Astronomy, Astrophysics, and Cosmology

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson III February 23, 2016

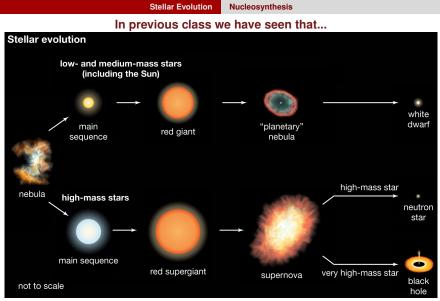
arXiv:0706.1988

L. A. Anchordoqui (CUNY)

Table of Contents

Stellar Evolution

- Nucleosynthesis
- White dwarfs and the Chandrasekhar limit
- Supernovae



 ♦ Star form when gaseous (mostly ¹H) clouds contract due to pull of gravity
 ♦ Energy releasy in ¹H fusion reactions produces outward pressure to halt inward gravitational contraction

L. A. Anchordoqui (CUNY)

Astronomy, Astrophysics, and Cosmology

2-23-2016 3 / 29

- As hydrogen fuses to form helium @ star's core helium formed is denser and tends to accumulate in central core
- As core of helium grows

hydrogen continues to fuse in a shell around it

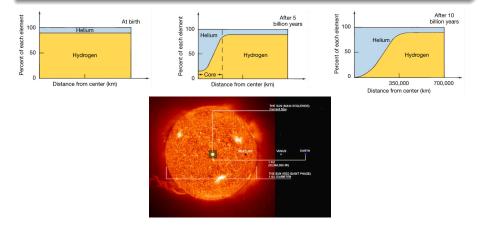
- When much of hydrogen within core has been consumed production of energy decreases at center and ... cannot prevent gravitational force to contract and heat up core
- Hydrogen in shell around core fuses more fiercely as *T* rises causing outer envelope to expand and cool
- Surface T reduces resistance spectrum peaks at longer wavelength

(reddish)

- By this time the star has left the main sequence:
 - It has become redder
 - It has grown in size
 - It has become more luminous
 - It enters red giant stage
- Model explains origin of red giants as step in stellar evolution

Example

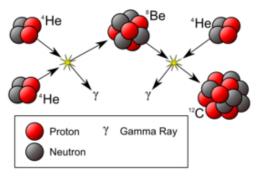
- $\bullet\,$ Sun has been on main sequence for \sim four and a half billion years
- It will probably remain there another 4 or 5 billion years
- As becomes red giant expected to grow out to Mercury's orbit



- If star is like our Sun or larger ☞ further fusion can occur
- As star's outer envelope expands I core shrinks and heats up
- $\bullet\,$ When the temperature reaches about $10^8\;{\rm K}\,$

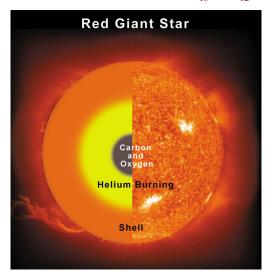
helium nuclei reach each other and undergo fusion

Reactions are



 Two reactions must occur in quick succession because ⁸/₄Be is very unstable
 Net energy release of the triple-*α* process is 7.273 MeV

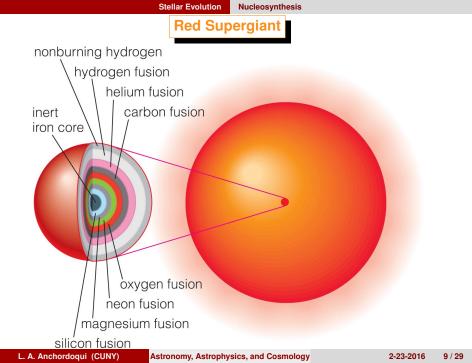
- Further fusion reactions are possible $\approx \frac{4}{2}$ He fusing with $\frac{12}{6}$ C to form $\frac{16}{8}$ O.
- In very massive stars is higher Z elements (e.g. $\frac{20}{10}$ Ne or $\frac{24}{12}$ Mg) can be made



L. A. Anchordoqui (CUNY)

Red supegiants

- As massive red supergiants age stars produce "onion layers" of heavier elements in their interiors
- @ $T = 5 \times 10^9$ K nuclei as heavy as ${}^{56}_{26}$ Fe and ${}^{56}_{28}$ Ni can be made
- Average binding energy per nucleon begins to decrease beyond iron group of isotopes
- Formation of heavy nuclei by fusion ends at iron group
- As a consequence core of iron builds up in centers of massive supergiants
- Process of creating heavier nuclei from lighter ones or by absorption of neutrons at higher Z is called nucleosynthesis



