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In 1917 Einstein presented model of universe which describing
geometrically symmetric (spherical) space with finite volume

but no boundary
In accordance with Cosmological Principle

model is homogeneous and isotropic
It is also static + volume of space does not change
To obtain static model

Einstein introduced new repulsive force in his equations
Size of this cosmological term is given by Λ
Einstein presented model before redshifts of galaxies were known
taking universe to be static was then reasonable
When expansion of universe was discovered

argument in favor of cosmological constant vanished
Most recent observations seem to indicate that non-zero Λ

has to be present
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16.6 FREIDMANN MODELS AND THE AGE 
OF THE UNIVERSE

Freidmann’s work established the foundation for describing the time evolu-
tion of the Universe based on general relativity. General relativity must be
used in cosmological calculations because it correctly describes gravity, the
most important force determining the Universe’s structure, over immense cos-
mological distances. Newtonian theory can lead to errors when applied to the
Universe as a whole because it assumes that the force of gravity is always attrac-
tive and is instantaneously transmitted. Although Freidmann did consider
models both with and without Einstein’s repulsive form of gravity (cosmologi-
cal constant), it is easiest to see the general form of Big Bang behavior without
introducing repulsive gravitational forces at this point.

Freidmann found three types of time-dependent universes, which may be
described in terms of the universal expansion scaling factor a(t). Figure 16.17
shows a(t )(the separation between galaxies) as a function of time for the
three cases labeled open universe, flat universe, and closed universe. Note that
a(t) alone has a value of zero at the lower-left corner of the graph, not t, and
that the three curves start at different times in the past in order to give the
same scaling factor at the present time, denoted t0. Open universes have less
mass and energy than that needed to halt the expansion. They start with a scale
factor of zero and grow without limit, any given galaxy approaching a limiting

22 CHAPTER 16 COSMOLOGY

EXAMPLE 16.2 Critical Density of 
the Universe

We can estimate the critical mass density of the Universe,
!c, using classical energy considerations. The result turns
out to be in agreement with the rigorous predictions of
general relativity because of the simplifying assumption
that the mass of the Universe is uniformly distributed.

Solution Figure 16.16 shows a large section of the Uni-
verse with radius R with the critical density, containing a
total mass M, where M consists of the total mass of matter
plus the effective mass of radiation with energy E, E/c2. A
galaxy of mass m and speed v at R will just escape to infin-
ity with zero speed if the sum of its kinetic energy and
gravitational potential energy is zero. Thus,

Because the galaxy of mass m obeys the Hubble law,
v " HR, the preceding equation becomes

or !c "
3H 2

8#G
H 2 "

8#G

3
!c

  v2 "
8#G

3
R2!c

1
2 mv2 "

Gm4
3#R3!c

R

Etotal " 0 " K $ U " 1
2 mv2 %

GmM

R

Using H " 23 & 10%3 m/(s · lightyear), where 1 light-
year " 9.46 & 1015 m and G " 6.67 & 10%11 N · m2/kg2,
yields a present value of the critical density !c " 1.1 &
10%26 kg/m3. As the mass of a hydrogen atom is 1.67 &
10%27 kg, !c corresponds to about 7 hydrogen atoms per
cubic meter, an incredibly low density.

R

v

m

Figure 16.16 (Example 16.2) A galaxy escaping from a
large cluster contained within radius R. Only the mass
within R slows the mass m.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

⇢m, M

~v

Consider spherical region of galaxies
with larger radius than distance between clusters of galaxies
but smaller radius than any distance characterizing the universe
Assume + Λ = 0
Mass of this sphere

M =
4 π R3

3
ρm (1)

Consider the motion of a galaxy at edge of spherical region
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According to Hubble’s law + v = HR
Galaxy kinetic energy

K =
1
2

mv2 =
1
2

mH2R2 (2)

Potential energy at edge of sphere

U = −GMm
R

= −4πmR2ρmG
3

(3)

Total energy

E = K + U =
1
2

mH2R2 − Gm
4π

3
R2ρm (4)

has to remain constant as universe expands
Rewrite (4) as

2E
mR2 = H2 − 8π

3
Gρm (5)

L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 3-15-2016 6 / 26



Expansion of the Universe Friedmann-Robertson-Walker cosmologies

Since we assume that universe is homogeneous
H and ρm cannot be functions of R

LHS of
2E

mR2 = H2 − 8π

3
Gρm (6)

cannot depend on chosen distance R to coordinate center
However + 2E/(mR2) is time-dependent

because galaxy-Earth distance changes as universe expands
Since mass of test galaxy is arbitrary
choose |2E/(mc2)| = 1 holds at an arbitrary moment (with E 6= 0)
For different times + LHS of (6) scales as R−2

(
ȧ
a

)2

=
8π

3
Gρm −

kc2

a2R2
0

(7)
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Friedmann equation
Since E is constant + k is constant too
Actually + k = 0,±1 is known as curvature constant
We account for equivalence of mass and energy

by including not only mass but also energy density

ρ = ρmc2 + · · · (8)

