Special Relativity

T L

~

Luis Anchordoqui

Friday, October 29, 2010



VII: Relativistic Electrodynamics (part 2)

Luis Anchordoqui

Friday, October 29, 2010



The Fileld Tensor

Recall that a 4-vector transforms by the rule

0A, 1A
" However = from last class

the components of E and B are stirred toqether when you 9o from
one inertial system to another

| = & transformation rules

A tensor (in 4 dimensions) has AeX 4B tompame»x&s which we
can cii,s[ptav i a4 X array



The Field Tensor (contd)

What type of matbrix? the 16 elements need not all be different
In a symmetlric tensorie. .« RIS

there are 10 dis&is ‘ o are repea&ed

An am&isvmma&rw tewnsor s more Liw’etv

such an object has only & Aiskinct elements
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The Field Tensor (contd)

Lebs see how the transformation rule works

th = AEAV A0

where our makbkrix s the am&£53mmeﬁriﬂ Fewnsor

01 02 03

[ [ [
0 12 413

O t23

_ t23 O
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The Field Tensor (contd)
E’xampt& - 1 A'uAMtAJ
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The Field Tensor (contd)

More examgi.es

3,02 ~ 3 03 ;
- /%7\/21 %/@ +
1+}%§12 +I%ﬁ3 n 3

+ A7 + NN +
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The Field Tensor (contd)

So far, we have produ,aeci 3 of the & components of our
antisymmetric tensor

I Lek you work oul the obthers

The complete set of transformation rules is

=00 F02 )/(102 _ﬁtl2) 703 _ )/(t03 +/J’t31)
_ B 731 _ )/(131 +[3’t03) 712 _ y(t12 —[3102)

These are precisely the rules
we derived on physical
grounds for the
electromaqgnetic fields

In fact we can construct the field tensor F'MY by direct comparison

9 = B, /c t74 = B G e e — D,
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t"=E /c 1®"=E, /c 1" =B,

t'=B, 1" =E/c

E, /c E./c
-E /c O - B,
-E /¢ -B,

B

Y
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The dual field tensor
1{ you follow that arqument with exquisite care, you may have
noticed that there was a different way of imbedding E and B
it an antisymmetric tensor

We tou.td have downe bhe Comp&nsom also the obher wav m'o-u,sr\ci:

[ =1 —)/(f — pt ) _Y(t +ﬁt ) |
' f23 z731 =y (t31 n /))t03 ) 1c = —

and we wc:»ui.ciw hava go&%em |

X

TRy —B ¢ ——E/c ' =-E, =-E,
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The dual field tensor (contd)

Wikh Ehis we obkain bEhe dual bensor

B, B, B, ’:
0 —FE./c E,/c

EZ/C 0 —Ea;/C
—-E,/c E;/c 0

“F" can be obtained dwea&i.v ﬂfrom FH with the substibution

E/C%B B — E/c

Both tensors gemero&e the correct &rahs{ormaﬁbam rules for E
and B
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Ete&%rodvmamias i Tensor nokatkion

Now that we know how to represent the fields in relativistic
notakion, ik is time to reformulate the Laws of eiez:&radjnamics
(Maxwell’s equations and the Lorentz force law) in that language
To beqin with, we must determine how the sources of the fields,

P and J, bransform
Imagine a cloud of charge drifting by; we concentrate on an

infinitesimal volumeV | which conkains charge () moving ak
velocityu
Q

The charge density is = p = v

and the current ciemsibj 2 — pu

/ \
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Electrodynamics in Tensor notation (contd)

I would Llike to express these quantities in terms of the proper
charge denstty PO, the clehs&j in the rest system of the charge:

1 Q

PO = V()"' is the rest volume of the chunik

Because ohe dimension (Ehe one along the direction of motion)
s Lorentz-contracted B

and hence {’ * 1 * N
0 — FO
pP—=p — p \/1 — u2/62

P i aE

We recoguize here the components of pm-per velocity, muih?i.nec&
bjj the thvariank Og
Evidently charge dems&j av\d current density 9o together to

make a 4-vector m ( T — 00 UMJ

whose tompomenﬁs are n-‘

We'll call ik Fhe currenk clemsi&gj 4—vector



Electrodynamics in T@.V\sog notation (contd)
0

The aav\&&&\m%v equ&%mm - V- =

ot

expressing the Local conservation of charge, takes on a nice
compact form when written in terms c:nf JH

cor TS @il I O 8JZ 0J"
ox

while @ et 19J° ik 0.J°

8t ¢ Ot  Ox0

Thus, bringing 0p/0t over to the left side (in the continuity
equation), we have g,

