Prof. Anchordoqui

 Problems set # 7
 Physics 541-735
 October 25, 2011

1. Determine the decay rate Γ of an unstable particle (assumed to be at rest) into a specified final state (of two or more particles).

2. Use (3.1.28) to show that for very high-energy "spinless" electron-muon scattering

$$\left. \frac{d\sigma}{d\Omega} \right|_{\rm cm} = \frac{\alpha^2}{4s} \left(\frac{3 + \cos \theta}{1 - \cos \theta} \right)^2,$$

where θ is the scattering angle and $\alpha = e^2/4\pi$. Neglect the particle masses.

3.(i) Taking $e^-e^+ \rightarrow e^-e^+$ to be the s channel process, verify that

$$s = 4(k^2 + m^2),$$

$$t = -2k^2(1 - \cos\theta),$$

$$u = -2k^2(1 + \cos\theta).$$

where θ is the center-of-mass scattering angle and $k = |\vec{k}_i| = |\vec{k}_f|$, where \vec{k}_i and \vec{k}_f are, respectively, the momenta of the incident and scattered electrons in the center-of-mass frame. Show that the process is physically allowed provided $s \ge 4m^2$, $t \le 0$, and $u \le 0$. Note that t = 0 (u = 0) corresponds to forward (backward) scattering.

(*ii*) For the cross reaction $A\overline{D} \to C\overline{B} (e^-e^- \to e^-e^-)$, show that u becomes the square of the total center-of-mass energy and that this process would become physical in a different kinematic region: $u \ge 4m^2$, $t \le 0$ and $s \le 0$ (Note that, for example, $-p_D = (E, \vec{p})$, where E and \vec{p} refer to the incoming \overline{D} .)

4. Show that the invariant amplitude for "spinless" electron-positron scattering can be written as

$$\mathfrak{M} = e^2 \left(rac{s-u}{t} + rac{t-u}{s}
ight) \,.$$

Comment on the symmetry of \mathfrak{M} under $s \Leftrightarrow t$.

5. Deduce an expression for the energy of a γ -ray from the decay of the neutral pion, $\pi^0 \to \gamma \gamma$, in terms of the mass m, energy E, and velocity βc of the pion and the angle of emission θ^* in the pion rest frame. Show that if the pion has spin zero, so that the angular distribution is isotropic, the laboratory energy spectrum for the γ -rays will be flat extending from $E(1+\beta)/2$ to $E(1-\beta)/2$. For relativistic pions, find an expression for the disparity D (the ratio of energies) for the γ -rays and show that D > 3 is half the decays and D > 7 is one quarter of them.