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Stellar Evolution Nucleosynthesis

In previous class we have seen that...

HEA 09: Stellar Evolution I

Literature: Longair: §8, 10, 12 & 13
HEA 09/ page 1

G Star form when gaseous (mostly 1H) clouds contract due to pull of gravity
G Energy releasy in 1H fusion reactions

produces outward pressure to halt inward gravitational contraction
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Stellar Evolution Nucleosynthesis

As hydrogen fuses to form helium @ star’s core
helium formed is denser and tends to accumulate in central core
As core of helium grows

hydrogen continues to fuse in a shell around it
When much of hydrogen within core has been consumed
production of energy decreases at center and . . .
cannot prevent gravitational force to contract and heat up core
Hydrogen in shell around core fuses more fiercely

as T rises causing outer envelope to expand and cool
Surface T reduces + spectrum peaks at longer wavelength

(reddish)
By this time the star has left the main sequence:

It has become redder
It has grown in size
It has become more luminous
It enters red giant stage

Model explains origin of red giants as step in stellar evolution
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Stellar Evolution Nucleosynthesis

Example
Sun has been on main sequence for ∼ four and a half billion years
It will probably remain there another 4 or 5 billion years
As becomes red giant expected to grow out to Mercury’s orbit

Evolution of Sun-like Stars

E. Chaisson, S. McMillan “Astronomy Today”

HEA 10/ page 4

Evolution of Sun-like Stars

E. Chaisson, S. McMillan “Astronomy Today”

HEA 10/ page 4

Evolution of Sun-like Stars

E. Chaisson, S. McMillan “Astronomy Today”

HEA 10/ page 4
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Stellar Evolution Nucleosynthesis

If star is like our Sun or larger + further fusion can occur
As star’s outer envelope expands + core shrinks and heats up
When the temperature reaches about 108 K

helium nuclei reach each other and undergo fusion
Reactions are

Two reactions must occur in quick succession
because 8

4Be is very unstable
Net energy release of the triple-α process is 7.273 MeV
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Stellar Evolution Nucleosynthesis

Further fusion reactions are possible + 4
2He fusing with 12

6C to form 16
8O.

In very massive stars + higher Z elements ( e.g. 20
10Ne or 24

12Mg ) can be made
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Stellar Evolution Nucleosynthesis

Red supegiants
As massive red supergiants age
stars produce “onion layers” of heavier elements in their interiors

@ T = 5× 109 K nuclei as heavy as 56
26Fe and 56

28Ni can be made

Average binding energy per nucleon
begins to decrease beyond iron group of isotopes

Formation of heavy nuclei by fusion ends at iron group

As a consequence
core of iron builds up in centers of massive supergiants

Process of creating heavier nuclei from lighter ones
or by absorption of neutrons at higher Z

is called nucleosynthesis
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Stellar Evolution Nucleosynthesis

Red Supergiant
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Stellar Evolution White dwarfs and the Chandrasekhar limit

Sirius
Sirius @ 2.6 pc + fifth closest stellar system to Sun

Analyzing motions of Sirius Bessel concluded
it had an unseen companion with an orbital period T ∼ 50 yr

In 1862 + Clark discovered this companion + Sirius B

Following-up observations showed that for Sirius B M ≈ M�

Sirius B’s peculiar properties were not established until 1915

Adams noted high temperature of Sirius B + T ' 25, 000 K
which together with its small luminosity + L = 3.84× 1026 W
requires extremely small radius and thus large density of this star

L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-23-2016 10 / 29



Stellar Evolution White dwarfs and the Chandrasekhar limit
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Stellar Evolution White dwarfs and the Chandrasekhar limit

From Stefan-Boltzmann law we have

R
R�

=

(
L

L�

)1/2 ( T
T�

)2

≈ 10−2 (1)

Mean density of Sirius B + ρ = 3× 106 g/cm3

Lower limit for central pressure of a star in hydrostatic equilibrium

Pc >
M2

8πR4 = 4× 1016 bar (2)

What would be central temperature Tc needed
if pressure is dominated by ideal gas?

From ideal gas law

Tc =
Pc

nk
∼ 102Tc,� ≈ 109 K (3)

For such high central temperature
dT/dr in Sirius B would be a factor 104 larger than in Sun

This would in turn require larger luminosity L(R)
and larger energy production rate than in main sequence star
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Stellar Evolution White dwarfs and the Chandrasekhar limit

Stars like Sirius B are called white dwarfs

They have very long cooling times
because of their small surface luminosity

White dwarfs are numerous + mass density in solar neighborhood
main-sequence stars + 0.04M�/pc3

white dwarfs + 0.015M�/pc3

Typical mass in range 0.4− 1M� + peaking @ 0.6M�

For white dwarfs + no further fusion energy can be obtained

White dwarf continues to lose internal energy by radiation
decreasing in T and becoming dimmer until its light goes out

Star has then become cold dark chunk of ash
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Stellar Evolution White dwarfs and the Chandrasekhar limit

For a classical gas + P = nkT
+ in limit of zero T also P inside star goes to zero

How can star be stabilized after fusion processes
and thus energy production stopped?

