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The Field Tensor

☛ 6 transformation rules

Recall that a 4-vector transforms by the rule

However ☛ from last class
the components of    and    are stirred together when you go from 
one inertial system to another 

E B

āµ = Λµ
νa

ν

A tensor (in 4 dimensions) has                components which we 
can display in a        array

4× 4 = 16
4× 4
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The Field Tensor (cont’d)
What type of matrix?  the 16 elements need not all be different
 In a symmetric tensor 

there are 10 distinct components ☛ 6 of the 16 are repeated                             

An antisymmetric tensor is more likely                         

such an object has only 6 distinct elements                        
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where our matrix is the antisymmetric tensor

Let’s see how the transformation rule works

t̄µν = Λµ
λΛ

ν
σt

λσ

The Field Tensor (cont’d)
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Example ☛ t̄µν = Λµ
λΛ

µ
σt

λσ
The Field Tensor (cont’d)
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More examples 
The Field Tensor (cont’d)
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So far, we have produced 3 of the 6 components of our 
antisymmetric tensor                           

The complete set of transformation rules is

These are precisely the rules 
we derived on physical 
grounds for the 
electromagnetic fields

In fact we can construct the field tensor        by direct comparison

t01 = Ex/c t02 = Ey/c t12 = Bz t03 = Ez/c t31 = By t23 = Bx

I’ll let you work out the others

Fµν

The Field Tensor (cont’d)
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written as an array

Summary
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If you follow that argument with exquisite care, you may have 
noticed that there was a different way of imbedding    and    
in an antisymmetric tensor
We could have done the comparison also the other way around:

and we would have gotten

The dual field tensor

E B
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With this we obtain the dual tensor

      can be obtained directly from      with the substitution

Both tensors generate the correct transformation rules for        
and

The dual field tensor (cont’d)

∗Fµν =





0 Bx By Bz

−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0





E
B

∗Fµν Fµν

E/c → B B → −E/c
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Electrodynamics in Tensor notation
Now that we know how to represent the fields in relativistic 
notation, it is time to reformulate the laws of electrodynamics 
(Maxwell’s equations and the Lorentz force law) in that language
To begin with, we must determine how the sources of the fields,

and   , transformρ J

J = ρu

ρ =
Q

V

Imagine a cloud of charge drifting by; we concentrate on an 
infinitesimal volume   , which contains charge   moving at 
velocity   

The charge density is ☛

and the current density is ☛

V Q
u

uV

Q
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Electrodynamics in Tensor notation (cont’d)
I would like to express these quantities in terms of the proper 
charge density    , the density in the rest system of the charge:ρ0

ρ0 =
Q

V0☛ is the rest volume of the chunk

Because one dimension (the one along the direction of motion) 
is Lorentz-contracted V =

�
1− u2/c2V0

and hence
ρ = ρ0

1�
1− u2/c2

, J = ρ0
u�

1− u2/c2

We recognize here the components of proper velocity, multiplied 
by the invariant ρ0
Evidently charge density and current density go together to

whose components are ☛
We’ll call it the current density 4-vector

Jµ = (cρ, Jx, Jy, Jz)

Jµ = ρ0U
µmake a 4-vector ☛
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Electrodynamics in Tensor notation (cont’d)
The continuity equation ☛ 

expressing the local conservation of charge, takes on a nice 
compact form when written in terms of 

For

while

Thus, bringing         over to the left side (in the continuity 
equation), we have

with summation over   implied

Incidentally is the 4-dimensional divergence of    ,
so the continuity equation states that the current density          
4-vector is divergenceless

∇ · J = −∂ρ

∂t

∇ · J =
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

=
3�

i=1

∂J i

∂xi

Jµ

∂ρ

∂t
=

1

c

∂J0

∂t
=

∂J0

∂x0

∂ρ/∂t

∂Jµ/∂xµ

µ

Jµ

∂Jµ

∂xµ
= 0
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Electrodynamics in Tensor notation (cont’d)
As for Maxwell’s equations, they can be written

∂Fµν

∂xν
= µ0J

µ,
∂∗Fµν

∂xν
= 0 with summation over   implied

Each of these stands for 4-equations -one for every value of  

ν

µ
µ = 0, the first equation readsIf

or

This, of course, is Gauss’s law

∇ ·E =
1

�0
ρ

∂F 0ν

∂xν
=

∂F 00

∂x0
+

∂F 01

∂x1
+

∂F 02

∂x2
+

∂F 03

∂x3

=
1

c

�
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

�
=

1

c
(∇ ·E)

= µ0J
0 = µ0cρ
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Electrodynamics in Tensor notation (cont’d)
If , we have

