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Weak Interactions
Oldest and best-known examples of weak processes are:  
β -decay of atomic nuclei                                                                  

n → pν̄e−

⚈⦁

⚈⦁ By analogy to emission of photons in nuclear   -decayγ
Fermi considered neutrino-electron pair to be created and emitted 
 in nuclear transition of a neutron to a proton

Inspired by current-current form of electromagnetic interaction 
he proposed that invariant amplitude for   -decay process be given byβ

M = GF (unγ
µup) (νeγµue)

effective coupling       needs to be determined by experiment GF

⚈⦁ Amplitude explained properties of some features of   -decay                    
but not others

β

⚈⦁ Attempts to unravel true form of weak interaction in following 25 yr
lead to a whole series of ingenious   -decay experiments
reaching climax with discovery of parity violation in 1956

β

and more fundamental neutron decay

 (known as Fermi constant)

Thursday, November 10, 2011



Charge-raising weak current
Only essential change required in Fermi's original proposal

γµwas replacement of by

Fermi had not forseen parity violation                                     
and had no reason to include a 

◉
γ5γµ contribution

γ5γµγµ
and automatically violates

e.g. charge-raising weak current
parity conservation

◉

couples an ingoing negative helicity electron                                            
to an outgoing negative helicity neutrino

eL

Jµ = uνγ
µ 1
2 (I− γ5)ue

γµ(I− γ5)

◉ Besides configuration            ☛ charge-raising weak current  (e−L , νL)

(νR, e
+
R), (0, νLe

+
R), (e−LνR, 0)

also couples following (ingoing, outgoing) lepton pair configurations:

a mixture of
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Charge lowering weak current
Charge-lowering weak current          

Jµ† = [uν γ
µ 1
2 (I− γ5)ue]

†

= [u†
ν γ

0 γµ 1
2 (I− γ5)ue]

†

= u†
eγ

0γ0 1
2 (I− γ5)γµ†γ0uν

= ueγ
0 1
2 (I− γ5)γ0γµuν

= ue γ
µ 1
2 (I− γ5)uν

Weak interaction amplitudes are of form ☛ M =
4GF√

2
JµJ†

µ

Jµ = ūeγ
µ 1
2 (I− γ5)uν

is hermitian conjugate of charge-raising weak current

Charge conservation requires that     

M
Factor of 4 arises because                                                          
currents are defined with normalized with projector operator 1

2 (I− γ5)

and charge-lowering current

rather than old-fashioned (I− γ5)
is pure convention                                          
(to keep original definition of    GF which did not include γ5 )

 be product of charge-raising

1√
2
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Parity Violation
Cumulative evidence of many experiments is that

(and     ) are involved in weak interactionsνRνL
absence of mirror image states νL νRand 

 clear violation of parity invariance

C

C νL νL
 is violated 

transforms a state into a stateCharge conjugation

(I− γ5) form leaves weak interaction invariant under 
combined       operationCP

E.G.
Γ(π+ → µ+νL) "= Γ(π+ → µ+νR) = 0 P violation ,

Γ(π+ → µ+νL) "= Γ(π− → µ−ν̄L) = 0 C violation

Γ(π+ → µ+νL) = Γ(π− → µ−ν̄R) CP invariancebut

ν denotes a muon neutrino

indeed only
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Fermi constant

obtained from measurements ofValues of GF

GF = (1.136± 0.003)× 10−5 GeV−2

and muon lifetime 

GF = 1.16637(1)× 10−5 GeV−2

are found to be within a few percent

is same for all leptons and nucleons
Comparison of these results supports assertion that

Nuclear have same physical originβ -decay and decay of muon 

We’ll see reason for small difference is important

neutron lifetime

Fermi constant
and hence universal

∗

⨳
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Neutrino Probe

(polarized        decay,    decay,   decay, etc) 

in development of particle physics

can now be demonstrated experimentally more directly with neutrinos

Although experiments exposing violation of parity in weak interactions
K π

V −A structure

This is analogous to study of electromagnetic lepton-quark interaction

To predict neutrino-quark cross sections                                       

Quarks interact electromagnetically just like leptons                              

Therefore we construct quark weak current just as we did for leptons

parity violation and its

are some of highlights 

60Co

(apart from their fractional charge)

we clearly need to know form of quark weak currents
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Invariant amplitude of CC interaction
              We model charge-raising quark current

Jµ
q = uuγ

µ 1
2 (I− γ5)ud

on weak current

Jµ
e = uνγ

µ 1
2 (I− γ5)ue

hermitian conjugates give charge-lowering weak currents
Short range of weak interaction                                                    
results from  exchange of a heavy gauge boson of mass mW

Upon inserting currents    and     into     ☛ we obtain                    
invariant amplitude for charged current  (CC) neutrino-quark scattering

of the weak interaction. This is analogous to the study of the electromag-
netic lepton-quark interaction by scattering high-energy electron beams off
hadronic targets, which we described in Chapter 4.

