Astronomy, Astrophysics, and Cosmology

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson XI May 3, 2016

arXiv:0706.1988

L. A. Anchordoqui (CUNY) [Astronomy, Astrophysics, and Cosmology](#page-24-0) 5-3-2016 1 / 25

Table of Contents

1 [The Early Universe](#page-3-0)

- [Neutrino decoupling and BBN](#page-3-0)
- [Quantum black holes](#page-15-0)

• After first tenth of a second \mathbb{F} \mathbb{F} \sim 3 \times 10¹⁰ K \taniv erse filled with \mathbb{F} $p,$ $n,$ $\gamma,$ $e^{-},$ $e^{+},$ $\nu,$ and $\overline{\nu}$

- Baryons are of course nonrelativistic while all other particles are relativistic
- Particles kept in thermal equilibrium by EM and weak processes $\bar{\nu}\nu \rightleftharpoons e^+e^-, \nu e^- \rightleftharpoons \nu e^-, \ n\nu_e \rightleftharpoons pe^-, \ \gamma\gamma \rightleftharpoons e^+e^-, \ \gamma p \rightleftharpoons \gamma p, \text{ etc.}$
- Complying with precision demanded by phenomenological study sufficient to consider cross section of reactions involving left-handed neutrinos, right-handed antineutrinos, and electrons

$$
\sigma_{\rm weak} \sim G_F^2 E^2
$$

 $G_F = 1.16 \times 10^{-5}$ GeV⁻² **■** Fermi constant

L. A. Anchordoqui (CUNY) [Astronomy, Astrophysics, and Cosmology](#page-0-0) 5-3-2016 4 / 25

 \bullet If we approximate *E* of all particle species by *T* and *v* by *c* their density by $n \sim T^3$ ☞ neutrino interaction rate

$$
\Gamma_{\text{int},\nu}(T) \approx \langle v\sigma \rangle n_{\nu} \approx G_F^2 T^5 \tag{1}
$$

• Comparing [\(1\)](#page-4-1) with

$$
H = \left(\frac{8\pi G \rho_{\text{rad}}}{3}\right)^{1/2} = \left(\frac{8\pi^3}{90} g_{\rho}(T)\right)^{1/2} T^2 / M_{\text{Pl}}
$$

$$
\sim 1.66 \sqrt{g_{\rho}(T)} T^2 / M_{\text{Pl}}
$$
 (2)

calculated for $g(T) = 10.75$

we see that when T drops below characteristic temperature $T_{\nu_L}^{\rm dec}$ neutrinos *decouple* ☞ they lose thermal contact with electrons

• Condition

$$
\Gamma_{\text{int},\nu}(T_{\nu_L}^{\text{dec}}) = H(T_{\nu_L}^{\text{dec}})
$$
\n(3)

 s ets decoupling temperature for ν_L $\stackrel{\scriptscriptstyle{\text{def}}}{_{\text{def}}}\sim 1 \text{ MeV}$

- Much stronger electromagnetic interaction continues to keep protons, neutrons, electrons, positrons, and photons in equilibrium
- ${\sf Reaction\ rate\ per\ nucleon\ }$ \mathfrak{m} $\Gamma_{\mathrm{int},N}\sim T^3\alpha^2/m_N^2$ larger than expansion rate as long as

$$
T > \frac{m_N^2}{\alpha^2 M_{\text{Pl}}} \sim \text{a very low temperature}
$$
 (4)

 $\sigma_{\rm EM}\sim \alpha^2/m_N^2$ ଙ $\,$ non-relativistic form of EM cross section

- Nucleons ☞ mantianed in kinetic equilibrium
- Average kinetic energy per nucleon ☞ $\frac{3}{2}T$
- One must be careful to distinguish between:

kinetic equilibrium and chemical equilibrium

• Reactions like $\gamma \gamma \rightarrow p \bar{p}$ have long been suppressed as there are essentially no anti-nucleons around

