Astronomy, Astrophysics, and Cosmology

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson X April 19, 2016

arXiv:0706.1988

L. A. Anchordoqui (CUNY)

Astronomy, Astrophysics, and Cosmology

At the beginning... there was the hand of God

L. A. Anchordoqui (CUNY)

Astronomy, Astrophysics, and Cosmology

Table of Contents

- History of universe from 10⁻¹⁰ seconds to today is based on observational facts
- Fundamental laws of high energy physics are well-established up to energies reached by LHC
- Before 10⁻¹⁰ seconds ☞ energy of universe exceeds 13 TeV and we lose comfort of direct experimental guidance
- Physics of that era is as speculative as it is fascinating
- Today register we will go back to the earliest of times as close as possible to the big bang and follow evolution of Universe

- As a → 0 r temperature increases without limit T → ∞ but there comes point @ which extrapolation of classical physics breaks down
- Realm of quantum black holes
 is such that their de Broglie wavelength
 - is smaller than their Schwarzschild radius
- Equating h/mc to $2Gm/c^2$ yields system of Planck units

$$M_{\rm Pl} \equiv \sqrt{\frac{\hbar c}{G}} \simeq 10^{19} \, \text{GeV}$$

$$\ell_{\rm Pl} \equiv \sqrt{\frac{\hbar G}{c^3}} \simeq 10^{-35} \, \text{m} \qquad (1)$$

$$t_{\rm Pl} \equiv \sqrt{\frac{\hbar G}{c^5}} \simeq 10^{-43} \, \text{s}$$

- $t_{\rm Pl} \approx$ sets origin of time for *classical big bang* era
- It is inaccurate to extend solution of Friedmann equation to a = 0and conclude universe began in singularity of infinite density

- Symmetry of four forces was broken but the strong, weak, and electromagnetic forces were still unified and there were no distinctions between quarks and leptons
- This is unimaginably short time

and predictions can be only speculative

• Temperature would have been about 10^{32} K 🖙 corresponding to *particles* moving about every which way with average energy

$$kT \approx \frac{1.4 \times 10^{-23} \text{ J/K } 10^{32} \text{ K}}{1.6 \times 10^{-10} \text{ J/GeV}} \approx 10^{19} \text{ GeV}$$
 (2)

• Very shortly thereafter \blacksquare as temperature had dropped to $\sim 10^{28}$ K there was another phase transition where strong force condensed out

- Now universe was filled with soup of quarks and leptons
- About this time ∞ universe underwent exponential expansion increasing in size by a factor of $\gtrsim 10^{26}$ in a tiny fraction of a second ∞ perhaps $\sim 10^{-34}$ s
- Favored Λ CDM model implicitly includes inflationary hypothesis where scale factor expands exponentially $\bowtie a(t) \propto e^{Ht}$
- If interval of exponential expansion satisfies $\Delta t \gtrsim 60/H$ small casually connected region can grow sufficiently to accommodate observed homogeneity and isotropy

- Express comoving horizon as integral of comoving Hubble radius

$$\varrho_{\rm h} \equiv c \int_0^t \frac{dt'}{a(t')} = c \int_0^a \frac{da}{Ha^2} = c \int_0^a \frac{1}{aH} d\ln a$$
(3)

 If particles are separated by distances greater than *q*_h they never could have communicated with one another

- If they are separated by distances greater than c/(aH)
 - they cannot talk to each other now
- This distinction is crucial for solution to horizon problem
- It is possible that *q*_h is much larger than *c*/(*a*H) now so that particles cannot communicate today

but were in causal contact early on

- From (3) we see that this might happen if comoving Hubble radius in early universe ≫ that it is now so that *e*_h got most of its contribution from early times
- Hence require phase of decreasing Hubble radius

• Evolution of comoving Hubble radius in inflationary universe

- Comoving Hubble sphere shrinks during inflation and expands after inflation
- Inflation representation mechanism to zoom-in on smooth sub-horizon patch

Conditions for inflation

shrinking Hubble sphere defined by

$$\frac{d}{dt}\left(\frac{1}{aH}\right) < 0 \tag{4}$$

From 🖙

$$\frac{d}{dt}\left(\frac{1}{aH}\right) = -\frac{\ddot{a}}{(aH)^2} \tag{5}$$

shrinking comoving Hubble radius

implies accelerated expansion $\ddot{a} > 0$

• This explains why inflation is often defined as period of accelerated expansion

More conditions for inflation

 Second time derivative of scale factor can be related to first time derivative of Hubble parameter

$$\frac{\ddot{a}}{a} = H^2(1-\epsilon) \Rightarrow \epsilon \equiv -\frac{\dot{H}}{H}$$

- Acceleration therefore corresponds to $\epsilon < 1$
- During inflation
 - H is approximately constant during inflation
 - a grows exponentially
 - this implies c/(aH) decreases regimes just as advertised
- Consulting acceleration equation

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2}(\rho + 3P)\,.$$

we infer that $\ddot{a} > 0$ requires a negative pressure $\mathbb{R} P < -\rho/3$

(6)

()