To predict the neutrino-quark cross sections, we clearly need to know the
form of the quark weak currents. Quarks interact electromagnetically just
like leptons, apart from their fractional charge. Our inclination therefore is
to construct the quark weak current just as we did for leptons. For example,
we model the charge-raising quark current,

Jµ
q = uuγ

µ 1
2(1− γ5)ud, (5.1.7)

on the weak current

Jµ
e = uνγ

µ 1
2(1− γ5)ue ; (5.1.8)

the hermitian conjugates give the charge-lowering weak currents. The short
range of the weak interaction results from the exchange of a heavy gauge
boson of mass mW :

=

(
g√
2
Jµ

)
1

m2
W

(
g√
2
Jµ

)
(5.1.9)

=
4GF√

2
JµJ

µ . (5.1.10)

Upon inserting the currents (5.1.7) and (5.1.8) into (5.1.10), we obtain the
invariant amplitude for the charged current (CC) neutrino-quark scattering.

To confront pQCD predictions with experiment, it is simplest to con-
sider isoscalar nucleon targets, in which the nuclei contain equal numbers of
protons and neutrons, N = (p + n)/2. The procedure to embed the con-
stituent cross sections in the overall νN inclusive cross section is familiar
from Chapter 4:

σ =

∫ 1

0

dx

∫ xs

0

dQ2 d2σCC
νN

dxdQ2
, (5.1.11)

146

✇

✇ ✈

✈

☢

☢

=
4GF√

2
JµJ

µ†

=

(
g√
2
Jµ

)
1

m2
W

(
g√
2
J†
µ

)
⚡
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Isoscalar Nucleons

        in which nuclei contain equal numbers of protons and neutrons

N = (p+ n)/2

Procedure to embed constituent cross section is

σ =

∫ 1

0
dx

∫ xs

0
dQ2 d

2σCC
νN

dxdQ2

where 

d2σCC
νN

dxdQ2
=

G2
F

4πx

(
m2

W

Q2 +m2
W

)2[
Y+ F ν

2 (x,Q
2)− y F ν

L (x,Q
2) + Y− xF ν

3 (x,Q
2)

]

is differential cross-section given in terms of structure functions

Y+ = 1 + (1− y)2, Y− = 1− (1− y)2, y = Q2/sx s = 2EνmNand

   familiar from last class

♼

To confront pQCD predictions with experiment  

 it is simplest to consider isoscalar nucleon targets                               
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LO
At LO in pQCD ☛  structure functions are given in terms of PDFs as

F ν
L = 0

F ν
2 = x(u+ d+ 2s+ 2b+ ū+ d̄+ 2c̄+ 2t̄),

xF ν
3 = x(u+ d+ 2s+ 2b− ū− d̄− 2c̄− 2t̄),

and
and hence ♼ can be written in an old hat form

d2σCC
νN

dxdy
=

G2
F s

π

(
m2

W

Q2 +m2
W

)2 [
xqCC

ν (x,Q2) + (1− y)2xqCC
ν (x,Q2)

]

where qCC
ν (x,Q2) =

uv(x,Q2) + dv(x,Q2)

2
+

us(x,Q2) + ds(x,Q2)

2
+ ss(x,Q

2) + bs(x,Q
2)

qCC
ν (x,Q2) =

ūs(x,Q2) + d̄s(x,Q2)

2
+ c̄s(x,Q

2) + t̄s(x,Q
2)

subscripts   and    label valence and sea contributions 

   denote distributions for various quark flavors in a proton

v s
u, d, c, s, t b

☎

and

νN @
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LO
Calculation of     scattering proceeds along lines of      scatteringνN νN

with replacement of

At leading order F ν̄
2 = x(u+ d+ 2c+ 2t+ ū+ d̄+ 2s̄+ 2b̄),

xF ν̄
3 = x(u+ d+ 2c+ 2t− ū− d̄− 2s̄− 2b̄)

Going through same steps, we obtain

d2σCC
ν̄N

dxdy
=

G2
F s

π

(
m2

W

Q2 +m2
W

)2 [
xqCC

ν̄ (x,Q2) + (1− y)2xqCC
ν̄ (x,Q2)

]

If there were just three valence quarks in a nucleon q̄CC(x,Q2) = 0
neutrino-nucleon and antineutrino-nucleon scattering data  
would exhibit dramatic V −A properties of weak interaction

   can be found from c

σCC
ν̄N

σCC
νN

=
1

3 for integrated cross sections

dσCC
νN

dy
= c ,

dσCC
ν̄N

dy
= c(1− y)2 ☎

ν̄N @

F ν
2 , xF ν

3 , F ν
L → F ν̄

2 , xF ν̄
3 , F ν̄

L

☛
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NLO
At NLO ☛ relation between structure functions & quark momentum distributions 
involve further QCD calculable coefficient functions                                      
and contributions from     can no longer be neglectedFL

QCD predictions for structure functions                                          
are obtained by solving DGLAP evolution equations at NLO 

Figure 5.1: The NLO inclusive νN (left) and ν̄N (right) cross section along

with the ±1σ uncertainties (shaded band), compared with LO calculation.