- **•** For $T > m_e \sim 0.5 \text{ MeV} \sim 5 \times 10^9 \text{ K}$ **ex** $n_{e-} \sim n_{e+} \sim n_{\gamma}$.
- Exact ratios ☞ easily supplied by inserting appropriate "*g*-factors"
- **•** Because universe is electrically neutral ☞ $n_{e^-} n_{e^+} = n_p$ and so there is a slight excess of electrons over positrons
- \blacksquare When T drops below m_e $\stackrel{\scriptscriptstyle{\text{E}}\!\!\!\text{F}}{\rightarrow} \gamma\gamma \rightarrow e^+e^-$ suppressed by $e^{-m_e/T}$ as only *γ*'s in tail-end of Bose distribution can participate
- e^+ and e^- annihilate via $e^+e^-\to\gamma\gamma$ and are not replenished leaving a small number of electrons $n_{e^-} \sim n_p \sim 5 \times 10^{-10} n_\gamma$
- As long as thermal equilibrium was preserved

total entropy remained fixed

- We have seen that $sa^3 \propto g(T) T^3 a^3 = \text{constant}$
- For $T \geq m_e$ is particles in thermal equilibrium include: photon ($g_\gamma=$ 2) and e^\pm pairs ($g_{e^\pm}=$ 4)
- Effective number of particle species B4 annihilation $\sqrt{w} g_{before} = \frac{11}{2}$
- After *e* +*e* [−] annihilation ☞ *γ* only remaining particle in equilibrium
- **•** Effective number of particle species \mathbb{F} $g_{\text{after}} = 2$

• From entropy conservation

$$
\frac{11}{2} (T_{\gamma} a)^3 \bigg|_{\text{before}} = 2 (T_{\gamma} a)^3 \bigg|_{\text{after}}
$$
 (5)

Heat produced by *e* +*e* [−] annihilation increases quantity *Tγa*

$$
\frac{(T_{\gamma}a)|_{\text{after}}}{(T_{\gamma}a)|_{\text{before}}} = \left(\frac{11}{4}\right)^{1/3} \simeq 1.4
$$
 (6)

- $\mathsf{Before}~e^+e^+$ annihilation $\mathsf{I}_\mathscr{V} = T_\gamma$
- But from then on \mathbb{F} ^{*T*}*v* dropped as a^{-1} so

$$
(T_{\nu}a)|_{\text{after}} = (T_{\nu}a)|_{\text{before}} = (T_{\gamma}a)|_{\text{before}}
$$
 (7)

Conclusion ☞ after annihilation process is over photon temperature is higher than neutrino temperature by

$$
\left(\frac{T_{\gamma}}{T_{\nu}}\right)\Big|_{\text{after}} = \frac{(T_{\gamma}a)|_{\text{after}}}{(T_{\nu}a)|_{\text{after}}} \simeq 1.4
$$
\n(8)

Therefore ☞ though out of thermal equilibrium

 ν *L* and $\bar{\nu}_R$ make important contribution to energy density

L. A. Anchordoqui (CUNY) [Astronomy, Astrophysics, and Cosmology](#page-0-0) 5-3-2016 8 / 25

Energy density stored in relativistic species given by "effective number of neutrino species" ☞ *N*eff

$$
\rho_{\rm rad} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma} \tag{9}
$$

and so

$$
N_{\text{eff}} \equiv \left(\frac{\rho_{\text{rad}} - \rho_{\gamma}}{\rho_{\nu}}\right) \simeq \frac{8}{7} \sum_{B}^{\prime} \frac{g_{B}}{2} \left(\frac{T_{B}}{T_{\nu}}\right)^{4} + \sum_{F}^{\prime} \frac{g_{F}}{2} \left(\frac{T_{F}}{T_{\nu}}\right)^{4} \qquad (10)
$$