Combining this with the corresponding results for 

and gives

which is Ampere’s law with Maxwell’s correction

∂F 1ν

∂xν
=

∂F 10

∂x0
+

∂F 11

∂x1
+

∂F 12

∂x2
+

∂F 13

∂x3

= − 1

c2
∂Ex

∂t
+

∂Bz

∂y
− ∂By

∂z
=

�
− 1

c2
∂E

∂t
+∇×B

�

x

= µ0J
1 = µ0Jx

µ = 1

µ = 2

µ = 3

∇×B = µ0J+ µ0�0
∂E

∂t
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∂∗F 1ν

∂xν
=

∂∗F 10

∂x0
+

∂∗F 11

∂x1
+

∂∗F 12

∂x2
+

∂∗F 13

∂x3

= −1

c

∂Bx

∂t
− 1

c

∂Ez

∂y
+

1

c

∂Ey

∂z
= −1

c

�
∂B

∂t
+∇×E

�

x

= 0

Electrodynamics in Tensor notation (cont’d)

∂∗F 0ν

∂xν
=

∂∗F 00

∂x0
+

∂∗F 01

∂x1
+

∂∗F 02

∂x2
+

∂∗F 03

∂x3

=
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= ∇ ·B = 0

Meanwhile with        becomesµ = 0

(the third of Maxwell’s equations), whereas        yieldsµ = 1

So, combining this with the corresponding results for 

which is Faraday’s law
and

µ = 2
µ = 3

∇×E = −∂B

∂t

∂∗Fµν

∂xν
= 0
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Electrodynamics in Tensor notation (cont’d)
In relativistic notation, then, Maxwell’s four rather cumbersome 
equations reduce to two delightfully simples ones
In terms of      and the proper velocity    , the Minkowski 
force on a charge    is given by

fµ = qUνF
µν ❂

For if       , we have

with a similar formula for        and   

Thus, and therefore,

which is the Lorentz force law

 then represents the Lorentz force law in relativistic notation❂

µ = 1

µ = 2 µ = 3

UµFµν

q

F = q[E+ (u×B)]f =
q�

1− u2/c2
[E+ (u×B)]

f1 = qUνF
1ν = q(−U0F 10 + U1F 11 + U2F 12 + U3F 13)

= q

�
−c�

1− u2/c2

�
−Ex

c

�
+

uy�
1− u2/c2

(Bz) +
uz�

1− u2/c2
(−By)

�

=
q�

1− u2/c2
[E+ (u×B)]x
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Relativistic Potentials
The electric and magnetic fields can be expressed in terms of  

a scalar potential    and a vector potential    :  AV

✸

As you might guess,    and     together constitute a 4-vector:AV

Aµ = (V/c,Ax, Ay, Az)

In terms of this 4-vector potential the field tensor can be written

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
✻

(observe that the differentiation is with respect to the covariant 
vectors     and     ; remember this changes the sign of the zeroth 
component:             )

xµ xν

x0 = −x0

E = −∇V − ∂A

∂t
, B = ∇×A
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Relativistic Potentials (cont’d)
To check that ✸ is equivalent to ✻, let’s evaluate a few terms 
explicitly For        ,

That (and its companions with        and         ) is the first 

equation in ✸ For       ,        ,we getν = 2
ν = 3ν = 2

µ = 1

µ = 0 ν = 1

F 12 =
∂A2

∂x1
− ∂A1

∂x2
=

∂Ay

∂x
− ∂Ax

∂y
= (∇×A)z = Bz

F 01 =
∂A1

∂x0
− ∂A0

∂x1
= − ∂Ax

∂(ct)
− 1

c

∂V

∂x

= −1

c

�
∂A

∂t
+∇V

�

x

=
Ex

c

which (together with the corresponding results for      and
is the second equation in ✸

F 13F 23
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Relativistic Potentials (cont’d)
The potential formulation automatically takes care of the 
homogeneous Maxwell equation (∂∗Fµν/∂xν = 0)

As for the inhomogeneous equation                        ,(∂Fµν/∂xν = µ0J
µ)

 that becomes
∂

∂xµ

�
∂Aν

∂xν

�
− ∂

∂xν

�
∂Aµ

∂xν

�
= µ0J

µ

❃

Aµ λ

Aµ → Aµ�
= Aµ +

∂λ

∂xµ

This is an intractable equation as it stands
However, you will recall that the potentials are not uniquely 

determined by the fields- in fact, it’s clear from ✻ that you 
could add to    the gradient of any scalar function   :

without changing Fµν
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Relativistic Potentials (cont’d)
This is precisely the gauge invariance; we can exploit it to 

simplify  ❃ 

In particular ☛ 

becomes, in relativistic notation ☛

∇ ·A = − 1

c2
∂V

∂t

∂Aµ

∂xµ
= 0

In the Lorentz gauge, therefore, ❃ reduces to

�2Aµ = −µ0J
µ ❄

where     is the d’Alembertian�2

❄ combines our previous results into a single 4-vector 
equation- it represents the most elegant (and the simplest) 
formulation of Maxwell’s equations

�2 ≡ ∂

∂xν

∂

∂xν
= ∇2 − 1

c2
∂2

∂t2
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