The discovery of neutrino-induced muonless events in 1973 heralded a
new era in particle physics.9 These events, most readily interpretable as
νµ(ν)N → νµ(ν)+ hadrons, are evidence of a weak neutral current,

JNC
µ (ν) = 1

2

(
uνγ

µ 1
2(1− γ5)uν

)
, (5.1.19)

JNC
µ (q) =

(
uqγ

µ 1
2(c

q
V 1− cq

Aγ5)uq

)
. (5.1.20)

If we compare (5.1.20) with (2.4.96), we see that the vector and axial-vector
couplings, cV and cA are determined in the standard model (given the value
of sin2 θw). Their values are

cf
V = T 3

f − 2 sin2 θw Qf cf
A = T 3

f , (5.1.21)

where T 3
f and Qf are, respectively, the third component of the weak isospin

and the charge of the fermion f (given in Table 2.1). In general, the JNC
µ ,

unlike the charged current Jµ, are not pure V − A currents (cV #= cA); they
have right-handed components. The neutral current interaction is described

possible to mitigate this by using multiple observables which allow one to decouple effects

of the flux and cross section; see e.g., L. A. Anchordoqui, J. L. Feng, H. Goldberg and

A. D. Shapere, Phys. Rev. D 65, 124027 (2002).
9F. J. Hasert et al. [Gargamelle Neutrino Collaboration], Phys. Lett. B 46, 138 (1973).
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NLO inclusive      (left) and      (right) cross section                          
with        uncertainties (shaded band) compared with LO calculation

νN ν̄N
±1σ
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Weak Neutral Current Interactions
Discovery of neutrino-induced muonless events in 1973 

These events  ☛ most readily interpretable as 

 are evidence of a weak neutral current
νµ(ν)N → νµ(ν)+

JNC
µ (q) =

(
uqγ

µ 1
2 (c

q
V I− cqAγ

5)uq

)
JNC
µ (ν) = 1

2

(
uνγ

µ 1
2 (I− γ5)uν

)

heralded a new era in particle physics

hadrons

   &      are third component of weak isospin 
Table 2.1: Weak isospin, and hypercharge quantum numbers.

Lepton T T 3 Q Y Quark T T 3 Q Y

νe
1
2

1
2 0 −1

2 uL
1
2

1
2

2
3

1
6

e−L
1
2 −1

2 −1 −1
2 dL

1
2 −1

2 −1
3

1
6

uR 0 0 2
3

2
3

e−R 0 0 −1 −1 dR 0 0 −1
3 −1

3

we can rewrite the covariant derivative (2.4.89) as follows

Dµ = ∂µ − i
g√
2
(W+

µ T+ + W−
µ T−) − i

g

cos θw
Zµ(T

3 − sin2 θwQ) − ieAµQ .

(2.4.93)
The covariant derivative (2.4.93) uniquely determines the coupling of the
W± and Z0 fields to fermions, once the quantum numbers of the fermion
fields are specified. For the right-handed fields, T 3 = 0 and hence Y =
Q. For the left-handed fields, LL and QL, the assignments Y = −1/2 and
Y = +1/6, respectively, combine with T 3 = ±1/2 to give the correct electric
charge assignments. The weak isospin and hypercharge quantum numbers of
leptons and quarks are given in Table 2.1.

If we ignore fermion masses, the Lagrangian for the weak interactions of
quarks and leptons follows directly from the charge assignments given above.
The fermion kinetic energy terms are

L = L̄L(i #D)LL + ĒR(i #D)ER + Q̄L(i #D)QL + ŪR(i #D)UR + D̄R(i #D)DR.
(2.4.94)

To work out the physical consequences of the fermion-vector boson couplings,
we should write (2.4.94) in terms of the vector boson mass eigenstates. Using
the form of the covariant deivative (2.4.93) we can rewrite (2.4.94) as

L = L̄L(i#∂)LL + ĒR(i#∂)ER + Q̄L(i#∂)QL + ŪR(i#∂)UR + D̄R(i#∂)DR

+ g(W+
µ J+µ

W + W−
µ J−µ

W + Z0
µJ

µ
Z) + eAµjµ, (2.4.95)

where

J+µ
W =

1√
2
(ν̄L γµeL + ūL γµdL),

J−µ
W =

1√
2
(ēL γµνL + d̄L γµuL),

67

& charge of fermionT 3
f Qf f

with vector and axial-vector couplings given by

cfV = T 3
f − 2 sin2 θw Qf cfA = T 3

f
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      (unlike       ) is not pure       JNC
µ V −A (cV != cA)

g/ cos θw

current            

Neutral current interaction is described by a coupling

=

(
g

cos θw
JNC
µ

)(
1

m2
Z

)(
g

cos θw
JNCµ†

)

=
4GF√

2
2ρJNC

µ JNCµ†

by a coupling g/ cos θw,

=

(
g

cos θw
JNC

µ

) (
1

m2
Z

) (
g

cos θw
JNCµ

)
(5.1.22)

=
4GF√

2
2ρJNC

µ JNCµ . (5.1.23)

The relative strength of the neutral and charged currents is parametrized by
the weak angle cos θw, or by the ρ-parameter as can be seen by comparing
(5.1.9) with (5.1.22) and (5.1.10) with (5.1.23), respectively. Identification
of (5.1.9) and (5.1.10) yields

GF√
2

=
g2

8m2
W

, (5.1.24)

while combining (5.1.22) with (5.1.23) gives

ρ
GF√

2
=

g2

8m2
Z cos2 θw

; (5.1.25)

from the last two equations and (2.4.88)

ρ =
m2

W

m2
Z cos2 θw

= 1 . (5.1.26)

In other words, if the model is successful, all neutral current phenomena will
be described by a common parameter. For the moment we will leave ci

V ,
ci
A and ρ as free parameters to be determined by experiment. For further

discussion it is useful to remember that neutral currents have a coupling
ρGF and that ρ represents the relative strength of neutral and charged weak

150

☸

❖

Identification of ⚡ and ✈ yields

Combining     with   gives❖ ☸

from last two equations and

GF√
2
=

g2

8m2
W

ρ
GF√
2
=

g2

8m2
Z cos2 θw

mW =
g v

2
=

g

2
√
2λ

mH

ρ =
m2

W

m2
Z cos2 θw

= 1

& mZ =
mW

cos θw

ρ
JCC

µIn general ☛
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If model is successful ☛ all neutral current phenomena
will be described by a common parameter

◆

◆

◆

ciV , c
i
A

ρFor moment we will leave          and    as free parameters             
to be determined by experiment

ρ
ρGF

For further discussion it is useful to remember that: 
have a coupling

represents relative strength of neutral and charged weak currents 
currents, e.g. for neutrino-quark scattering:

ρ =

W

Z + +

++

. . .

