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ORDINARY DIFFERENTIAL EQUATIONS V
 3.1 Setting the Stage ✔
3.2 Initial Value Problem ✔

3.3 Boundary Value Problem ✔

3.4 Fourier Analysis 

Picard’s existence and uniqueness theorem 
Systems of first-order linear differential equations 
Green matrix as a generalized function

Self-adjointness of Sturm-Liouville operator

Fourier transform
Fourier series

Green function of Sturm-Liouville operator
Series solutions to homogeneous linear equations
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Fourier Analysis 

Consider Sturm-Liouville eigenvalue problem L = �d

2
/dx

2
, ⇢ = 1

f(�⇡) = 0 and f(⇡) = 0

eigenfunctions are ☛             with

(3.4.316.)

bn sin(nx)
Sturm-Liouville theorem states 

f(x) is of class C2[�⇡,⇡] and satisfies (3.4.316.)

in a convergent series

f(x) =
1X

n=1

bn sin(nx)

if we replace boundary conditions ☛ f 0(�⇡) and f 0(⇡) = 0

We are now speaking of quite a different Sturm-Liouville system

if

 it can be expanded

in this space eigenfunctions are ☛ an cos(nx)

n 2 Z

with n 2 Z

f(x) =

a0

2

+

1X

n=1

an cos(nx)
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Central idea of todays class

f(x) /2 C2[�⇡,⇡] in an infinite series

f(x) =

1

2

a0 +

1X

n=1

[an cos(nx) + bn sin(nx)]

1st order of business 

only then will we deal with convergence issues

an bnand

(3.4.319.)

is to determine coefficients 

investigate to what extent it is possible 

to expand  

Fourier series
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 Definition 3.4.1.
Assuming expansion (3.4.319.) holds bnan and

using orthogonality (and norm) of sin(nx) and cos(nx)

integrating on both sides of (3.4.319.) over [�⇡,⇡] we obtainZ ⇡

�⇡
f(x) dx = ⇡a0

note that
a0

2
=

1

2⇡

Z ⇡

�⇡
f(x) dx

is average value of f(x) [�⇡,⇡]in the interval

To calculate  with

 multiply both sides of (3.4.319)

an n 6= 0

by 
cos(kx), k 6= 0 and integrate 

ak =

1

⇡

Z ⇡

�⇡
f(x) cos(kx) dx, with k = 0, 1, 2, 3, . . . ,1

(3.4.321.)

(3.4.320.)

(3.4.322.)

 we can determine 

Similarly ☛ multiplying by and integratingsin(kx)

bk =
1

⇡

Z ⇡

�⇡
f(x) sin(kx) dx with k = 1, 2, 3, . . . ,1 (3.4.323.)
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Coefficients so determined are called Fourier coefficients
Associated Fourier series is given by

f(x) =

1

2⇡

Z ⇡

�⇡
f(x) dx+

1

⇡

1X

n=1

Z ⇡

�⇡
dx

0
f(x

0
) [cos(nx) cos(nx

0
)

+ sin(nx) sin(nx

0
)]

which can be written in a more compact form as

was chosen rather arbitrarilyThe interval

later on ☛ we will consider other intervals

[�⇡,⇡]

(3.4.324.)

(3.4.325.)

Corollary 3.4.1.

Since cos(nx)

i sin(nx)

=
1

2

�
einx ± e�inx

�
 we can rewrite (3.4.319.)

as a power series in

c

n

= c

⇤
�n

=
1

2
(a

n

� ib

n

) =
1

2⇡

Z
⇡

�⇡

f(x)e�inx

dx

eix

f(x) = c0 +
1X

n=1

c

n

e

inx + c

⇤
n

e

�inx = lim
m!1

mX

n=�m

c

n

e

inx

with

f(x) = hfi+ 1

⇡

1X

n=1

Z ⇡

�⇡
dx

0
f(x

0
) cos[n(x� x

0
)]

(3.4.326.)

(3.4.327.)
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 Definition 3.4.2.
is said to be piecewise continuous on an interval 

f(x) [a, b]
 if it is defined and continuous 

number of points xk

such that at each point of discontinuity left- and right-hand limits

f(x�
k

) = lim
x!x

�
k

f(x), f(x+
k

) = lim
x!x

+
k

f(x)
exist

At endpoints  only require limitsa, b f(a+) f(b�)and to exist

(3.4.328.)