- $ρ_ν$ ∞ energy density of single species of massless neutrinos
- \bullet *T*_{*B*(*F*)} \bullet effective temperature of boson (fermion) species
- primes ☞ electrons and photons are excluded from sums
- Normalization of $N_{\rm eff}$ is such that it gives $N_{\rm eff} = 3$ for three families of massless left-handed SM neutrinos
- For practical purposes ☞ *ν*'s freeze-out completely @ 1 MeV
- Non-instantaneous neutrino decoupling

gives a correction to normalization $N_{\text{eff}} = 3.046$

• Near 1 MeV ☞ CC weak interactions

$$
nv_e \rightleftharpoons pe^-, \quad ne^+ \rightleftharpoons p\bar{v}_e, \quad n \rightleftharpoons pe^-\bar{v}_e \tag{11}
$$

guarantee neutron-proton chemical equilibrium **■** Defining λ_{nn} ☞ summed rate of reactions which convert neutrons to protons

$$
\lambda_{np} = \lambda(n\nu_e \to pe^-) + \lambda(ne^+ \to p\bar{\nu}_e) + \lambda(n \to pe^-\bar{\nu}_e) , \quad (12)
$$

• Rate λ_{pn} for reverse reactions which convert protons to neutrons given by detailed balance:

$$
\lambda_{pn} = \lambda_{np} \; e^{-\Delta m/T(t)} \tag{13}
$$

 $\Delta m \equiv m_n - m_p = 1.293$ MeV

• Evolution of fractional neutron abundance $X_{n/N} \equiv n_n/n_N$ described by balance equation

$$
\frac{dX_{n/N}(t)}{dt} = \lambda_{pn}(t)[1 - X_{n/N}(t)] - \lambda_{np}(t)X_{n/N}(t) \qquad (14)
$$

• $n_N = n_n + n_p$ ∞ total nucleon density at this time

• Equilibrium solution · obtained by setting $dX_{n/N}(t)/dt = 0$

$$
X_{n/N}^{\text{eq}}(t) = \frac{\lambda_{pn}(t)}{\lambda_{pn}(t) + \lambda_{np}(t)} = \left[1 + e^{\Delta m/T(t)}\right]^{-1} \tag{15}
$$

- Neutron abundance tracks its value in equilibrium until inelastic neutron-proton scattering rate decreases sufficiently so as to become comparable to Hubble expansion rate
- At this point neutrons freeze-out ☞ go out of *chemical* equilibrium
- Neutron abundance @ freeze-out temperature $T_{n/N}^{\text{FO}} = 0.75 \text{ MeV}$ can be approximated by its equilibrium value [\(15\)](#page-10-1)

$$
X_{n/N}(T_{n/N}^{\text{FO}}) \simeq X_{n/N}^{\text{eq}}(T_{n/N}^{\text{FO}}) = \left[1 + e^{\Delta m/T_{n/N}^{\text{FO}}}\right]^{-1} \tag{16}
$$

- Since ratio $\Delta m / T_{n/N}^{\text{FO}}$ is of $\mathcal{O}(1)$ substantial fraction of neutrons survive when chemical equilibrium between *n* and *p* is broken
- **•** At this time ^{\mathbf{F}} T ^γ below deuterium binding energy $\Delta_D \simeq 2.2$ MeV expect sizable amounts of D to be formed via $n p \rightarrow D \gamma$ process.
- Large photon-nucleon density ratio η^{-1} delays D synthesis until the photo–dissociation process become ineffective
- Defining onset of nucleosynthesis by criterion

$$
e^{\Delta_D/T_{\rm BBN}}\eta \sim 1\tag{17}
$$

we obtain $T_{\rm BBN} \approx 89 \text{ keV}$

- [\(17\)](#page-11-1) ensures that below $T_{\rm BBN}$ high energy tail in γ distribution with $E_\gamma > \Delta_D$ has been sufficiently diluted by expansion
- At this epoch $\mathbb{F}N(T) = 3.36$ hence time-temperature relation dictates that BBN begins at

$$
t_{\rm BBN} \simeq 167 \,\mathrm{s} \approx 180 \,\mathrm{s} \tag{18}
$$

- Once D starts forming ☞ a whole nuclear process network sets in
- When *T* dropped below ∼ 80 keV ☞ universe cooled sufficiently cosmic nuclear reactor can begin in earnest ☞ building