. . .

(5.1.27)

∆ρ measures the quantum corrections to the ratio of the neutral- and charged-
current amplitudes at low energy.

The calculation of inclusive cross sections νN → νX proceeds exactly as
that for the charged current processes. At LO in pQC we find

d2σNC
νN

dx dy
=

G2
F M Eν

2π

(
m2

Z

Q2 + m2
Z

)2 [
xqNC

ν (x, Q2) + (1 − y)2xqNC
ν (x, Q2)

]
,

(5.1.28)
where the quark densities are given by

qNC
ν (x, Q2) =

[
uv(x, Q2) + dv(x, Q2)

2

] [
(cd

V + cd
A)2 + (cu

V + cu
A)2

]

+ 2

[
us(x, Q2) + ds(x, Q2)

2

] [
(cd

V )2 + (cd
A)2 + (cu

V )2 + (cu
A)2

]

+ 2[ss(x, Q2) + bs(x, Q2)] [(cd
V )2 + (cd

A)2]

+ 2[cs(x, Q2) + ts(x, Q2)] [(cu
V )2 + (cu

A)2] , (5.1.29)

and

qNC
ν (x, Q2) =

[
uv(x, Q2) + dv(x, Q2)

2

] [
(cd

V − cd
A)2 + (cu

V − cu
A)2

]

+ 2

[
us(x, Q2) + ds(x, Q2)

2

] [
(cd

V )2 + (cd
A)2 + (cu

V )2 + (cu
A)2

]

+ 2[ss(x, Q2) + bs(x, Q2)] [(cd
V )2 + (cd

A)2]

+ 2[cs(x, Q2) + ts(x, Q2)] [(cu
V )2 + (cu

A)2] . (5.1.30)

151

∆ρ measures quantum corrections ◆
current amplitudes at low energyto ratio of neutral- and charged-

e.g. for neutrino-quark scattering:

neutral currents ◉
◉

IN OTHER WORDS...
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LO NC cross section
Calculation of inclusive cross sections            νN → νX

At LO in pQC we find
as that for charged current processesproceeds exactly

d2σNC
νN

dx dy
=

G2
F M Eν

2π

(
m2

Z

Q2 +m2
Z

)2 [
xqNC

ν (x,Q2) + (1− y)2xqNC
ν (x,Q2)

]

 quark densities are given by

qNC
ν (x,Q2) =

[
uv(x,Q2) + dv(x,Q2)

2

] [
(cdV + cdA)

2 + (cuV + cuA)
2
]

+ 2

[
us(x,Q2) + ds(x,Q2)

2

] [
(cdV )

2 + (cdA)
2 + (cuV )

2 + (cuA)
2
]

+ 2[ss(x,Q
2) + bs(x,Q

2)] [(cdV )
2 + (cdA)

2]

+ 2[cs(x,Q
2) + ts(x,Q

2)] [(cuV )
2 + (cuA)

2]

qNC
ν (x,Q2) =

[
uv(x,Q2) + dv(x,Q2)

2

] [
(cdV − cdA)

2 + (cuV − cuA)
2
]

+ 2

[
us(x,Q2) + ds(x,Q2)

2

] [
(cdV )

2 + (cdA)
2 + (cuV )

2 + (cuA)
2
]

+ 2[ss(x,Q
2) + bs(x,Q

2)] [(cdV )
2 + (cdA)

2]

+ 2[cs(x,Q
2) + ts(x,Q

2)] [(cuV )
2 + (cuA)

2]

⧯
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NC-to-CC ratio

Experimental values are

Rexp
ν ≡

σNC
νµN→νµX

σCC
νµN→µX

= 0.3916± 0.0007

Rexp
ν̄ ≡

σNC
ν̄µN→ν̄µX

σCC
ν̄µN→µX

= 0.4050± 0.0016

 For                      theoretical prediction   using CTEQ4 PDFs is

Rν = Rν̄ ! 0.4

Eν > 107 GeV

A quantitative comparison of strength of NC to CC weak processes

obtained by NuTeV Collaboration an iron targetscattering neutrinos off 
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Kaon decay
Leptons and quarks participate in weak interactions through          CCs  
constructed from following pairs of (left- handed) fermion states

V −A

(
νe
e−

)
,

(
νµ
µ−

)
, and

(
u
d

)

All these charged currents couple with universal coupling 

It appears natural to try to extend this universality to embrace doublet

GF

(
c
s

)
formed from heavier quark states

However ☛ we already know that this cannot be quite correct

E.G.                   decay occurs ☛K+ → µ+νµ K+ u s̄is made of and quarks

implying there must be a weak current which couples a    to an    quarks̄u

which only allows weak transitions between u ↔ d c ↔ sand
This contradicts above scheme    
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Quark Flavor Mixing
Instead of introducing new couplings to accommodate 

 let's try to keep universality but modify quark doublets
We assume that charged current couples rotated quark states