Note that we do not require that be defined at
f(x) xk

left- or right-hand limit
Even if

f(xk) is defined 

provided it is piecewise continuous on every bounded interval
A function defined for all is piecewise continuous

Points

f(x) x 2 R

xk are known as jump discontinuities of f(x)

between + and - limits is magnitude of jumpdifference

except possibly at a finite 

it does not necessarily equal either 
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 Definition 3.4.3.
A function is called piecewise on an interval
if it is defined continuous and continuously differentiable
except possibly at a finite number of points

exceptional point left- and right-hand limits   such that at each

f(x) C1 [a, b]

xk

f(x�
k

) = lim
x!x

�
k

f(x) , f(x+
k

) = lim
x!x

+
k

f(x) ,

f

0(x�
k

) = lim
x!x

�
k

f

0(x) , f

0(x+
k

) = lim
x!x

+
k

f

0(x)
exist

at endpoints we only require appropriate one-sided limits 
f(a+), f(b�), f 0(a+), f 0(b�)

to exist

For a piecewise continuous function
is either:

C1
xk

(i) a jump discontinuity of  f

(ii) a corner

f

but has different left- and right-hand derivatives

f(x�
k ) = f(x+

k )

f

0(x�
k ) 6= f

0(x+
k )

 an exceptional point

but where left- and right-hand derivatives exist

meaning a point where   is continuous ☛ so 
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 Lemma 3.4.1. [Riemann-Lebesgue lemma]

is piecewise continuous in interval      g(x)If [a, b]

lim
s!1

Z b

a
g(x) sin(sx+ ↵) dx = 0 (3.4.329.)

Proof.

If g(x) 2 C1([a, b]) ☛ then integration by parts leads to

Z b

a
g(x) sin(sx+ ↵) dx = �

Z b

a
g(x)

d

dx


cos(sx+ ↵)

s

�
dx

= �g(x)

cos(sx+ ↵)

s

����
b

a

+

Z b

a
g

0
(x)

cos(sx+ ↵)

s

dx

which goes to zero as s ! 1

same reasoning is valid if is differentiable

and be finite

except perhaps at a finite number of points in interval 

g(x)

 then

where one-sided directional derivatives must exist
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Next ☛ we discuss case in which is continuous ing(x) [a, b]
Consider a partition of closed interval [a, b], x0 = a, x1, . . . , xn = b

xi � xi�1 = (b� a)/nwith

It follows that

�����

Z
b

a

g(x) sin(sx+ ↵) dx

����� =

�����

nX

i=1

Z
xi

xi�1

g(x) sin(sx+ ↵) dx

�����

=

�����

nX

i=1

(
g(x

i

)

Z
xi

xi�1

sin(sx+ ↵) dx

+

Z
xi

xi�1

[g(x)� g(x

i

)] sin(sx+ ↵) dx

)�����


nX

i=1


|g(x

i

)| | cos(sxi

+ ↵)� cos(sx

i�1 + ↵)|
s

+

m

i

(b� a)

n

�

 2Mn

s

+M

n

(b� a)

(3.4.330.)
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where

is maximum value of in

is maximum value of in

is maximum value of 

M g [a, b]

mi |g(x)� g(xi)| [xi�1, xi]

Mn mi

With this in mind,
lim
s!1

�����

Z b

a
g(x) sin(sx) dx

�����  Mn(b� a)

Note that lim
n!1

Mn = 0

(3.4.329.)

 ☛ because is continuous and sog

nMncan be as small as desired by increasing

Same applies if we replace sin(sx+ ↵) cos(sx+ ↵)

This proves lemma even if       is not differentiable at any point

by
g(x)

If   is piecewise continuousg
xc

through integrals of form 

Z
xc+✏

xc�✏

g(x) sin(sx+ ↵)dx

points

which go to zero for ✏ ! 0 is bounded☛ because g
We repeat previous reasoning in remaining intervals where     

is continuous
g

we can separate jump discontinuity
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Definition 3.4.3. ++

A function is said to have period if
For notational simplicity

2⇡to functions of period
There is no loss of generality in doing so

to convert a function of period into one of period 2⇡

Theorem 3.4.1. [Fourier convergence theorem]
If

f(x) periodic piecewise is any 2⇡ C1  function

x 2 R  its Fourier series converges to:
f(x) if f is continuous at x

1
2 [f(x

+
) + f(x

�
)] if x is a jump discontinuity

(3.4.330.)

At discontinuities ☛  Fourier series cannot decide 
f(x)Fourier series converges to       at all points of continuity 

we shall restrict our discussion

since we can always use a simple change of scale 

then ☛ for any 

and so ends up splitting difference by converging to their average

whether to converge to right- or left-hand limit

2L

f(x+ 2L) = f(x) 8x

x = Ly/⇡

2L

the rescaled function                    lives onF (y) = f(Ly/⇡) [�⇡,⇡]
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Proof.
Part I be a differentiable function (therefore continuous) Let

in interval
f(x)

[a, b]
We will show that identity (3.4.325.) is valid 8x 2 (�⇡,⇡)
If in addition ☛ f(�⇡) = f(⇡)

to       in  we will show that series converges
f(x) [�⇡,⇡]

-th partial sum of (3.4.325.) is given byn

(3.4.331.)