Friedmann equation (without Λ) in Newtonian limit(
ȧ
a

)2

=
8π

3
Gρm −

kc2

a2R2
0

(9)

becomes

H2 ≡
(

ȧ
a

)2

=
8π

3
G

ρ

c2 −
kc2

a(t)R2
0

(10)

(10) agrees exactly with the one derived from general relativity
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H0 fixes present density ρ0 for k = 0 as

ρ0(k = 0) ≡ ρc =
3H2

0 c2

8πG
(11)

Most cosmological quantities depend on actual value of H0

One “hides” this dependence by introducing h

H0 = 100 h km s−1 Mpc−1 (12)

Critical density can be written in terms of Hubble parameter

ρc = 2.77× 1011h2M�/Mpc3

= 1.88× 10−29h2g/cm3

= 1.05× 10−5h2 GeV/cm3 (13)

h ≈ 0.7 + flat universe requires energy density ∼ 10 protons/m3
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Expansion of universe can be compared to motion of mass
launched vertically from surface of celestial body

Form of orbit depends on initial energy
To compute complete orbit

mass of main body and initial velocity have to be known
In cosmology corresponding parameters are: G mean density

G Hubble constant
If density exceeds critial density

expansion of any spherical region will turn to a contraction
and it will collapse to a point

This corresponds to closed Friedmann model
If ρm < ρc + ever-expanding hyperbolic model is obtained
These 3 models of universe are called standard models
They are simplest relativistic cosmological models for Λ = 0
Models with Λ 6= 0 are mathematically more complicated

but show same behaviour
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Define abundance Ωi of different players in cosmology
as their energy density relative to ρc

Examples

Ωm =
ρm

ρc
=

8πG
3H2

0
ρm and ΩΛ =

Λ c2

3H2
0

(14)
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By solving Einstein equations Robertson and Walker showed that
k-hypersurfaces + (hyper-sphere, hyper-plane, hyper-pseudosphere)

are possible geometries for homegeneous and isotropic expanding universe
FRW line element is most generally written in the form

ds2 = c2dt2 − a2(t)
[

d$2

1− k$2/R2 + $2(dθ2 + sin2 θdφ2)

]
(15)

Spatial component of the FRW metric + consists of
uniformly curved space of radius R scaled by square of scale factor a(t)

✓

✓

�

%

R
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Equation of S2 of radius R

x2
1 + x2

2 + x2
3 = R2 (16)

Line element in 3-dimensional Euclidean space

ds2 = dx2
1 + dx2

2 + dx2
3 (17)

If x3 is taken as fictitious third spatial coordinate
it can be eliminated from ds2 by use of (16)

ds2 = dx2
1 + dx2

2 +
(x1dx1 + x2dx2)2

R2 − x2
1 − x2

2
. (18)

Introduce coordinates $ and θ defined in terms of x1 and x2 by

x1 = $ cos θ and x2 = $ sin θ . (19)

$ and θ + polar coordinates in the x3-plane ý x2
3 = R2 − $2

In terms of new coordinates + (18) becomes

ds2 =
R2d$2

R2 − $2 + $2dθ2 (20)
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For S3 + fictitious fourth spatial dimension is introduced
In cartesian coordinates S3 defined by

R2 = x2
1 + x2

2 + x2
3 + x2

4 (21)

Spatial metric of 4-dimeniosnal Euclidean space

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 (22)

Fictitious coordinate can be removed to give

ds2 = dx2
1 + dx2

2 + dx2
3 +

(x1dx1 + x2dx2 + x3dx3)2

R2 − x2
1 − x2

2 − x2
3

(23)

In terms of coordinates

x1 = $ sin θ cos φ x2 = $ sin θ sin φ x3 = $ cos θ (24)

metric is given by spatial part of (15) with k = 1
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Equivalent formulas for space of constant negative curvature
can be obtained with replacement R→ iR in (16)

Metric corresponding to form of (20) for negative curvature case

ds2 =
R2d$2

R2 + $2 + $2dθ2 (25)

Embedding of hyperbolic plane H2 in Euclidean space
requires three fictitious extra dimensions

and such embedding is of little use in visualizing geometry

While H2 cannot be globally embedded in R3

it can be partailly represented by pseudosphere

Embedding H3 in Euclidean space
requires four fictitious extra dimensions
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If universe had positive curvature k = 1
then universe would be closed or finite in volume

This would not mean galaxies extended out to certain boundary
beyond which there is empty space

There is no boundary or edge in such a universe
If a particle were to move in straight line in particular direction
it would eventually return to starting point

perhaps eons of time later
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Using substitution

$ = Sk(r) =


R sin(r/R) for k = +1

r for k = 0
R sinh(r/R) for k = −1

(26)

FRW line element can be rewritten as

ds2 = c2dt2 − a2(t)
[
dr2 + S2

k(r) (dθ2 + sin2 θdφ2)
]

(27)