(oJr

— () with summabtion over U met&ed
Ozt

B o (r

1—1

Incidentally 0J" /0xt is %he 4~dnmev\smmai divergence of J¥,

so khe ﬂov\&nm%j aqu&&mm skakes that Ehe currenkt d@.ms&v
4-vector is divergenceless
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E:Le&rc)dvnamws i Tensor notation (contd)
As for Maxweu. equa&wt«s, &hej can be written
| o

Py =B itk summation over U :,mpi.c,eci

Each h'fo-r&é--‘equog&&ons ~one for every value of [t
i u =0, Ehe &rs& equa&mm reads

R oF% FY 9F% 9F%
] OV axo 8331 81.2 8333

or

This, of course, is Gauss’s law
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Electrodynamics in Tensor notation (contd)

i u=1, we have

4 )

OF _ OF10 | OF 1 | OF 12 | OF13
N | ox3

oY OxY orl  Ox2
_ _10B, 0B aBy( 18EVXB)

c? Ot oy 0z c? Ot

= poJ" = pody

. J

Combining this with the corresponding resulks T a2

ahd [ = Jigives T TSR e

OE
V xB = ppJ —|‘MO€OE ;

which is Ampara’s Law with Maxwells correction
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Eletﬁrodjmamws i Tensor notation (contd)
§* Fhv

Meanwhile — (0 with t =0 becomes

ox”

Dt o R W R s R S

0B, 0B, 0B,
— B =
(9:13 ﬁy 87; | =V .

(Ehe Ekwd o{ Maxweti’s equ,o&:,ous), wkereas ,u — 1 vw.tds

a*Fll/ BEL i 8*F10 8*F11 a*F12 3*F13

| 9 00— 9x'  9x? O’

10E, 10E, 9B |
c@y c 0z _(815+VXE) _O

So, CombW\W\g &kgs wn&h &he tormspomdw\g results for 1 = 2

which s ?&rad&v"s Law
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Electrodynamics tn Tensor notation (contd)
In relativistic notation, then, Maxwell’s four rather cumbersome
equations reduce to two c{etighﬁfu,uj simples ones

In terms of /' and the proper velocity U, the Minkowski
force on a charge ¢ is given by 0

For f u = 1, we have

with a similar formula forp =2 andpu =3

| q
Thus, f = \/1 iy R E+ (uxB)| and therefore, F = q/E+ (ux B)]

which is the Lorentz force Law

Dthen represents the Lorentz force law i relakivistic notation
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Relakivistic Potenkials

The electric and magnetic fields can be expressed in terms of
a s«aai.ocr Fo&em&mt V&Mci a veCEc:vr po&em&mt A

tE:—vv ‘M, B=VxA %

E)t

As you mugh& 9%@.55, V w\d A Eoge&hercc»ms&&u&e a 4-vector:
| A = (V/c Ax,Ay,A ) §

In kerms of this -*vec&or pc}&ev\&mt &ke «fc,ei.ci &ev\sor can be written

(observe that the du«f{erev\%mhom Ls mu&h respect to the covariant
vectors X, and T, ; remember this changes the sign of the zeroth
component: Tg = ImeL
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Relabivistic Potentials (contd)

\"

To checle that ¥ is equivalent to T, let’s evaluate a few terms
explicitly For ,LL — s |

F01 8_141_8_140__8145”

8:130 5’331 N 6(6?5)

That (and its companions withy = 2 and 1 = 3 ) is the first
equ&&om 37 * For ,LL = 1 D= 2 ,we:*. 9@.&

8A2 8A1 8A 8A

A). — B, |
Oy = (VA

which (together with the corresponding resulks for F i and F°
is the second equation in *
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Relativistic Potentials (contd)

The potential formulation automatically takes care of the
homogeneous Maxwell equation (0" FH" /0z" = 0)

As for the mhamogeneous equa&mm (8F et / BT g )

| 0 (04”) 9 oar) "
{00, \ 007 )~ 0w, \ 0a ) ~ 17|

This is an mEra&&abLe equ&&uom as L& s&amds
However, you will recall that the Fo&emhats are ot umiquetj

determined by the fields- in fact, it’s clear from & that you

could add ko A" the gr&dnen& owf aw\:j scalar nfu.hthom A

0x,,

AP 5 AF = AP

without changing [ ER
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Relativistic Potentials (contd)

This is precisely the gauge invariance; we can exploit it to
stmplify
10y
Gt
0AH

Sh
In the Lorentz gauge, &kere{ore, * reciur:es to

In par&iﬂutar - V-A=

=l

becomes, in relabivistic nobtation w

where [1%is the ci’Ai.ember%wM

’ - Oz, 0¥ v

3%5 combines our pr@.vi,ous resulks inko a sEMgi.e 4-—vector

equation- it ‘!”EF?T'ESEV\&S the most elegant (and the s&mpi&s&)
formulation of Maxwell’s equations
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