Kn(s) =
1

2

+

nX

m=1

cos(ms) (3.4.332.)with ☛

Sn(x) =
1

2

a0 +

nX

m=1

am cos(mx) + bm sin(mx)

=

1

⇡

Z ⇡

�⇡
f(t) dt

(
1

2

+

1X

m=1

cos(mx) cos(mt) + sin(mx) sin(mt)

)

=

1

⇡

Z ⇡

�⇡
f(t)

(
1

2

+

nX

m=1

cos[(m(t� x)]

)
dt

=

1

⇡

Z ⇡

�⇡
f(t) Kn(t� x) dt
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We multiply both sides of (3.4.332.) by sin(s/2)

and use relation 
2 sin↵ cos� = sin(↵+ �) + sin(↵� �) to obtain

one recognizes a telescopic sum 

sin
⇥�
n+ 1

2

�
s
⇤

cancel

Therefore ☛ Kn(s) =
sin

⇥�
n+ 1

2

�
s
⇤

2 sin (s/2)
(3.4.333.)

Kn(2k⇡) = lim
s!2k⇡

Kn(s) = n+ 1
2

Note that (3.4.334.)

(3.4.335.)

k 2 Z

it is easily seen from sum of cosines that defines thatKn(s)
Z ⇡

�⇡
Kn(t� x) dt = ⇡

☛ all terms except 

sin
⇣s
2

⌘
Kn(s) =

1

2

(
sin

�
s
2

�
+

nX

k=1

⇥
sin

�
k + 1

2

�
s
⇤
� sin

⇥�
k � 1

2

�
s
⇤
)
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to (3.4.331.) we haveTherefore ☛ by adding and subtracting
f(x)

Sn(x) = f(x) +
1

⇡

Z ⇡

�⇡
[f(t)� f(x)] Kn(t� x) dt

= f(x) +
1

⇡

Z ⇡

�⇡

f(t)� f(x)

2 sin[(t� x)/2]
sin

⇥�
n+ 1

2

�
(t� x)

⇤
dt

(3.4.336.)

For t 6= x ☛ the function

g(t) =
f(t)� f(x)

2 sin[(t� x)/2]
(3.4.337.)

(3.4.338.)

(3.4.339.)

is continuous 8t 2 [�⇡,⇡]

f(x) 2 C1[�⇡,⇡]Since we have

g(x) = lim
t!x

f(t)� f(x)

2 sin[(t� x)/2]
= f

0(x)

n ! 1and so integral in (3.4.336.) vanishes for

yielding ☛ lim
n!1

Sn(x) = f(x) 8x 2 (�⇡,⇡)
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If

(3.4.340.)

(3.4.341.)

x = ±⇡

is canceled  ☛ the denominator of g(t)
t ! ⇡ t ! �⇡and

However ☛ if x = ±⇡,Kn(t� x) is an even function of t

Kn(t⌥ ⇡) =
sin

⇥�
n+ 1

2

�
(t⌥ ⇡)

⇤

2 sin[(t⌥ ⇡)/2]

=
sin

⇥�
n+ 1

2

�
(�t± ⇡)

⇤

2 sin[(�t± ⇡)/2]

=
sin

⇥�
n+ 1

2

�
(�t⌥ ⇡)

⇤

2 sin[(�t⌥ ⇡)/2]

Thus ☛

Z 0

�⇡
Kn(t� x) dt =

Z ⇡

0
Kn(t� x) dt = 1

2 ⇡

for both

16Tuesday, April 21, 15



 we can then writeFor x = ±⇡

Sn(x) =
f(⇡) + f(�⇡)

2
+

1

⇡

Z ⇡

0

f(t)� f(⇡)

2 sin[(t� x)/2]
sin

⇥
(n+ 1

2 )(t� x)
⇤
dt

+
1

⇡

Z 0

�⇡

f(t)� f(�⇡)

2 sin[(t� x)/2]
sin

⇥
(n+ 1

2 )(t� x)
⇤
dt

lim
t!±⇡

f(t)� f(±⇡)

2 sin[(t� x)/2]
= f

0(±⇡)with ☛

(3.4.342.)

(3.4.343.)

(3.4.344.)

