November 22, 2011

1. Show that momentum conservation at the QCD vertex requires (for z < 1)

$$P_{qq}(z) = P_{gq}(1-z),$$

$$P_{qg}(z) = P_{qg}(1-z),$$

$$P_{qq}(z) = P_{qq}(1-z).$$

Check that the explicit formulas for the splitting functions satisfy these relations.

2. Fragmentation functions are often parametrized by the form

$$D_q^h(z) = N \frac{(1-z)^n}{z}$$

where N and n are constants. Show that

$$N = (n+1)\langle z \rangle,$$

where $\langle z \rangle$ is the average fraction of the quark energy carried by hadrons of type h after fragmentation. Compare these predictions with those from

$$\frac{dn_h}{dz} \approx \frac{15}{16} z^{-3/2} (1-z)^2$$
.

- 3. Determine the color factor for the following processes: (i) $\gamma g \to q\bar{q}$, (ii) $q\bar{q} \to \gamma g$, (iii) $qg \to q\gamma$, (iv) $q\bar{q} \to \ell^+\ell^-$, (v) $\ell^+\ell^- \to q\bar{q}$, (vi) $gg \to gg$, (vii) $gg \to q\bar{q}$, (viii) $q\bar{q} \to gg$, and (ix) $gq \to gq$.
- 4. Ignoring the Z mass (i.e., keeping only transverse Z's) show that the ratio of the Z+ jet and γ + jet invariant mass spectra is roughly 0.92 for processes involving u (or \bar{u}) quarks and 4.7 for processes involving d (or \bar{d}) quarks.