K+ → µ+νµ

(
u
d′

)
,

(
c
s′

)
, . . .

d′ = d cos θc + s sin θc

s′ = −d sin θc + s cos θc

where

This introduces an arbitrary parameter     quark mixing angle

-- known as Cabibbo angle --

θc
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Cabibbo Angle

E.G.

transitions are suppressed ∆S = 1 data show that

by a factor of about 20 as compared to            transitions

After allowing for kinematic factors arising from different particle masses

∆S = 0

This corresponds to sin θc = 0.2255± 0.0019

Γ(K+ → µ+νµ)

Γ(π+ → µ+νµ)
∼ sin2 θc

Γ(K+ → π0e+νe)

Γ(π+ → π0e+νe)
∼ sin2 θc

In 1963 ☛ Cabibbo first introduced doublet   ,                                   
to account for weak decays of strange particles
Indeed mixing of    and   quark can be determined by comparing

u d′

d s

∆S = 1 and ∆S = 0 decays
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Cabibbo favored & suppressed transitions

and Cabibbo suppressed transitions

Instead of introducing new couplings to accommodate observations like
K+ → µ+νµ, let’s try to keep universality but modify the quark doublets.
We assume that the charged current couples “rotated” quark states

(
u

d′

)

,

(
c

s′

)

, . . . , (5.2.35)

where

d′ = d cos θc + s sin θc

s′ = −d sin θc + s cos θc . (5.2.36)

This introduces an arbitrary parameter θc, the quark mixing angle, known
as the Cabibbo angle.11 In 1963, Cabibbo first introduced the doublet u, d′

to account for the weak decays of strange particles. Indeed the mixing of the
d and s quark can be determined by comparing ∆S = 1 and ∆S = 0 decays.
For example

Γ(K+ → µ+νµ)

Γ(π+ → µ+νµ)
∼ sin2 θc,

Γ(K+ → π0e+νe)

Γ(π+ → π0e+νe)
∼ sin2 θc.

After allowing for the kinematic factors arising from the different particle
masses, the data show that ∆S = 1 transitions are suppressed by a factor
of about 20 as compared to the ∆S = 0 transitions. This corresponds to
sin θc = 0.2255 ± 0.0019.

What we have done is to change our mind about the CC (5.1.7). We now
have Cabibbo favored transitions (proportional to cosθc)

u

d

cos θcW+

c

s

cos θcW+

and “Cabibbo suppressed” transitions

11N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
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What we have done is to change our mind about CC 

We now have Cabibbo favored transitions (proportional to 

u

s

sin θcW+

c

d

sin θcW+

[see (5.2.36)], and similar diagrams for the charge lowering transitions. We
can summarize this by writing down the explicit form of the matrix element
describing the CC weak interactions of the quarks. From (5.1.4)

M =
4GF√

2
JµJµ (5.2.37)

with

Jµ = (ū c̄)
γµ(1− γ5)

2
U

(
d

s

)

. (5.2.38)

The unitary matrix U performs the rotation (5.2.36) of the d and s quarks
states:

U =

(
cos θc sin θc

− sin θc cos θc

)

. (5.2.39)

Of course, there will be amplitudes describing semileptonic decays constructed
from the product of a quark with a lepton current, Jµ (quark) Jµ (lepton).
All this has implications for our previous calculations. For example, we must
replace GF in (5.1.5) by G̃F = GF cos θc, whereas the purely leptonic µ-decay
rate, which involves no mixing, is unchanged. The detailed comparison of
these rates, (5.1.5) and (5.1.6) supports Cabibbo’s hypothesis.

The form (5.2.39) gives a zeroth-order approximation to the weak interac-
tions of the u, d, s, and c quarks; their coupling to the third family, though
non-zero, is very small. It is straightforward to extend the weak current,
(5.2.38), to embrace the additional doublet of quarks

Jµ = (ū c̄ t̄)
γµ(1− γ5)

2
U




d

s

b



 . (5.2.40)
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We can summarize this...

M =
4GF√

2
JµJ†

µ with Jµ = (ū c̄)
γµ(I− γ5)

2
U

(
d
s

)

Unitary matrix    performs rotation of    and   quarks states:U d s

U =

(
cos θc sin θc
− sin θc cos θc

)

are constructed from product of a quark with a lepton current

Jµ (quark) J†
µ (lepton)

All this has implications for our previous calculations

We must replace GF  in by∗ G̃F = GF cos θc

purely leptonic µ-decay rate is unchanged

Detailed comparison of    and    rates supports Cabibbo's hypothesis∗ ⨳

♬

by writing down explicit form of matrix element
describing the CC weak interactions of quarks

Amplitudes describing semileptonic decays

(which involves no mixing)
BUT 

⨳
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Cabibbo-Kobayashi-Maskawa matrix
♬Unitary matrix     in      gives a zeroth -order approximation

quarks
their coupling to third family (though non-zero) is very small

Jµ = (ū c̄ t̄)
γµ(I− γ5)

2
U




d
s
b





matrix   contains three real parameters U3× 3
mixing angles)

and a phase factor eiδ

Original parametrization was due to Kobayashi and Maskawa
Easy-to-remember approximation

element in 3-family matrix is

U =




|Uud| |Uus| |Uub|
|Ucd| |Ucs| |Ucb|
|Utd| |Uts| |Utb|



 ∼




1 λ λ3

λ 1 λ2

λ3 λ2 1



 λ = sin θc

These are order of magnitude only
each element may be multiplied by a phase and a coefficient of O(1)