Applying Riemann-Lebesgue lemma to (3.4.342.) we obtain

lim
n!1

Sn(±⇡) =
f(⇡) + f(�⇡)

2

which gives desired result  ☛ if f(⇡) = f(�⇡)
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Part II Let
f(x) be a 2⇡ periodic piecewise C1 function

We will show that (3.4.330.) holds for any x 2 R
is a point of differentiability of function If

x

f

xc

 we repeat previous reasoning
If is corner ☛ function g(t) as given in (3.4.331.) 

for t 6= x

 and remains bounded for
t ! x

of Riemann-Lebesgue lemma satisfying hypotheses
Therefore ☛ Fourier series also converges to f

f x

If function   has a jump at point   

2⇡ periodicity of kernel Kn to write

S

n

(x)� f(x+) + f(x�)

2
=

1

2

Z
x

x�⇡

K

n

(x� t)[f(t)� f(x�)] dt

+
1

2

Z
x+⇡

x

K

n

(x� t)[f(t)� f(x+)] dt

By a similar argument to one used in case 
x

f

lim
n!1

Sn(x) =
1

2
[f(x+) + f(x�)]that is

is continuous ☛

we can use (3.3.341.) and

we obtain desired outcome ☛  

for which    is a point of differentiability of function    
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Definition 3.4.5. 

Most familiar convergence mechanism for sequence of functions            is 
is pointwise convergence. 

Sn(x)

This requires that functions' values at each individual point
 converge in usual sense:

lim
n!1

Sn(x) = f(x) 8x 2 I 2 <e

Pointwise convergence requires that for every       and every 

there exists an integer    depending on   and    such that 

✏ > 0 x 2 I

Pointwise convergence can be viewed as the function space version           
of the convergence of the components of a vector

N

|Sn(x)� f(x)| < ✏ 8n � N

✏ x
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Definition 3.4.6. 
A stronger mode of convergence

More precisely ☛ a sequence of functions 
Sn(x)

uniformly to a functionis said to converge
f(x) on a subset I ⇢ R

if for any ✏ > 0
there exists an integer    -- depending solely on   --  such that✏N

|Sn(x)� f(x)| < ✏ 8 x 2 I and 8n � N

Uniformly convergent sequence of functions converges pointwise

Key difference and reason for term uniform convergence 

is that integer    depends only upon   and not on point ✏N x 2 I

(3.4.348.)

but converse does not hold

to approach at more or less same rate to limit function
is defined by demanding all points 
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Clearly, a uniformly convergent sequence of functions converges pointwise,
but the converse does not hold. The key di�erence – and the reason for the
term “uniform convergence” – is that the integer N depends only upon �
and not on the point x ⇤ I. According to (3.4.348), the sequence converges
uniformly if and only if for any small �, the graphs of the functions eventu-
ally lie inside a band of width 2� centered around the graph of the limiting
function, as shown in Fig. 3.5. A key feature of uniform convergence is that
it preserves continuity.

Figure 12.11. Uniform and Non-Uniform Convergence of Functions.

of the sample vectors v(n) = ( vn(x1), . . . , vn(xm) )T ⇧ Rm for any choice of sample points
x1, . . . , xm.

On the other hand, convergence in norm of the function sequence requires

lim
n�⇥

⌃ vn � v� ⌃ = 0,

where ⌃ · ⌃ is a prescribed norm on the function space. As we have learned, not all norms
on an infinite-dimensional function space are equivalent: a function might be small in one
norm, but large in another. As a result, convergence in norm will depend upon the choice
of norm. Moreover, convergence in norm does not necessarily imply pointwise convergence
or vice versa. A variety of examples can be found in the exercises.

Uniform Convergence

Proving uniform convergence of a Fourier series is reasonably straightforward, and
so we will begin there. You no doubt first saw the concept of a uniformly convergent
sequence of functions in your calculus course, although chances are it didn’t leave much
of an impression. In Fourier analysis, uniform convergence begins to play an increasingly
important role, and is worth studying in earnest. For the record, let us restate the basic
definition.

Definition 12.24. A sequence of functions vn(x) is said to converge uniformly to a
function v�(x) on a subset I ⌅ R if, for every � > 0, there exists an integer N = N(�) such
that

| vn(x)� v�(x) | < � for all x ⇧ I and all n ⇤ N . (12.87)

The key point — and the reason for the term “uniform convergence” — is that the
integer N depends only upon � and not on the point x ⇧ I. Roughly speaking, the se-
quence converges uniformly if and only if for any small �, the graphs of the functions
eventually lie inside a band of width 2� centered around the graph of the limiting func-
tion; see Figure 12.11. Functions may converge pointwise, but non-uniformly: the Gibbs
phenomenon is the prototypical example of a nonuniformly convergent sequence: For a
given � > 0, the closer x is to the discontinuity, the larger n must be chosen so that the
inequality in (12.87) holds, and hence there is no consistent choice of N that makes (12.87)

2/25/07 675 c⇥ 2006 Peter J. Olver

Figure 3.5: Uniform (left) and non-uniform (right) convergence of functions.

