativistic Quantum Mechanics (cont’d)

We therefore need to be able to calculate 

From conservation of probability                                                                           

rate of decrease of number#of particles in a given volume                     
equals total flux of particles out of that volume 







is  unit vector along outward normal to  element

 probability and flux densities are then related by continuity equation 

j

SdS
V

− ∂

∂t

∫

V
ρ dV =

∫

S
j · n̂ dS =

∫

V
∇ · j dV

∂ρ

∂t
+∇ · j = 0

n̂ of surface     

enclosing volume 



density flux of a beam of particles 

and last equality is Gauss’s theorem 
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Nonrelativistic Quantum Mechanics (cont’d)
To determine flux  we first form                  

from complex conjugate equation multiplied by   

We then obtain 

∂ρ/∂t
−iψ∗

−iψ

∂ρ

∂t
− i

2m
(ψ∗∇2ψ − ψ∇2ψ∗) = 0

by subtracting 

Comparing this with  we identify probability flux density as

For example  a solution of 

which describes a free particle of energy     and momentum     has 

j = − i

2m
(ψ∗∇ψ − ψ∇ψ∗)

ψ = Neip·x−iEt

ρ = |N |2 j =
p
m

|N |2
E p

wave equation multiplied by 
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 Klein-Gordon Equation
Wave equation violates Lorentz covariance and is not suitable

Relativistic energy-momentum relation is E2 = p2 + m2

Making the operator substitutions                   andE → i! ∂

∂t
p→ −i!∇

 we oBtain Klein-Gordon equation   

by subtracting Klein-Gordon equation multiplied by 









from complex conjugate equation multiplied by    

for particle moving relativistically

−iφ∗

−iφ



−∂2φ

∂t2
+∇2φ = m2φ

∂t [i(φ∗ ∂tφ− φ ∂tφ
∗)]︸ ︷︷ ︸

ρ

+#∇. [−i(φ∗ #∇φ− φ #∇φ∗)]︸ ︷︷ ︸
"

= 0

We then obtain 

Recall formulae and

(pµ → i∂µ)

∂µ =
(

∂

∂t
,−∇

)
∂µ =

(
∂

∂t
,∇

)
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Hints for the calculation

∂µ(φ∗∂µφ) = ∂µφ∗∂µφ + φ∗∂µ∂µφ

−iφ∗∂µ∂µφ− iφ∗m2φ + iφ∂µ∂µφ∗ + iφm2φ∗ = −iφ∗∂µ∂µφ + iφ∂µ∂µφ∗

= 0
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Klein-Gordon Equation (cont’d)

By comparison with  we identify probability and flux densities
with the terms in square brackets

we find from    that

Example  for a free particle of energy     and momentum     

described by the Klein-Gordon solution

E p

We see that probability density is proportional to            

relativistic energy of particle

ρ = i(−2iE)|N |2 = 2E|N |2

j = −i(2ip)|N |2 = 2p|N |2

E

φ = Neip·x−iEt


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Klein-Gordon Equation (cont’d)
It is advantageous to express these results in 4-vector notation

 Not only are they more concise but also covariance becomes explicit

Using D’Alembertian operator Klein-Gordon equation becomes

(!2 + m2)φ = 0

 Probability and flux densities form a 4-vector

which satisfies the (covariant) continuity relation

 Taking the free particle solution

we have 

jµ = (ρ, j) = i(φ∗∂µφ− φ∂µφ∗)

∂µjµ = 0

φ = Ne−ip·x

jµ = 2pµ|N |2




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 Klein-Gordon Equation (cont’d)
We noted that the probability density   

is the time-like component of a 4-vector 

 Result may be anticipated since under  Lorentz boost of velocity 

volume element suffers  Lorentz contraction





To keep           invariant we require     
to transform as time-like component of 4-vector

What are  energy eigenvalues of Klein-Gordon equation?

 Substitution  into  gives 

So far, so good

ρ

v

d3x→ d3x
√

1− v2

ρd3x
ρ ρ→ ρ/

√
1− v2

E = ±(p2 + m2)
1
2

 in addition to  acceptable             solutions

we have negative energy solutions!!!

E > 0

ρ ∝ E
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Historical Interlude
In 1927 Dirac devised  relativistic wave equation linear in           and∂/∂t ∇

Prescription for handling negative energy states was proposed by 

More on this next class...

Stückelberg(1941) and Feynman(1948)

Expressed most simply 

negative energy solution describes particle propagating backward in time

positive energy antiparticle propagating forward in time

Consider an electron of energy    , 3-momentum    , and charge 

Electromagnetic 4-vector current is  jµ(e−) = −2e|N |2(E,p)

jµ(e+) = +2e|N |2(E,p)

pE −e

Now take antiparticle (a positron) with same      and pE

Since its charge is        +e

which is exactly same as  current      for  electron with         andjµ

idea is that  

−E −p
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Historical Interlude (cont’d)
as far as a system is concerned   emission of positron with energy

 is same as the absorption of an electron of energy  

Pictorially we have 

E

−E

time

In other words  

describe positive-energy antiparticle solutions going forward in time

Of course  reason why this identification can be made is simply because

e−i(−E)(−t) = e−iEt

negative-energy particle solutions going backward in time

E > 0
≡

e+ e−

(−E) < 0
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to be continued...
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