(Cabibbo-like

to observed magnitude of each

to weak interactions of
U

u, d, s, c

with
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 Properties of weak amplitude 
To investigate      invariance we first compare: CP

ab → cd
āb̄ → c̄d̄antiparticle reaction

amplitude for weak process            

We take to be charged current interaction ofab → cd

Amplitude is

M ∼ Jµ
ca J

†
µbd

∼
(
ūcγ

µ(I− γ5)Ucaua

) (
ūbγµ(I− γ5)Ubdud

)†

∼ UcaU
∗
db

(
ūcγ

µ(I− γ5)ua

) (
ūdγµ(I− γ5)ub

)

describes either    

because U †
bd = U∗

db

M ab → cd c̄d̄ → āb̄or 

W+

a

b

c

dU∗
db

Uca

(a)

W−

a

b

c

dUdb

U∗
ca

≡ W−

ā

b̄

c̄

d̄Udb

U∗
ca

(b)

Figure 5.2: The processes described by (a) the weak amplitude M(ab → cd)

and (b) its hermitian conjugate.

see that M is essentially the interaction Hamiltonian V for the process. The
total interaction Hamiltonian must contain M + M , where M describes the
i → f transition and M describes the f → i transition in the notation of
Chapter 3.

In Sec. 5.1, we have seen that weak interactions violate both P invariance
and C invariance, but have indicated that invariance under the combined CP
operation may hold. How do we verify that the theory is CP invariant? We
calculate from M(ab → cd) of (5.2.42) the amplitude MCP , describing the
CP -transformed process, and see whether or not the Hamiltonian remains
hermitian. If it does, that is, if MCP = M , then the theory is CP invariant.
If it does not, then is CP violated.

MCP is obtained by substituting the CP -transformed Dirac spinors in
(5.2.42)

ui → P (ui)
c, i = a, . . . d , (5.2.44)

where uc are charged conjugate spinors defined by

uc = CūT , (5.2.45)

see Sec. 1.4. Clearly to form MCP , we need ūc and also, to know how
γµ(1 − γ5) transforms under C. In the standard representation of gamma
matrices we have

ūc = uc γ0 = (Cγ0u∗) γ0 = uT γ0C γ0 = −uT C γ0γ0 = −uT C−1 , (5.2.46)

γµ = −(Cγ0)γµ∗(Cγ0)−1 = −Cγ0γµ∗γ0C−1 = −CγµT C−1 (5.2.47)
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dU∗
db
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W−

a

b

c

dUdb

U∗
ca

≡ W−

ā

b̄

c̄

d̄Udb

U∗
ca

(b)

Figure 5.2: The processes described by (a) the weak amplitude M(ab → cd)

and (b) its hermitian conjugate.

see that M is essentially the interaction Hamiltonian V for the process. The
total interaction Hamiltonian must contain M + M , where M describes the
i → f transition and M describes the f → i transition in the notation of
Chapter 3.

In Sec. 5.1, we have seen that weak interactions violate both P invariance
and C invariance, but have indicated that invariance under the combined CP
operation may hold. How do we verify that the theory is CP invariant? We
calculate from M(ab → cd) of (5.2.42) the amplitude MCP , describing the
CP -transformed process, and see whether or not the Hamiltonian remains
hermitian. If it does, that is, if MCP = M , then the theory is CP invariant.
If it does not, then is CP violated.

MCP is obtained by substituting the CP -transformed Dirac spinors in
(5.2.42)

ui → P (ui)
c, i = a, . . . d , (5.2.44)

where uc are charged conjugate spinors defined by

uc = CūT , (5.2.45)

see Sec. 1.4. Clearly to form MCP , we need ūc and also, to know how
γµ(1 − γ5) transforms under C. In the standard representation of gamma
matrices we have

ūc = uc γ0 = (Cγ0u∗) γ0 = uT γ0C γ0 = −uT C γ0γ0 = −uT C−1 , (5.2.46)

γµ = −(Cγ0)γµ∗(Cγ0)−1 = −Cγ0γµ∗γ0C−1 = −CγµT C−1 (5.2.47)
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Properties of weak amplitude
Amplitude        M′ āb̄ → c̄d̄ cd → abfor antiparticle process (or ) is

M′ ∼ (Jµ
ca)

† Jµbd

∼ U∗
caUdb

(
ūaγ

µ(I− γ5)uc

) (
ūbγµ(I− γ5)ud

)

that is M′ = M†

This should not be surprising
It is demanded by hermiticity of Hamiltonian

By glancing back at                    

we see that

and                

M is essentially interaction Hamiltonian    for processV
Total interaction Hamiltonian must contain M+M†

M describes i → f transition and M† describes f → i transition

Tfi = −i

∫
φ∗
f (x)V (x)φi(x) d

4x

= −i

∫
φ∗
f ie(A

µ∂µ + ∂µA
µ)φi d

4x

Tfi = −iNA NB NC ND (2π)4 δ(4)(pD + pC − pB − pA)M

M†
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How to test CP invariance
We have seen that weak interactions violate both    &     invariance 

operation may holdinvariance under 

P C

CP

How do we verify that theory is       invariant? CP
We calculate from

amplitude describing -transformed process
and see whether or not Hamiltonian

CP

M(ab → cd)