Theorem 3.4.2. If each Sn(x) is continuous and Sn(x) ⇥ f(x) converges
uniformly, then f(x) is also a continuous function.

Proof. The proof is by contradiction. Intuitively, if f(x) were to have a
discontinuity, then, as sketched in Fig. 3.5, a su⇤ciently small band around
its graph would not connect together, and this prevents the connected graph
of any continuous function, such as Sn(x), from remaining entirely within
the band.

Uniform convergence demands all points to bahave similarly in their ap-
proaching the limit. Therefore, it respects continuity and integration. But
that mode of convergence is, as one expects, not easy to get. In the spirit of
(2.2.51), for a normed vector space, one might instead consider an error of
the form

lim
n�⇥

⌅Sn(x)� f((x)⌅ ⇥ 0 . (3.4.349)

This last one seems to be one of the best ways of measuring the error in case
of Fourier series. For finite-dimensional vector spaces such as Rn, conver-
gence in norm is equivalent to ordinary convergence. On the other hand, on

139

uniform non-uniform

According to (3.4.348.)  the sequence converges uniformly

graphs of functions eventually lie inside a band of width 2✏
✏

centered around graph of limiting function

if and only if for any small

A key feature of uniform convergence is that it preserves continuity
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Theorem 3.4.2.

If each 
Sn(x) is continuous and Sn(x) ! f(x) converges uniformly

then is also a continuous functionf(x)
Proof.

f(x)

Sn(x)

Uniform convergence demands 

Therefore ☛ it respects continuity and integration

but that mode of convergence is -- as expected -- not easy to get

their approaching limit

within the band

continuous function 

connect together
 then a sufficiently small band around its graph

The proof is by reductio ad absurdum
Intuitively ☛ if       were to have a discontinuity

would not

such as         

and this prevents the connected graph of any

all points to behave similarly in 

from remaining entirely 
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For a normed vector space

This last one seems to be one of the best ways

For finite-dimensional vector spaces such as Rn

norm is equivalent to ordinary convergenceconvergence in

(We’ll see this is the case in Example 3.4.3.)

that converges in norm but does not converge pointwise anywhere 

For instance ☛ it is possible to construct a sequence of functions

On infinite-dimensional function spaces 

convergence in norm differs from pointwise convergence

case of Fourier series

consider an error of form

(3.4.349.)

one might instead

of measuring error in

lim
n!1

kSn(x)� f(x)k ! 0
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 Example 3.4.1.

f(x) = x x 2 [�⇡,⇡]

an = 08n
bn =

1

⇡

Z ⇡

�⇡
x sin(nx) dx =

2(�1)n+1

n

we obtain

For with

and

Therefore
x = 2

1X

n=1

(�1)n+1 sin(nx)

n

, |x| < ⇡

x = ±⇡

1

2
[f(⇡) + f(�⇡)] = 0As series converges to 

Series converges to 2⇡ periodic extension 

f(x) = x� 2n⇡ if �⇡ + 2n⇡ < x < ⇡ + 2n⇡

and is discontinuous at x = ±⇡ + 2n⇡

Solutions for Chapter 15  7

 
9. A function with period  is defined by 2ʌ

   ( ) ʌ ʌf x x x � � � �

 (i) Draw the graph of the function in the interval 3ʌ 3ʌx� d d . (ii) Find the Fourier series of the 

 function. [Hint: ( )f x  is an odd function of x] (iii) Draw the graphs of the first four partial sums of 

 the  series. 

 

 (i) Figure 6 
 

 

 

 

 

 (ii) Function ( )f x  is an odd function in the interval ʌ ʌx� � �  and only the odd  

  trigonometric functions si  contribute to the Fourier series (all n nx 0na  ): 

    
1

( ) sinn
n

f x b
f

 
 ¦ nx    (Fourier sine series) 

  We have  
ʌ ʌ

ʌ 0

ʌ ʌ

00

ʌ ʌ

2
0 0

1 2( ) sin sin
ʌ ʌ

2 cos 1 cos
ʌ

2 if   odd2 cos sin 2 cos ʌ    
ʌ 2 if   even

nb f x nx dx x nx dx

x nx
nx dx

n n

n nx nx nx
n

n nn n n

�

�

�

  

 ½ª º° ° � �® ¾« »
¬ ¼° °¯ ¿

� ½ª º ª º° ° ° � �  �® ¾ ®« » « »
¬ ¼ ¬ ¼ �° ° °¯ ¿ ¯

³ ³

³

 

  Then  sin sin 2 sin 3 sin 4( ) 2
1 2 3 4

x x x x
f x

ª º
 � � � �« »

¬ ¼
"  

 

 (iii) Figure 7 
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Solutions for Chapter 15  7

 
9. A function with period  is defined by 2ʌ

   ( ) ʌ ʌf x x x � � � �

 (i) Draw the graph of the function in the interval 3ʌ 3ʌx� d d . (ii) Find the Fourier series of the 

 function. [Hint: ( )f x  is an odd function of x] (iii) Draw the graphs of the first four partial sums of 

 the  series. 