$$
p n \rightarrow \gamma D,
$$

\n
$$
p D \rightarrow^3 \text{He} \gamma,
$$

\n
$$
D D \rightarrow^3 \text{He} n,
$$

\n
$$
D D \rightarrow p T,
$$

\n
$$
D D \rightarrow p T,
$$

\n
$$
{}^{3} \text{He} n \rightarrow p T,
$$

\n
$$
{}^{3} \text{He} D \rightarrow^4 \text{He} p,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow^7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow^7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma,
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma.
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma.
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma.
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma.
$$

\n
$$
{}^{3} \text{He} 4 \text{He} \rightarrow 7 \text{Be} \gamma.
$$

\n
$$
{}^{3} \text{He} 4 \
$$

By this time ☞ neutron abundance surviving at freeze-out has been depleted by *β*-decay to

$$
X_{n/N}(T_{\text{BBN}}) \simeq X_{n/N}(T_{n/N}^{\text{FO}}) e^{-t_{\text{BBN}}/\tau_n}
$$
 (20)

 $\tau_n \simeq 887$ s ∞ neutron lifetime

Nearly *all* of these surviving neutrons are captured in ⁴He (because of its large binding energy $\Delta_{4H_e} = 28.3 \text{ MeV}$) via reactions listed in [\(19\)](#page-12-1)

• Heavier nuclei do not form in any significant quantity

- because of absence of stable nuclei with *A*=5 or 8 impeding nucleosynthesis via *n* ⁴He, *p* ⁴He or ⁴He ⁴He reactions
- because of large Coulomb barrier for reactions such as ⁴He \overline{T} \rightarrow ⁷Li γ and ³He ⁴He \rightarrow ⁷Be γ

By time *T* has dropped below ∼ 30 keV ☞ time ∼ neutron lifetime average thermal energy of the nuclides and nucleons is too small to overcome the Coulomb barriers any remaining free neutrons decay and BBN ceases

• Resulting *mass* fraction of helium ☞ conventionally called Y_p is

$$
Y_{\rm p} \simeq 2X_{n/N}(t_{\rm BBN}) = 0.251\tag{21}
$$

subscript p ☞ primordial

After a bit of algebra, [\(21\)](#page-13-1) can be rweritten as

 $Y_{\rm p} \simeq 0.251+0.014\Delta N_v^{\rm eff}+0.0002\Delta\tau_n+0.009\ln\left(\frac{\eta}{5\times10^{-10}}\right)~(22)$

- BBN has a single adjustable parameter ☞ baryon density
- Observationally-inferred primordial fractions of ⁴He baryonic mass $Y_p = 0.2472 \pm 0.0012$, $Y_p = 0.2516 \pm 0.0011$, $Y_p = 0.2477 \pm 0.0029$ have been constantly favoring \mathbb{R}^n $N_v^{\text{eff}} \lesssim 3$
- Unexpectedly ☞ two recent independent studies yield $Y_p = 0.2565 \pm 0.001$ (stat) ± 0.005 (syst) and $Y_p = 0.2561 \pm 0.011$
- For $\tau_n = 885.4 \pm 0.9$ s and $\tau_n = 878.5 \pm 0.8$ s $N_{\rm eff}=3.68^{+0.80}_{-0.70}~(2\sigma)$ and $N_{\rm eff}=3.80^{+0.80}_{-0.70}~(2\sigma)$, respectively

 \bullet Most recent estimate of Y_p yields

 $N_{\text{eff}} = 3.58 \pm 0.25(68\% \text{CL})$, $\pm 0.40(95.4\% \text{CL})$, $\pm (99\% \text{CL})$

• Conclusion · non-standard value of N_{eff} is preferred at 99% CL implying ∃ of additional types of relativistic species