Sirius

- Sirius @ 2.6 pc ☞ fifth closest stellar system to Sun
- Analyzing motions of Sirius Bessel concluded it had an unseen companion with an orbital period $T \sim 50 \text{ yr}$
- In 1862 Science Clark discovered this companion Sirius B
- Following-up observations showed that for Sirius B $M pprox M_{\odot}$
- Sirius B's peculiar properties were not established until 1915
- Adams noted high temperature of Sirius B IS T ≃ 25,000 K which together with its small luminosity IS L = 3.84 × 10²⁶ W requires extremely small radius and thus large density of this star

• From Stefan-Boltzmann law we have

$$\frac{R}{R_{\odot}} = \left(\frac{L}{L_{\odot}}\right)^{1/2} \left(\frac{T}{T_{\odot}}\right)^2 \approx 10^{-2}$$
(1)

- Mean density of Sirius B ${\bf I}{\bf S}~\rho=3\times 10^6~g/cm^3$
- Lower limit for central pressure of a star in hydrostatic equilibrium

$$P_c > \frac{M^2}{8\pi R^4} = 4 \times 10^{16} \text{ bar}$$
 (2)

• What would be central temperature *T_c* needed

if pressure is dominated by ideal gas?

• From ideal gas law

$$T_c = \frac{P_c}{nk} \sim 10^2 T_{c,\odot} \approx 10^9 \text{ K}$$
(3)

• For such high central temperature

dT/dr in Sirius B would be a factor 10^4 larger than in Sun • This would in turn require larger luminosity L(R)

and larger energy production rate than in main sequence star

L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology

- Stars like Sirius B are called white dwarfs
- They have very long cooling times because of their small surface luminosity
- White dwarfs are numerous 🖙 mass density in solar neighborhood
 - main-sequence stars $\approx 0.04 M_{\odot}/\mathrm{pc}^3$
 - white dwarfs $\approx 0.015 M_{\odot}/\mathrm{pc}^3$
- Typical mass in range $0.4-1M_\odot$ repeating @ $0.6M_\odot$
- For white dwarfs 🖙 no further fusion energy can be obtained
- White dwarf continues to lose internal energy by radiation decreasing in *T* and becoming dimmer until its light goes out
- Star has then become cold dark chunk of ash

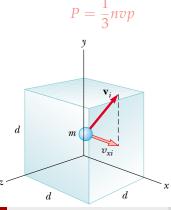
- For a classical gas
 ^I P = nkT
 ^I in limit of zero T also P inside star goes to zero
- How can star be stabilized after fusion processes and thus energy production stopped?
- Solution to this puzzle:
 main source of *P* in such compact stars has different origin
- Pauli principle forbids fermions to occupy same quantum state
- In statistical mechanics
 - Heisenbergs uncertainty principle $rac{d}{s} \Delta x \Delta p \geq \hbar$
 - together with Pauli's principle

imply that each phase-space volume $\hbar^{-1} dx dp$ can be occupied by only one fermionic state

- A (relativistic or non-relativistic) particle in box of volume d³ collides per time interval Δt = d/v_x once with yz-side of box
- Thereby it exerts $F_x = \Delta p_x / \Delta t = p_x v_x / d$
- Pressure produced by N particles

$$P = F/A = Np_x v_x/(dA) = np_x v_x$$

• For isotropic distribution with $\langle v^2 \rangle = \langle v_x^2 \rangle + \langle v_y^2 \rangle + \langle v_z^2 \rangle = 3 \langle v_x^2 \rangle$



(4)

• If we use $\Delta x = n^{-1/3}$ and $\Delta p \approx \hbar/\Delta x \approx \hbar n^{1/3}$ together with v = p/m (valid for non-relativistic particles)

$$P \approx nvp \approx \frac{\hbar^2 n^{5/3}}{m} \Rightarrow P \propto \rho^{5/3}$$
 (5)

• For relativistic particles w v = c

$$P \approx ncp \approx c\hbar n^{4/3} \Rightarrow P \propto \rho^{4/3}$$
 (6)

Note the following important points:

- Both pressure laws are polytropic equations of state $\bowtie P = K \rho^{\gamma}$
- Non-relativistic degenerate Fermi gas has the same adiabatic index as an ideal gas $\bowtie \gamma = 5/3$
- In non-relativistic limit $\[mathbf{m}] P \propto 1/m$ degeneracy will become important first to electrons

Pressure of degenerate non-relativistic electron gas

To good approximation
 ^I e[−] in Sirius B are non-relativistic

$$n_e = \frac{\rho}{\mu_e \ m_p} \tag{7}$$

 $\mu_e \equiv A/Z$ region average number of nucleon per free electron • For metal-poor stars region $\mu_e = 2$

$$P \approx \frac{h^2 n_e^{5/3}}{m_e} \approx \frac{(1.05 \times 10^{27} \text{ erg s})^2}{9.11 \times 10^{-28} \text{ g}} \left(\frac{10^6 \text{ g/cm}^3}{2 \times 1.67 \times 10^{-24} \text{ g}}\right)^{5/3}$$
$$\approx 10^{23} \text{ dyn/cm}^2 = 10^{17} \text{ bar}$$
(8)

Consistent with lower limit for central pressure of Sirius B

Relate mass of star to its radius by combining

$$P_c \sim \frac{GM^2}{R^4} \tag{9}$$

and

$$P = K\rho^{5/3} \sim K \left(\frac{M}{R^3}\right)^{5/3} = \frac{KM^{5/3}}{R^5}$$
(10)

we have

$$\frac{GM^2}{R^4} = \frac{KM^{5/3}}{R^5}$$
(11)

or

$$R = \frac{M^{(10-12)/6}}{K} = \frac{1}{KM^{1/3}}$$
(12)

 ♦ If small differences in chemical composition I neglected there is unique relation between mass and radius
 ♦ Radius of white dwarf stars decreases for increasing masses suggesting that there exists maximal mass

- Assume pressure described by non-relativistic degenerate Fermi gas
- Total kinetic energy $U_{\rm kin} = Np^2/(2m_e) \, \varpi \, n \sim N/R^3$ and $p \sim \hbar n^{1/3}$

$$U_{\rm kin} \sim N \frac{\hbar^2 n^{2/3}}{2m_e} \sim \frac{\hbar^2 N^{(3+2)/3}}{2m_e R^2} = \frac{\hbar^2 N^{5/3}}{2m_e R^2}$$
(13)

- Potentail gravitational energy approximated by $U_{\rm pot} \sim GM^2/R$
- Balance equation

$$U(R) = U_{\rm kin} + U_{\rm pot} \sim \frac{\hbar^2 N^{5/3}}{2mR^2} - \frac{GM^2}{R}$$
(14)

• For small $R \equiv$ positive term dominates and so stable minimum R_{\min} exists for each M

• If Fermi gas in star becomes relativistic $\bowtie U_{kin} = Ncp$

$$U_{\rm kin} \sim Nc\hbar n^{1/3} \sim \frac{c\hbar N^{4/3}}{R}$$
(15)

20/29

and

$$U(R) = U_{\rm kin} + U_{\rm pot} \sim \frac{c\hbar N^{4/3}}{R} - \frac{GM^2}{R}$$
 (16)

- Both terms scale like 1/R
- For fixed chemical composition region ratio N/M remains constant
- If M is increased \square negative term increases faster than first one
- If *U* becomes negative and can be made arbitrary small by decreasing *R star collapses*

- Critical mass for U = 0 regime Chandrasekhar mass M_{Ch}
- Using $M = N_N m_N \bowtie c \hbar N_{\text{max}}^{4/3} = G N_{\text{max}}^2 m_N^2$

$$N_{\rm max} \sim \left(\frac{c\hbar}{Gm_p^2}\right)^{3/2} \sim \left(\frac{M_{\rm Pl}}{m_p}\right)^3 \sim 2 \times 10^{57}.$$
 (17)

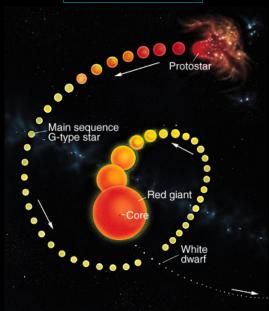
- This leads to solve $M_{
 m Ch} = N_{
 m max} m_p \sim 1.5 M_{\odot}$
- Critical size determined by two conditions: gas becomes relativistic $U_{kin} \leq Nm_ec^2$ and $N = N_{max}$

$$N_{\max}m_ec^2 \gtrsim \frac{c\hbar N_{\max}^{4/3}}{R} \Rightarrow m_ec^2 \gtrsim \frac{c\hbar}{R} \left(\frac{c\hbar}{Gm_N^2}\right)^{1/2}$$
(18)