 

 (i) Figure 6 
 

 

 

 

 

 (ii) Function ( )f x  is an odd function in the interval ʌ ʌx� � �  and only the odd  

  trigonometric functions si  contribute to the Fourier series (all n nx 0na  ): 

    
1

( ) sinn
n

f x b
f

 
 ¦ nx    (Fourier sine series) 

  We have  
ʌ ʌ

ʌ 0

ʌ ʌ

00

ʌ ʌ

2
0 0

1 2( ) sin sin
ʌ ʌ

2 cos 1 cos
ʌ

2 if   odd2 cos sin 2 cos ʌ    
ʌ 2 if   even

nb f x nx dx x nx dx

x nx
nx dx

n n

n nx nx nx
n

n nn n n

�

�

�
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 (iii) Figure 7 
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 Example 3.4.2.

n � 1

For

if

Therefore  ☛

Fourier expansion also converges at because

Fourier expansion leads to
x = ±⇡

f(⇡) = f(�⇡)

For x = 0 x = ⇡

1X

n=1

(�1)n+1

n2
=

⇡2

12
and

1X

n=1

1

n2
=

⇡2

6

and

f(x) = x

2

Solutions for Chapter 15  8

 
 
10. A function with period  is defined by 2ʌ

   
2

( ) ʌ ʌf x x x � � d d

 (i) Draw the graph of the function in the interval 3ʌ 3ʌx� d d . (ii) Find the Fourier series of the 

 function. (iii) Use the series to show that 

  

2

2
1

2 1

2
1

ʌ 1 1 1 1
1

6 4 9 16

ʌ ( 1) 1 1 1
1

12 4 9 16

n
n

n

n

n

f

 
�f

 

  � � � �

�
  � � �

¦

¦

"

"�
 

 

 (i) Figure 8 

 

 

 

 

 

 (ii) Function ( )f x  is an even function in the interval ʌ ʌx� � �  and only the even  

  trigonometric functions co  contribute: s nx

     0

1

( ) cos
2

n
n

a
f x a

f

 
 �¦ nx   

  Then  

ʌ 2
2

0
0

2 2ʌ
ʌ 3

a x dx  ³  

  and, by parts (as in Example 6.11),           

     

2ʌ
2

2 2
0

if   odd42 4
cos cos ʌ   

ʌ if   even4
n

nn
a x nx dx n

n nn

 �°   ®
°�¯

³  

  Therefore 
2

2 2 2 2

ʌ cos cos 2 cos3 cos 4
( ) 4

3 1 2 3 4

x x x x
f x

ª º
 � � � � �« »

¬ ¼
"  

 (iii) Put ʌx  : 
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a0 =
2

3
⇡2

an =

4

n2
cos(n⇡)

x

2
=

⇡

2

3

+ 4

1X

n=1

(�1)

n cos(nx)

n

2
|x|  ⇡

bn = 0
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 Example 3.4.3.

f(x) =

⇢
(2a)�1 if |x| < a < ⇡

0 if |x| > a

bn = 0, an = sin(na)/(n⇡a)

For

we obtain n � 1 a0 = 1/⇡if and

Therefore ☛ f(x) =

1

⇡

"
1

2

+

1X

n=1

sin(na)

na

cos(nx)

#
, |x|  ⇡

For series converges to
x = ±a

(4a)�1

a ! 0If
f(x) ! �(x)the

�(x) =

1

⇡

"
1

2

+

1X

n=1

cos(nx)

#
=

1

2⇡

lim

n!1

mX

n=�m

e

inx

, |x|  ⇡

with
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We had to truncate last two graphs; spikes extend beyond the top

s1(x) s5(x) s10(x)

s25(x) s50(x) s100(x)

Figure 6.7. Partial Fourier Sums Approximating the Delta Function.

Remark : Although we stated that the Fourier series (6.36) represents the delta func-
tion, this is not entirely correct. Remember that a Fourier series converges to the 2π
periodic extension of the original function. Therefore, (6.37) actually represents the peri-
odic extension of the delta function, namely,

δ̃(x) = · · · +δ(x+4π)+δ(x+2π)+δ(x)+δ(x−2π)+δ(x−4π)+δ(x−6π)+ · · · , (6.38)

consisting of a periodic array of unit impulses concentrated at all integer multiples of 2π.