Macroscopic black holes

- We have seen ☞ BH are evolutionary endpoints of massive stars that undergo a supernova explosion leaving behind fairly massive burned out stellar remnant
- With no outward forces to oppose gravitational forces

remnant will collapse in on itself

- Density to which the matter must be squeezed scales as inverse square of mass
- E.g. Sun would have to be compressed to a radius of 3 km to become a black hole
- Body lighter than Sun resists collapse because it becomes stabilized by repulsive quantum forces between subatomic particles

Quantum black holes

• Stellar collapse is not only way to form black holes

- Known laws of physics allow matter densities up to Planck value
- \bullet 10⁹⁷ kg/m³ \approx density at which force of gravity becomes so strong that quantum mechanical fluctuations can break down spacetime creating BH with radius $\sim 10^{-35}$ m and mass of 10^{-8} kg
- This is the lightest black hole that can be produced according to conventional description of gravity

• It is more massive but much smaller in size than a proton

- High densities of early universe were prerequisite for BH formation ☞ but did not quarantee it
- For region to stop expanding and collapse it must have been denser than average so density fluctuations were also necessary
- Hawking considered quantum effects and showed that black holes not only swallow particles but also spit them out
- Strong gravitational fields around black hole induce spontaneous creation of pairs near event horizon
- While particle with positive energy can escape to infinity particle with negative energy must tunnel through horizon into BH where there are particle states with negative energy w.r.t. infinity
- As the black holes radiate ☞ they lose mass and so will eventually evaporate completely and disappear

L. A. Anchordoqui (CUNY) [Astronomy, Astrophysics, and Cosmology](#page-0-0) 5-3-2016 18 / 25

Hawking evaporation

Evaporation is generally regarded as being thermal in character

 \bullet temperature inversely proportional to its mass $M_{\rm BH}$

$$
T_{\rm BH} = \frac{1}{8\pi G M_{\rm BH}} = \frac{1}{4 \pi r_s}
$$

- **e** entropy $S = 2 \pi M_{BH} r_s$ $\mathbb{F}r_s \equiv$ Schwarzschild radius
- \bullet For solar mass black hole ^{ras} $T_{\rm BH} \sim 10^{-6}$ K which is completely negligible in today's universe
- \bullet For black holes of 10¹² kg $\text{I} \text{R}_{\text{BH}} \sim 10^{12} \text{ K}$ hot enough to emit both massless particles ☞ such as *γ*-rays and massive ones ☞ such as e^+ and e^-

(23)

Greybody factor

BH produces effective potential barrier near horizon that backscatters part of the outgoing radiation modifing blackbody spectrum

• Adopt geometric optics approximation where BH acts as perfect absorber of slightly larger radius with emitting area given by

$$
A = 27\pi r_s^2 \tag{24}
$$

We conveniently write greybody factor as dimensionless constant normalized to the black hole surface area seen by the SM fields

$$
\Gamma_s = \sigma_s/A_4
$$

 \bullet We have $\mathbb{F} \Gamma_{s=0} = 1$, $\Gamma_{s=1/2} \approx 2/3$, and $\Gamma_{s=1} \approx 1/4$

 \bullet BH emits particles with energy between $(O, O + dO)$ at rate

$$
\frac{d\dot{N}_i}{dQ} = \frac{\sigma_s}{8\,\pi^2} Q^2 \left[\exp\left(\frac{Q}{T_{\rm BH}}\right) - (-1)^{2s} \right]^{-1} \tag{25}
$$

per degree of particle freedom *i*

• Change of variables $u = Q/T$ brings [\(25\)](#page-20-1) into familar form

$$
\dot{N}_i = \frac{27 \,\Gamma_s \, T_{\text{BH}}}{128 \,\pi^3} \int \frac{u^2}{e^u - (-1)^{2s}} \, du \tag{26}
$$