- After very brief inflationary period universe would have settled back into its more regular expansion
- For 10^{-34} s $< t < 10^5$ yr $\bowtie 10^3$ K $< T < 10^{27}$ K universe is thought to have been dominated by radiation
- We have seen equation of state is given by w = 1/3
- Neglect contributions to *H* from Λ (this is always a good approximation for small enough *a*) then $\mathbb{I} a \sim t^{1/2}$ and $\rho_{rad} \sim a^{-4}$
- Expansion rate as a function of temperature in plasma

$$H = \left(\frac{8\pi G\rho_{\rm rad}}{3}\right)^{1/2} = \left(\frac{8\pi^3}{90}g_{\rho}(T)\right)^{1/2} T^2/M_{\rm Pl}$$
$$\sim 1.66\sqrt{g_{\rho}(T)} T^2/M_{\rm Pl}$$
(8)

(we have adopted natural units $\hbar = c = k = 1$)

 Neglecting *T*-dependence of *g_ρ* (i.e. away from mass thresholds and phase transitions) integration of (8) yields

$$a(t) = \left(\frac{t}{t_0}\right)^{1/2}$$
 and $\rho(t) = \frac{\rho_0}{a^4} = \frac{\rho_0 t_0^2}{t^2}$ (9)

(8) leads to useful commonly used approximation

$$t \simeq \left(\frac{3M_{\rm Pl}^2}{32\pi\rho_{\rm rad}}\right)^{1/2} \simeq 2.42 \frac{1}{\sqrt{g_{\rho}}} \left(\frac{T}{\rm MeV}\right)^{-2} \, \rm s \tag{10}$$

Electroweak symmetry breaking

 At about 10⁻¹⁰ s ➡ Higgs field spontaneously acquires VEV which breaks electroweak gauge symmetry

• Weak force and electromagnetic force

manifest with different ranges

 Through Higgs mechanism quarks and charged leptons become massive

• Fundamental interactions have then taken their present forms but the temperature of the universe ($T \sim 1 \text{ TeV}$) is still too high to allow quarks to bind together to form hadrons

• @ $t \sim 10^{-6}$ s $r \sim 1$ GeV

quarks began to *condense* into mesons and baryons

- If relativistic particles are present that have decoupled from γ's it is necessary to distinguish between two kinds of r.d.o.f.:
 - those associated total energy density g_ρ
 - those associated with total entropy density gs
- @ energies above deconfinement transition quarks and gluons are relevant fields for QCD sector effective number of interacting (thermally coupled) r.d.o.f. is

$$g_s(T) = 61.75$$

- As universe cools below confinement scale $IST \Lambda_{QCD} \sim 200 \ MeV$ SM plasma transitions to regime where mesons and baryons are pertinent degrees of freedom
- Precisely relevant hadrons present in this energy regime are pions and charged kaons

$$g_s(T) = 19.25$$

L. A. Anchordoqui (CUNY)

Astronomy, Astrophysics, and Cosmology

4-19-2016 17 / 24

- Significant reduction in r.d.o.f. is from rapid annihilation or decay of massive hadrons which may have formed during transition
- Quark-hadron crossover transition remaining r.d.o.f.
- To connect temperature to effective number of r.d.o.f. use high statistics lattice simulations of QCD plasma in hot phase especially behavior of entropy during changeover
- Concretely 🖙 effective number of interacting r.d.o.f. in plasma

$$g_s(T) \simeq r(T) \left(g_B + \frac{7}{8}g_F\right)$$
 (11)

- $\Rightarrow r = 1$ for leptons
- $rac{}=22$ for photon contributions
- $r = s(T)/s_{SB}$ for quark-gluon plasma
 - s(T) is actual entropy
 - (s_{SB}) ideal Stefan-Bolzmann entropy

 \Rightarrow For 150 MeV < T < 500 MeV entropy rise during confinement-deconfinement changeover

$$\frac{s}{T^3} \simeq \frac{42.82}{\sqrt{392\pi}} e^{-C_1} + 18.62 \frac{C_2^2}{\left[e^{C_2} - 1\right]^2} e^{C_2}$$
(12)

 $C_1 = (T_{\text{MeV}} - 151)^2 / 392 \text{ and } C_2 = 195.1 / (T_{\text{MeV}} - 134)$

♦ For same energy range

$$g_s(T) \simeq 47.5 \ r(T) + 19.25$$
 (13)

- Entropy density dominated by contribution of relativistic particles
- To very good approximation

$$s = \frac{2\pi^2}{45} g_s(T) T^3$$
(14)

• Conservation of S = sV leads to

 $\frac{d}{dt}(sa^3) = 0 \Rightarrow g_s(T)T^3a^3 = \text{constant as universe expands}$ (15)

 As one would expect reason non-evolving system would stay @ constant entropy density in comoving coordinates even though s is decreasing due to expansion of universe Since quark-gluon energy density in plasma has similar T dependence to that of the entropy

we'll simplify discussion by taking $g = g_{\rho} = g_s$

Sensitivity of particle colliders

L. A. Anchordoqui (CUNY)

Baryogenesis

- Manned and unmanned exploration of solar system tell us that it is made up of same stuff as Earth: *baryons*
- Observational evidence from radio-astronomy and cosmic rays indicate Milky Way and distant galaxies are made of baryons
- Conclusion: baryon number of the observable universe IS B > 0
- Requirement: early qq
 q
 plasma contained tiny surplus of quarks
- After all anti-matter annihilated with matter

only small surplus of matter remained

$$\eta = \frac{n_B - n_B}{n_{\gamma}} = 5 \times 10^{-10} \frac{\text{excess baryons}}{\text{photons}}$$

Tiny surplus reactions with respect to an exchange of matter-antimatter

(16)