Let us investigate in what sense (if any) the Fourier series (6.36) or, equivalently,
(6.37), represents the delta function. The first observation is that, because its summands
do not tend to zero, the series certainly doesn’t converge in the usual, calculus sense.
Nevertheless, in a “weak” sense, the series can be regarded as converging to the (periodic
extension of the) delta function.

To understand the convergence mechanism, we recall that we already established a
formula (3.129) for the partial sums:

sn(x) =
1

2π

n∑

k=−n

e i kx =
1

2π
+

1

π

n∑

k=1

cos kx =
1

2π

sin
(
n + 1

2

)
x

sin 1
2 x

. (6.39)

Graphs of some of the partial sums on the interval [−π, π ] are displayed in Figure 6.7.
Note that, as n increases, the spike at x = 0 becomes becomes progressively taller and
thinner, converging to an infinitely tall delta spike. (We had to truncate the last two
graphs; the spike extends beyond the top.) Indeed, by l’Hôpital’s Rule,

lim
x→0

1

2π

sin
(
n + 1

2

)
x

sin 1
2 x

= lim
x→0

1

2π

(
n + 1

2

)
cos
(
n + 1

2

)
x

1
2 cos 1

2 x
=

n + 1
2

π
−→ ∞ as n → ∞.

8/19/12 190 c© 2012 Peter J. Olver
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Series does not converge pointwise
a distribution to �(x) |x|  ⇡for

Sn(x) =
1

⇡

"
1

2

+

1X

n=1

cos(nx)

#
=

sin

⇥�
n+

1
2

�
x

⇤

2⇡ sin(x/2)

 Indeed ☛   -th partial sumn

Z ⇡

�⇡
Sn(x) dx = 1, 8n � 0satisfies

and

lim
n!1

Z ⇡

�⇡
Sn(x) f(x) dx = f(0) + lim

n!1

Z ⇡

�⇡

f(x)� f(0)

sin(x/2)
sin

⇥�
n+ 1

2

�
x

⇤
dx

= f(0) test functions f8
Actually ☛ Fourier series converges to 

2⇡ of original functionperiodic extension

lim

m!1

mX

n=�m

�(x� 2n⇡) =

1

⇡

"
1

2

+

1X

n=1

cos(nx)

#
= lim

m!1

1

2⇡

mX

n=�m

e

inx

consisting of a periodic array of delta spikes
2⇡

but it converges as

concentrated at all integer multiples of
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 Example 3.4.4.

f(x) =

⇢
1 if |x| < 1/2
0 if |x| > 1/2

x 2 [�1, 1]
For

(3.4.357.)

we obtain 

an =

Z 1

�1
f(x) cos(n⇡x) dx =

⇢
(�1)

(n+1)/2
2/(n⇡) n odd

0 n even

bn =

Z 1

�1
f(x) sin(n⇡x) dx = 0 a0 = 1

and

-th partial sum readsn Sn(x) =
1

2

a0 +

nX

m=1

am cos(m⇡x)

dSn(x)/dx �

✓
x+

1

2

◆
� �

✓
x+

1

2

◆
☛

Near jumps there should be a consistent overshoot of about 9%

So-called Gibbs overshoot is a manifestation 
of subtle non-uniform convergence of Fourier series

30Tuesday, April 21, 15



we obtain

an =

⇧ 1

�1

f(x) cos(n⇥x) dx =

⇤
(�1)(n+1)/2 2/(n⇥) n odd

0 n even
, (3.4.358)

bn =

⇧ 1

�1

f(x) sin(n⇥x) dx = 0 , (3.4.359)

and a0 = 1. The n-th partial sum reads Sn(x) =
1
2a0 +

⌅n
m=1 am cos(m⇥x).

In Fig. 3.5 we show the graph of f and Sn, for n = 1, 3, 5, 11, 21, 51. The
last two panels show the graph of the derivative dSn(x)/dx for n = 21, 51,
which converges as a distribution to �

�
x+ 1

2

⇥
� �

�
x+ 1

2

⇥
for x ⇥ [�1, 1].