This corresponds to radii found for white dwarf stars

$$R \gtrsim \frac{\hbar}{m_e c} \left(\frac{c\hbar}{Gm_N^2}\right)^{1/2} \sim 5 \times 10^8 \text{ cm}$$
 (19)

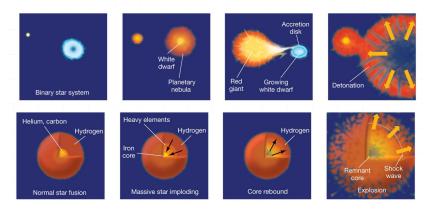
Life cycle of the Sun



Supernovae are massive explosions

that take place at end of star's life cycle

- They can be triggered by one of two basic mechanisms:
 - I by sudden re-ignition of nuclear fusion in degenerate star
 - Il by the sudden gravitational collapse of massive star's core



L. A. Anchordoqui (CUNY)

Stellar Evolution

Supernovae

Supernova explosion

• Sudden release of a large amount *E* into fluid of density ρ_1 creates strong explosion characterized by strong shock wave emanating from the point where the energy was released

Sedov andTaylor solved the problem of point explosion in context of atomic bomb explosions

L. A. Anchordoqui (CUNY)

Order of magnitude estimates

- Mass of swept up material \mathbb{R} order $M(t) \sim \rho_1 R^3(t)$
- Fluid velocity behind shock is order mean radial velocity

$$u_{\rm sh}(t) \sim R(t)/t$$
 (20)

Kinetic energy

$$E_{\rm kin} \sim M u_{\rm sh}^2 \sim \rho_1 R^3 \frac{R^2}{t^2} = \rho_1 \frac{R^5}{t^2}$$
 (21)

- What about thermal energy in bubble created by explosion?
- If P is postshock pressure register thermal energy should be of order

$$E_{\rm them} \sim \frac{3}{2} PV$$

(22

Jumping conditions across a shock

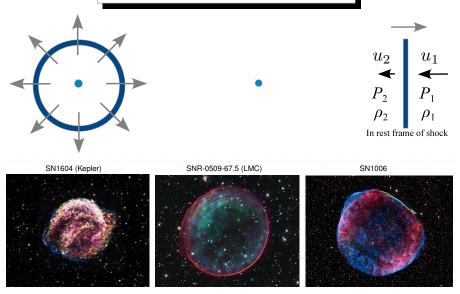
- If shock moves to right with velocity $u_{sh}(t) \bowtie$ in shock rest-frame background gas streams with velocity $u_1 = u_{sh}(t)$ to the left and comes out of the shock with
 - higher density ρ_2
 - higher pressure P₂
 - lower velocity u_2
- For strong explosion regiments regimentations constrained and constrained
- Rankine-Hugonoit relations for shock tell us

$$\frac{P_2}{P_1} = \frac{2\gamma (u_1/c_1)^2}{\gamma + 1} - \frac{\gamma - 1}{\gamma + 1}$$
(23)

• As background pressure is $P_1 = \rho_1 c_1^2 / \gamma$ in strong shock limit

$$P_2 \simeq \frac{2\rho_1 u_1^2}{\gamma + 1} \tag{24}$$

Blast wave 🖙 spherically symmetric



L. A. Anchordoqui (CUNY)

Supernovae

More about order of magnitude estimates

With postshock pressure

we estimate thermal energy in shocked bubble

$$E_{\text{therm}} \sim P_2 R^3 \sim \rho_1 u_1^2 R^3 \sim \rho_1 \frac{R^5}{t^2}$$

Total energy

$$E = E_{\rm kin} + E_{\rm therm} \sim \rho_1 \frac{R^5}{t^2}$$

Shock front radius

$$R(t) \sim \left(\frac{Et^2}{\rho_1}\right)^{1/5} \tag{27}$$

Expanding shock wave slows down as it expands

$$u_{\rm sh} = \frac{2}{5} \left(\frac{E}{\rho_1 t^3}\right)^{1/5} = \frac{2}{5} \left(\frac{E}{\rho_1}\right)^{1/2} R^{-3/2}$$
(28)

Astronomy, Astrophysics, and Cosmology

(25)

(26)