MCP

MCP = M†

CP

CP
remains hermitian

combined 

If it does ☛ that is if  then theory is       invariant

If it does not ☛ then is       violated

is obtained by substituting      -transformed Dirac spinorsCPMCP

ui → P (ui)
c, i = a, . . . d

where     are charged conjugate spinors defined byuc

uc = CūT

■

■
■

■

■

▣

BUT have indicated that 
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Hints for the calculation
To form          we need      MCP ūc

γµ(I− γ5) transforms under C
In standard representation of gamma matrices we have

ūc = uc†γ0 = (Cγ0u∗)†γ0 = uT γ0C†γ0 = −uTC†γ0γ0 = −uTC−1

γµ = −(Cγ0)γµ∗(Cγ0)−1 = −Cγ0γµ∗γ0C−1 = −CγµTC−1

C−1γµγ5C = −γµTC−1iγ0γ1γ2γ3C

= −iγµT (C−1γ0C)(C−1γ1C)(C−1γ2C)(C−1γ3C)

= −iγµT γ0T γ1T γ2T γ3T

= −γµT (iγ3γ2γ1γ0)T

= −γµT (iγ0γ1γ2γ3)T

= −γµT γ5T

= −(γ5γµ)T

= (γµγ5)T

and also to know how     
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More hints for the calculation

With replacements    ☛ first charged current becomes

(Jµ
ca)

c = Uca(ūc)
cγµ(I− γ5)(ua)

c

= −Ucau
T
c C

−1γµ(I− γ5)CūT
a

= Ucau
T
c [γ

µ(I+ γ5)]T ūT
a

= (−)Ucaūaγ
µ(I+ γ5)uc

▣

(Jµ
ca)CP = (−)Ucaūaγ

µ†(I− γ5)uc

Parity operation P = γ0 ☛ P−1γµ(I+ γ5)P = γµ†(I− γ5) and so 

Thus ☛
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CP invariance?
We can now compare

with

Provided elements of matrix    are real
and theory is       invariant

U

MCP = M† CP

For (u, d, c, s) ☛         matrix     is indeed real2× 2

3× 3

U

Ub tWith addition of   and    matrix    becomes CKM matrix

   now contains a complex phase factor eiδ

Therefore ☛ in general we have MCP != M†

and theory necessarily violates      invarianceCP

MCP ∼ UcaU
∗
db

[
ūaγ

µ(I− γ5)uc

] [
ūbγµ(I− γ5)ud

]

M′ ∼ (Jµ
ca)

† Jµbd

∼ U∗
caUdb

(
ūaγ

µ(I− γ5)uc

) (
ūbγµ(I− γ5)ud

)

we find

U

evidence was first revealed in mixing of neutral kaons
    violation was established many years before introduction of CKM matrix

❐

❐

❐

❐ CP

❐
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Electroweak Interference in      Annihilation

Measurement of reaction at PETRA energiese+e− → µ+µ−

tests of validity of QED at small distances

Measurement also provides a unique test of asymmetry                                                

MEM ∼ e2/k2

Size of this effect is found to be

|MEM MNC|
|MEM|2 ≈ GF

e2/k2
≈ 10−4k2

m2
N

using andGF ≈ 10−5/m2
N e2/4π = 1/137

and so predicts about a 15% effect ☛ which is readily observable

For PETRA        beam energiese+e− ∼ 20 GeV ☛

provides

(in angular distribution of muon pairs)

arising  from interference of electromagnetic amplitude

with a small weak contribution

e+e−

k2 ≈ s ≈ (40 GeV)2
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To make a detailed prediction...
Use Feynman rules to compute amplitudes

corresponding to     

Mγ MZ

are

diagrams of ☛   

and

e+

e−

µ+

µ−

γ

e+

e−

µ+

µ−

Z

Figure 5.3: Electromagnetic and weak contributions to e+e− → µ+µ−.

5.4.1 Interference in e+e− annihilation

When contemplating the vast amount of evidence for the standard model,
covering strong and electroweak interactions, collider and fixed-target exper-
iments with lepton, photon, and hadron beams, it is easy to overlook the fact
that verification of the theory at the quantum level is in its infancy, at least
by QED standards. In the electroweak sector familiar tests of the standard
model probe the Lagrangian at Born level. Perhaps, the oldest of these tests
has been the measurement of electroweak interference in e+e− collisions.

e+e− annihilations can occur through electromagnetic (γ) or weak neu-
tral current (Z) interactions. Therefore, high-energy e+e− colliding beam
machines are an ideal testing ground for the interference effect of the elec-
tromagnetic and the neutral weak amplitude. As we discussed in Sec. 3.3,
the measurement of the reaction e+e− → µ+µ− at PETRA energies provides
tests of the validity of QED at small distances. In what follows, we show
that such a measurement also provides a unique test of the asymmetry aris-
ing (in the angular distribution of muon pairs) from the interference of the
electromagnetic amplitude MEM ∼ e2/k2, with a small weak contribution.
The size of this effect is found to be

|MEM MNC|
|MEM|2

≈
GF

e2/k2
≈

10−4k2

m2
N

, (5.4.65)

using GF ≈ 10−5/m2
N [see Appendix H] and e2/4π = 1/137. For PETRA

e+e− beam energies ∼ 20 GeV we have k2 ≈ s ≈ (40 GeV)2 and so predicts
about a 15% effect, which is readily observable.