Solution to this puzzle:
+ main source of P in such compact stars has different origin

Pauli principle forbids fermions to occupy same quantum state

In statistical mechanics
Heisenbergs uncertainty principle + ∆x∆p ≥ }
together with Pauli’s principle

imply that each phase-space volume }−1 dx dp
can be occupied by only one fermionic state
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Stellar Evolution White dwarfs and the Chandrasekhar limit

A (relativistic or non-relativistic) particle in box of volume d3

collides per time interval ∆t = d/vx once with yz-side of box
Thereby it exerts Fx = ∆px/∆t = pxvx/d
Pressure produced by N particles

P = F/A = Npxvx/(dA) = npxvx
For isotropic distribution with 〈v2〉 = 〈v2

x〉+ 〈v2
y〉+ 〈v2

z〉 = 3〈v2
x〉

P =
1
3

nvp (4)

In Chapter 19 we discussed the properties of an ideal gas, using such macroscopic vari-
ables as pressure, volume, and temperature. We shall now show that such large-scale
properties can be related to a description on a microscopic scale, where matter is
treated as a collection of molecules. Newton’s laws of motion applied in a statistical
manner to a collection of particles provide a reasonable description of thermodynamic
processes. To keep the mathematics relatively simple, we shall consider primarily the
behavior of gases, because in gases the interactions between molecules are much
weaker than they are in liquids or solids. In our model of gas behavior, called kinetic
theory, gas molecules move about in a random fashion, colliding with the walls of
their container and with each other. Kinetic theory provides us with a physical basis for
our understanding of the concept of temperature.

21.1 Molecular Model of an Ideal Gas

We begin this chapter by developing a microscopic model of an ideal gas. The model
shows that the pressure that a gas exerts on the walls of its container is a consequence
of the collisions of the gas molecules with the walls and is consistent with the macro-
scopic description of Chapter 19. In developing this model, we make the following as-
sumptions:

1. The number of molecules in the gas is large, and the average separation 
between them is large compared with their dimensions. This means that the
molecules occupy a negligible volume in the container. This is consistent with the
ideal gas model, in which we imagine the molecules to be point-like.

2. The molecules obey Newton’s laws of motion, but as a whole they move ran-
domly. By “randomly” we mean that any molecule can move in any direction with
any speed. At any given moment, a certain percentage of molecules move at high
speeds, and a certain percentage move at low speeds.

3. The molecules interact only by short-range forces during elastic collisions.
This is consistent with the ideal gas model, in which the molecules exert no long-
range forces on each other.

4. The molecules make elastic collisions with the walls.
5. The gas under consideration is a pure substance; that is, all molecules are

identical.

Although we often picture an ideal gas as consisting of single atoms, we can assume
that the behavior of molecular gases approximates that of ideal gases rather well at low
pressures. Molecular rotations or vibrations have no effect, on the average, on the 
motions that we consider here.

For our first application of kinetic theory, let us derive an expression for the pres-
sure of N molecules of an ideal gas in a container of volume V in terms of microscopic
quantities. The container is a cube with edges of length d (Fig. 21.1). We shall first

641

Figure 21.1 A cubical box with
sides of length d containing an
ideal gas. The molecule shown
moves with velocity vi .

d

d d
z x

y

m
vxi

vi

Assumptions of the molecular
model of an ideal gas
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Stellar Evolution White dwarfs and the Chandrasekhar limit

If we use ∆x = n−1/3 and ∆p ≈ }/∆x ≈ }n1/3

together with v = p/m (valid for non-relativistic particles)

P ≈ nvp ≈ }2n5/3

m
⇒ P ∝ ρ5/3 (5)

For relativistic particles + v = c

P ≈ ncp ≈ c}n4/3 ⇒ P ∝ ρ4/3 (6)

Note the following important points:
Both pressure laws are polytropic equations of state + P = Kργ

Non-relativistic degenerate Fermi gas
has the same adiabatic index as an ideal gas + γ = 5/3

Relativistic degenerate Fermi gas
has the same adiabatic index as radiation + γ = 4/3

In non-relativistic limit + P ∝ 1/m
degeneracy will become important first to electrons
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Stellar Evolution White dwarfs and the Chandrasekhar limit

Pressure of degenerate non-relativistic electron gas

To good approximation + e− in Sirius B are non-relativistic

ne =
ρ

µe mp
(7)