Time variable t in FRW metric
is cosmological proper time + called cosmic time for short
t measured by observer who sees universe

expanding uniformly around him
Spatial variables ($, θ, φ) or (r, θ, φ) are comoving coordinates

of point in space
If expansion of universe is homogeneous and isotropic

comoving coordinates of any point remain constant with time
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Expansion of homogeneous universe is adiabatic

To describe time evolution of a(t) + need equation describing
how energy content of universe is affected by expansion

First law of thermodynamics

dU = TdS− PdV (28)

with dQ = 0 becomes

dU = −PdV ⇒ dU
dt

+ P
dV
dt

= 0 (29)

(no heat exchange to outside + since no outside exists)
Caveat + when particles annihilate (e.g. electrons and positrons)
this adds heat and makes expansion temporarily non-adiabatic
This matters at some specific epochs in the very early universe
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Fluid equation
For sphere of comoving radius R0

V =
4
3

π R3
0 a3(t)⇒ V̇ = 4π R3

0 a2 ȧ = 3
ȧ
a

V (30)

Since U = ρV

U̇ = ρ̇V + ρV̇ = V
(

ρ̇ + 3
ȧ
a

ρ

)
(31)

Substituting (30) and (31) into (29) we have

V
(

ρ̇ + 3
ȧ
a

ρ + 3
ȧ
a

P
)
= 0⇒ ρ̇ = −3 (ρ + P)

ȧ
a

(32)

Expansion decreases energy density by dilution
and by work required to expand gas with pressure P ≥ 0
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To solve fluid equation + need equation of state relating P and ρ

Suppose we write this in form

P = wρ (33)

In principle + w could change with time
Assume any time derivatives of w

are negligible compared to time derivatives of ρ

Reasonable assumption if w is determined by microphysics
that is not directly tied to universe expansion

Fluid equation implies

ρ̇

ρ
= −3(1 + ω)

ȧ
a

(34)

with solution
ρ

ρ0
=

(
a
a0

)−3(1+ω)

(35)
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For non-relativistic matter (a.k.a. dust)

w =
P
ρ
∼

mv2
th

mc2 ∼
vth

c2 � 1 (36)

vth + thermal velocity of particles of mass m

To near-perfect approximation w = 0 + ρm ∝ a−3

Light (or more generally any highly relativistic particle)
has associated pressure + radiation pressure

For radition w = 1/3 + ρrad ∝ a−4

This behavior also follows from a simple argument:
number density of photons falls as n ∝ a−3

and energy per photon falls as hν ∝ a−1

because of cosmological redshift
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Acceleration equation

Multiply Friedmann equation by a2

ȧ2 =
8πG
3c2 ρa2 − kc2

R2
0

(37)

Take time derivative

2ȧä =
8πG
3c2

(
ρ̇a2 + 2ρaȧ

)
(38)

Divide by 2ȧa + ä
a
=

4πG
3c2

(
ρ̇

a
ȧ
+ 2ρ

)
(39)

Substitutte from fluid equation

ρ̇
a
ȧ
= −3(ρ + P)⇒ ä

a
= −4πG

3c2 (ρ + 3P) (40)

If ρ and P are positive + expansion of the universe decelerates
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Example
Flat universe + k = 0
For non-relativistic matter + solution to Friedmann equation is

a(t) =
(

t
t0

)2/3

and ρ(t) =
ρ0

a3 =
ρ0t2

0
t2 with t0 =

2
3

1
H0

(41)

Bizarre universe dominated today by radiation pressure + yields

a(t) =
(

t
t0

)1/2

and ρ(t) =
ρ0

a4 =
ρ0t2

0
t2 (42)

We can picture time evolution of universe as follows
Early universe + relativistic matter (radiation pressure dominates)
a(t) ∝ t1/2, ρrad ∝ t−2, ρm ∝ a−3 ∝ t−3/2

Density of radiation falls more quickly than that of dust
When dust dominates + a(t) ∝ t2/3, ρm ∝ t−2, ρrad ∝ a−4 ∝ t8/3

dust domination increases
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how to measure distances in FRW spacetime?

Consider galaxy which is far away from us + sufficiently far away
that we may ignore small scale perturbations of spacetime

and adopt FRW line element

In expanding universe
distance between two objects is increasing with time

If we want to assign spatial distance between two objects
we must specify t at which distance is the correct one

Suppose that you are at the origin
and galaxy which you are observing

is at comoving coordinate position (r, θ, φ)

Proper distance dp(t) between two points
equals length of spatial geodesic between them

when scale factor is fixed at value a(t)
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Proper distance between the observer and galaxy
can be found using FRW metric at fixed time t

ds2 = a2(t)
[
dr2 + S2

k(r) (dθ2 + sin2 θdφ2)
]

(43)

Along spatial geodesic between the observer and galaxy
angle (θ, φ) is constant

ds = a(t) dr (44)

Proper distance dp is found by integrating over r

dp = a(t)
∫ r

0
dr = a(t) r (45)
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Get ready...
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