• This expression can be easily integrated using

$$
\int_0^\infty \frac{z^{n-1}}{e^z - 1} dz = \Gamma(n) \zeta(n) \tag{27}
$$

and

$$
\int_0^\infty \frac{z^{n-1}}{e^z + 1} dz = \frac{1}{2^n} (2^n - 2) \Gamma(n) \zeta(n)
$$
 (28)

L. A. Anchordoqui (CUNY) [Astronomy, Astrophysics, and Cosmology](#page-0-0) 5-3-2016 21 / 25

• Integration leads to

$$
\dot{N}_i = \mathcal{A}_{\pm} \frac{27 \Gamma_s}{128 \pi^3} \Gamma(3) \zeta(3) T_{\text{BH}}.
$$
 (29)

• Black hole emission rate is found to be

$$
\dot{N}_i \approx 7.8 \times 10^{20} \left(\frac{T_{\text{BH}}}{\text{GeV}}\right) \text{ s}^{-1}
$$
 (30)

$$
\dot{N}_i \approx 3.8 \times 10^{20} \left(\frac{T_{\text{BH}}}{\text{GeV}} \right) \text{ s}^{-1}
$$
 (31)

$$
\dot{N}_i \approx 1.9 \times 10^{20} \left(\frac{T_{\text{BH}}}{\text{GeV}} \right) \text{ s}^{-1}
$$
 (32)

for particles with $s = 0, 1/2, 1$, respectively

• At any given time rate of decrease in BH mass is total power radiated

$$
\frac{d\dot{M}_{\rm BH}}{dQ} = -\sum_{i} g_i \frac{\sigma_s}{8\pi^2} \frac{Q^3}{e^{Q/T_{\rm BH}} - (-1)^{2s}}
$$

gⁱ ☞ number of internal d.o.f of particle species *i*

• A straightforward calculation gives

$$
\dot{M}_{\text{BH}} = -\sum_{i} g_i \mathcal{B}_{\pm} \frac{27 \Gamma_s}{128 \pi^3} \Gamma(4) \zeta(4) T_{\text{BH}}^2 \tag{34}
$$

• Assuming effective high energy theory contains approximately same number of modes as SM

•
$$
g_{s=1/2} = 90
$$
 and $g_{s=1} = 27$

$$
\frac{dM_{\rm BH}}{dt} = 8.3 \times 10^{73} \text{ GeV}^4 \frac{1}{M_{\rm BH}^2}
$$
 (35)

L. A. Anchordoqui (CUNY) [Astronomy, Astrophysics, and Cosmology](#page-0-0) 5-3-2016 23 / 25

(33)

• Ignoring thresholds ☞ assuming M_{BH} evolves according to [\(35\)](#page-22-1) during the entire process of evaporation

$$
\tau_{\rm BH} = 1.2 \times 10^{-74} \text{ GeV}^{-4} \int M_{\rm BH}^2 \ dM_{\rm BH} \tag{36}
$$

• Using $\hbar = 6.58 \times 10^{-25}$ GeV s ϵ [\(36\)](#page-23-1) can then be re-written as

$$
\tau_{BH} \simeq 2.6 \times 10^{-99} (M_{BH}/\text{GeV})^3 \text{ s}
$$

\simeq 1.6 \times 10^{-26} (M_{BH}/\text{kg})^3 \text{ yr} (37)

- **•** For solar mass black hole ∞ lifetime is unobservably long 10^{64} yr
- \bullet For 10^{12} kg BH ☞ lifetime is $\sim 1.5 \times 10^{10}$ yr

about the present age of the universe

• Any primordial black hole of this mass would be completing its evaporation and exploding right now

- Questions raised by primordial BH motivate empirical search for them
- Most of BH mass would go into gamma rays with energy spectrum that peaks around 100 MeV
- *q*'s and *g*'s would hadronize mostly into *π* which in turn would decay to *γ*-rays and *ν*'s
- In 1976 ☞ Hawking and Page realized that *γ*-ray background observations place strong upper limits on number of such black holes
- **■** By looking at observed *γ*-ray spectrum for masses near 5×10^{11} kg they set upper limit ding 43 10^4 /pc³