µe ≡ A/Z + average number of nucleon per free electron
For metal-poor stars + µe = 2

P ≈ h2n5/3
e

me
≈ (1.05× 1027 erg s)2

9.11× 10−28 g

(
106 g/cm3

2× 1.67× 10−24 g

)5/3

≈ 1023 dyn/cm2 = 1017 bar (8)

Consistent with lower limit for central pressure of Sirius B
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Stellar Evolution White dwarfs and the Chandrasekhar limit

G Relate mass of star to its radius by combining

Pc ∼
GM2

R4 (9)

and

P = Kρ5/3 ∼ K
(

M
R3

)5/3

=
KM5/3

R5 (10)

we have
GM2

R4 =
KM5/3

R5 (11)

or

R =
M(10−12)/6

K
=

1
KM1/3 (12)

G If small differences in chemical composition + neglected
there is unique relation between mass and radius

G Radius of white dwarf stars decreases for increasing masses
suggesting that there exists maximal mass
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Stellar Evolution White dwarfs and the Chandrasekhar limit

Assume pressure described by non-relativistic degenerate Fermi gas

Total kinetic energy Ukin = Np2/(2me) + n ∼ N/R3 and p ∼ }n1/3

Ukin ∼ N
}2n2/3

2me
∼ }2N(3+2)/3

2meR2 =
}2N5/3

2meR2 (13)

Potentail gravitational energy approximated by Upot ∼ GM2/R

Balance equation

U(R) = Ukin + Upot ∼
}2N5/3

2mR2 −
GM2

R
(14)

For small R + positive term dominates
and so stable minimum Rmin exists for each M
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Stellar Evolution White dwarfs and the Chandrasekhar limit

If Fermi gas in star becomes relativistic + Ukin = Ncp

Ukin ∼ Nc}n1/3 ∼ c}N4/3

R
(15)

and

U(R) = Ukin + Upot ∼
c}N4/3

R
− GM2

R
(16)

Both terms scale like 1/R

For fixed chemical composition + ratio N/M remains constant

If M is increased + negative term increases faster than first one

If U becomes negative
and can be made arbitrary small by decreasing R

star collapses
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Stellar Evolution White dwarfs and the Chandrasekhar limit

Critical mass for U = 0 + Chandrasekhar mass MCh

Using M = NNmN + c}N4/3
max = GN2

maxm2
N

Nmax ∼
(

c}
Gm2

p

)3/2

∼
(

MPl

mp

)3

∼ 2× 1057 . (17)

This leads to + MCh = Nmaxmp ∼ 1.5M�
Critical size determined by two conditions:
gas becomes relativistic Ukin . Nmec2 and N = Nmax

Nmaxmec2 &
c}N4/3

max
R

⇒ mec2 &
c}
R

(
c}

Gm2
N

)1/2

(18)

This corresponds to radii found for white dwarf stars

R &
}

mec

(
c}

Gm2
N

)1/2

∼ 5× 108 cm (19)
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Stellar Evolution White dwarfs and the Chandrasekhar limit

Life cycle of the Sun
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Stellar Evolution Supernovae

Supernovae are massive explosions
that take place at end of star’s life cycle

They can be triggered by one of two basic mechanisms:

I by sudden re-ignition of nuclear fusion in degenerate star
II by the sudden gravitational collapse of massive star’s core

Thermonuclear Supernova (Type Ia)

E. Chaisson, S. McMillan “Astronomy Today”

chandra.harvard.edu subarutelescope.org
HEA 11/ page 6

Core-Collapse Supernova (Type II, Ib, Ic)

E. Chaisson, S. McMillan “Astronomy Today”

ALMA/Hubble/Chandra

M. Koshiba, Phys.Rept. 220 (1992) 229

HEA 11/ page 7
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Stellar Evolution Supernovae

Supernova explosion
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Stellar Evolution Supernovae

Sudden release of a large amount E into fluid of density ρ1
creates strong explosion characterized by strong shock wave
emanating from the point where the energy was released

Shockwaves

American Scientist 94 (2006) 22

wikipedia

bbc.co.uk

M.S. Longair, “High Energy Astrophysics”

wikipedia

HEA 12/ page 2

Sedov andTaylor solved the problem of point explosion
in context of atomic bomb explosions
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Stellar Evolution Supernovae

Order of magnitude estimates

Mass of swept up material + order M(t) ∼ ρ1R3(t)
Fluid velocity behind shock + order mean radial velocity

ush(t) ∼ R(t)/t (20)

Kinetic energy

Ekin ∼ Mu2
sh ∼ ρ1R3 R2

t2 = ρ1
R5

t2 (21)

What about thermal energy in bubble created by explosion?
If P is postshock pressure + thermal energy should be of order