To make a detailed prediction, we assume that the neutral current process
is mediated by a Z boson with couplings given by (5.1.20). Using Feynman

162

Mγ = − e2

k2
(µγνµ)(eγνe)

MZ = − g2

4 cos2 θw

[
µγν(cµV I− cµAγ

5)µ
](gνσ − kνkσ/m2

Z

k2 −m2
Z

)

×
[
eγσ(ceV I− ceAγ

5)e
]

where    is four-momentum of virtual    (or   )

With electron-muon universality ☛ superscripts on       are superfluous  

We ignore lepton masses ☛ Dirac equation for incident positron reads     

k γ Z s ! k2

cV,A

( 12kσ)eγ
σ = 0

gµσand numerator of propagator simplifies to 
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Chiral Couplings

MZ = −
√
2GFm2

Z

s−m2
Z

[cµR(µ̄Rγ
νµR) + cµL(µ̄Lγ

νµL)] [c
e
R(ēRγνeR) + ceL(ēLγνeL)]

ρ = 1Taking           ☛       can be written as

 where

cR ≡ cV − cA, cL ≡ cV + cA

That is we have chosen to write

are projection operators which enable 

explicitly in terms of right- and left-handed spinors

cV I− cAγ
5 = (cV − cA)

1
2 (I+ γ5) + (cV + cA)

1
2 (I− γ5)

(I± γ5) MZ

to be expressed

It is easier to calculate |Mγ +MZ |2 in this form

With definite electron and muon helicities
e+e− → µ+µ−calculation of                     

⟣⦂

MZ

we can apply results of QED
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E.G.
dσ

dΩ

∣∣∣∣
e−L e+R→µ−

Lµ+
R

=
α2

4s
(1 + cos θ)2 [1 + rcµLc

e
L]

2

dσ

dΩ

∣∣∣∣
e−L e+R→µ−

Rµ+
L

=
α2

4s
(1 + cos θ)2 [1 + rcµRc

e
L]

2

   is ratio of coefficients in front of brackets in       that isr

r =

√
2GFm2

Z

s−m2
Z + imZΓZ

( s

e2

)

ΓZ

s ∼ m2
Z

we have included finite resonance width

which is important for 

⟣⦂

⚑

⌘
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⚑ ⌘Expressions similar to   and    hold

Unpolarized Cross Section

To calculate unpolarized                    cross section                      
we average over four allowed       helicity combinations

e+e− → µ+µ−

L,R

We find
dσ

dΩ
=

α2

4s

[
A0(1 + cos2 θ) +A1 cos θ

]

where  (assuming electron-muon universalitycµi = cei ≡ ci)

A0 ≡ 1 + 1
2"e(r)(cL + cR)

2 + 1
4 |r|

2(c2L + c2R)
2

= 1 + 2"e(r)c2V + |r|2(c2V + c2A)
2

A1 ≡ "e(r)(cL − cR)
2 + 1

2 |r|
2(c2L − c2R)

2

= 4"e(r)c2A + 8|r|2c2V c2A

⏏

for other 2 non-vanishing helicity configurations
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Forward-Backward Asymmetry
Lowest-order QED result          

(A0 = 1, A1 = 0)

regular distributiongives a symmetric

 Weak interaction introduces a forward-backward
(A1 != 0)

 Let us calculate size of integrated asymmetry defined by

AFB ≡ F −B

F +B
with F =

∫ 1

0

dσ

dΩ
dΩ , B =

∫ 0

−1

dσ

dΩ
dΩ

Integrating      we obtain for⏏

AFB =
A1

(8A0/3)
! 2

3
"e(r)c2A ! −3c2A√

2

(
GF s

e2

)
s ! m2

Z (i.e. ☛ |r| ! 1 )

asymmetry

This is in agreement with expectations of order of magnitude estimate 

GF s/e
2
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Figure 3.8: The e+e− → µ+µ− angular distribution for 〈
√

s〉 = 39 GeV. The

dot-dashed line shows the relativistic limit of lowest order QED prediction.

There are, of course, corrections to (3.3.53) of order α3, α4, . . . , arising due to
interference with, or directly from, the amplitudes of higher order diagrams.

We can now use the procedure sketched in Sec. (3.2) to calculate the
(lowest-order) amplitude for Møller scattering. As noted in the analysis
of spinless electrons, for e−e− → e−e−, we have identical particles in the
initial and final states, and so the amplitude should be symmetric under the
interchange of particle labels C ↔ D (and A ↔ B), i.e., we have to calculate
the t- and u-channel diagrams drawn in Fig. 3.6. To obtain the amplitude
for e−e+ → e−e+, we can simply use the antiparticle prescription to “cross”
the result for e−e− → e−e−. Furthermore, one can immediately check by

86

We may use standard model couplings cA =
1

2
, cV = −1

2
+ 2 sin2 θw " 0

to compare with experimental measurements  
of high-energy e+e− → µ+µ−angular distribution

PETRA-data
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PETRA-data (larger statistics)

Figure 5.4: The e+e− → µ+µ− angular distribution for all CELLO data

〈
√

s〉 = 43 GeV. The cos θ distribution does not follow the 1 + cos2 θ QED

prediction.

165

angular distribution for all CELLO data

distribution does not follow QED prediction

e+e− → µ+µ− 〈
√
s〉 = 43 GeV

cos θ 1 + cos2 θ
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