Ethem ∼
3
2

PV (22)
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Stellar Evolution Supernovae

Jumping conditions across a shock

If shock moves to right with velocity ush(t) + in shock rest-frame
background gas streams with velocity u1 = ush(t) to the left
and comes out of the shock with

higher density ρ2
higher pressure P2
lower velocity u2

For strong explosion + sound-speed of medium c1 � 1
Rankine-Hugonoit relations for shock tell us

P2

P1
=

2γ(u1/c1)
2

γ + 1
− γ− 1

γ + 1
(23)

As background pressure + P1 = ρ1c2
1/γ ý in strong shock limit

P2 '
2ρ1u2

1
γ + 1

(24)
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Stellar Evolution Supernovae

Blast wave + spherically symmetric

10 Point explosion

The sudden release of a large amount of energy E into a background fluid of density
⇢1 creates a strong explosion, characterized by a strong shock wave (a ‘blast wave’)
emanating from the point where the energy was released. Such explosions occur for
example in astrophysics in the form of supernova explosions.

But how fast will the shock wave travel and what is left behind? The problem of
the point explosion is also known as Sedov-Taylor explosion, after the two scientists
that first solved it by analytic (and in part numerical) means in the context of
atomic bomb explosions. Today, the problem can provide a useful test to validate
a hydrodynamical numerical scheme, because an analytic solution for it can be
computed which can then be compared to numerical results. Also, the problem
serves as a good example to demonstrate the power of dimensional analysis and
scale-free solutions.

10.1 A rough estimate

Let’s begin by deriving an order of magnitude estimate for the radius R(t) of the
shock as a function of time. The mass of the swept up material is of order M(t) ⇠
⇢1R

3(t). The fluid velocity behind the shock will be of order the mean radial velocity
of the shock, v(t) ⇠ R(t)/t. We further expect

Ekin ⇠ 1

2
Mv2 ⇠ ⇢1R

3R2

t2
= ⇢1

R5

t2
(10.1)

What about the thermal energy in the bubble created by the explosion? This
should be of order

Etherm ⇠ 3

2
PV (10.2)

1

10 Point explosion

where P is the postshock pressure. To find this pressure, we need to recall the jump
conditions across a shock. If the shock moves to the right with velocity v1 = v(t),
then in the rest-frame of the shock the background gas streams with velocity v1 to
the left, and comes out of the shock with a higher density ⇢2, higher pressure P2,
and with a lower velocity v2.

The Rankine-Hugonoit relations for the shock tell us

⇢1

⇢2

=
v2

v1

=
� � 1

� + 1
+

2

(� + 1)M2
(10.3)

where
M =

v1

c1

(10.4)

is the Mach number of the shock. For a strong explosion, the sound-speed of the
background medium is negligibly small, so that the Mach number will tend to infinity
in this limit. For the pressure, the Rankine-Hugonoit relation is

P2

P1

=
2�M2

� + 1
� � � 1

� + 1
(10.5)

As the background pressure is P1 = ⇢1c
2
1/�, we then obtain in the limit of a strong

shock:

P2 '
2⇢1v

2
1

� + 1
(10.6)

With this postshock pressure, we can now estimate the thermal energy in the shocked
bubble:

Etherm ⇠ P2R
3 ⇠ ⇢1v

2
1R

3 ⇠ ⇢1
R5

t2
(10.7)

This suggests that the thermal energy is of the same order as the kinetic energy,
and scales in the same fashion with time. Hence also for the total energy E, which
is a conserved quantity, we expect

E = Ekin + Etherm ⇠ ⇢1
R5

t2
(10.8)

Solving for the radius R(t), we get the expected dependence

R(t) /
✓

E t2

⇢1

◆ 1
5

(10.9)

2

u2 u1

HEA 12: Supernova Remnants (SNR)
Today:

� shockwaves
� evolution of SNRs

Next Class:
� diffuse shock acceleration in SNRs

SN1604 (Kepler) SNR-0509-67.5 (LMC) SN1006

Chandra/HST/VLA/GBT

� Literature: Longair: §11.3, 16.7, 17
HEA 12/ page 1
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Stellar Evolution Supernovae

More about order of magnitude estimates
With postshock pressure

we estimate thermal energy in shocked bubble

Etherm ∼ P2R3 ∼ ρ1u2
1R3 ∼ ρ1

R5

t2 (25)

Total energy

E = Ekin + Etherm ∼ ρ1
R5

t2 (26)

Shock front radius

R(t) ∼
(

Et2

ρ1

)1/5

(27)

Expanding shock wave slows down as it expands

ush =
2
5

(
E

ρ1t3

)1/5

=
2
5

(
E
ρ1

)1/2

R−3/2 (28)
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