I.4 SERIE DE FOURIER

Ejemplo de desarrollo en serie de Fourier:

f(x) =

�
1 |x| < 1/2
0 |x| > 1/2

Intervalo: [�1, 1].

an =

⇤ 1

�1
f(x) cos(n⇥x)dx =

�
(�1)(n�1)/2 2

n� n impar
0 n par

, bn =

⇤ 1

�1
f(x) sin(n⇥x)dx = 0

con a0 = 1. Suma parcial de orden n:

Sn(x) =
1
2a0 +

n⇥

m=1

am cos(m⇥x)

Se muestran los gráficos de f y Sn para n = 1, 3, 5, 11, 21, 51. Los dos últimos paneles muestran la gráfica
de la derivada dSn(x)

dx para n = 21 y 51, que converge como distribución a �(x+ 1
2 )� �(x� 1

2 ) en [�1, 1].
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Figure 3.5: Partial Fourier sums.
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Definition 3.4.9.
Consider complex form of Fourier series of 

We can rewrite this series as

f(x) : [�L,L] ! R

f(x) =
1X

n=�1
c

n

e

in⇡x/L

, c

n

=
1

2L

Z
L

�L

f(x)e�in⇡x/L

dx

f(x) =
1p
2⇡

X

k

b
f(k) eikx �k

k = n⇡/L,�k = ⇡/Lwhere

and b
f(k) =

p
2⇡ c

n

L

⇡

=
1p
2⇡

Z
L

�L

f(x) eikx dx

Let us now consider limit L ! 1
In such a case �k ! 0 while (3.4.370.) and (3.4.373.)

(3.4.370.)

(3.4.373.)

b
f(k) =

1p
2⇡

Z 1

�1
f(x) e�ikx

dx

assuming that both integrals converge

(3.4.375.)

(3.4.379.)

approach ☛

f(x) =
1p
2⇡

Z 1

�1
b
f(k) eikx dk
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bf : R ! R Fourier transform of function f(f : R ! R)

b
f(k) = F [f(x)]Fourier transform operator 

(sufficiently nice) function of spatial variable x

kto a function of frequency variable

Expression which retrieves   fromf bf
 is inverse of Fourier transform operator

f(x) = F�1
h
b
f(k)

i

 are generalization of Fourier series 

f (�1,1)

i.e. is square-integrable
f(x) 2 L2

maps each 

for functions   defined on 

F & F�1
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Before proceeding we show validity of (3.4.375.) and (3.4.379.) 

f  which are piecewise C1
Z 1

�1
|f(x)|dx < 1and satisfy 

Proof is very similar to one carried out for Fourier series

(3.4.375) and (3.4.379.) entail

f(x) =

Z 1

�1

1

2⇡

Z 1

�1
e

ik(x�x

0)
dk

�
f(x0) dx0

so what must be shown is that

1

2⇡

Z 1

�1
e

ik(x�x

0)
dk = �(x� x

0)

Indeed ☛
1

2⇡

Z r

�r
eikt dk =

1

2⇡

eirt � e�irt

it
=

1

⇡

sin(rt)

t

with 1

⇡

Z 1

�1

sin(rt)

t
dt =

1

⇡

Z 1

�1

sin(u)

u
du = 1

for functions 

☛
Z 1

�1
= lim

r!1

Z r

�r
(3.4.382.)
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In[6]:= Integrate[(Sin[x]) % x, x]

Out[6]= SinIntegral[x]

In[11]:= Plot[SinIntegral[x], {x, '8, 8}]

Out[11]=
!5 5

!2

!1

1

2

In[12]:= Plot[SinIntegral[x], {x, '100 000 000, 100 000 000}]

Out[12]=
!1×108 !5×107 5×107 1×108

!1.5

!1.0

!0.5

0.5

1.0

1.5
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Therefore

f(x) = lim
r!1

Z 1

�1


1

2⇡

Z
r

�r

e

ik(x�x

0)
dk

�
f(x0) dx0

= lim
r!1

Z 1

�1

sin [r(x� x

0)]

⇡(x� x

0)
f(x0) dx0

= lim
r!1

Z 1

�1

sin(rt)

⇡t

[f(x+ t)� f(x) + f(x)] dt

= f(x) + lim
r!1

Z 1

�1
sin(rt)

f(x+ t)� f(x)

⇡t

dt

r ! 1For second term cancels

[f(x+ t)� f(x)]/t t ! 0remains bounded forbecause 
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Equation (3.4.382.) also implies

Z 1

�1
'

⇤
k

0(x) '
k

(x) dx =
1

2⇡

Z 1

�1
e

ix(k�k

0)
dx = �(k � k

0)

indicating that functions 'k

(x) = e

ikx

/

p
2⇡

with respect to inner product hu, vi =
Z 1

�1
u

⇤(x) v(x) dx

are orthogonal with 

and are normalized with respect to variable 

Note that convergence of integrals (3.4.382.) and (3.4.386.) 

should be understood as distributions

(3.4.386.)
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Example 3.4.5.
Fourier transform of rectangular pulse,

(a.k.a. box function of width     ) is easily computed

f(x) = ⇥(x+ a)�⇥(x� a) =

⇢
1 �a < x < a

0 |x| > a

2a

b
f(k) =

1p
2⇡

Z
a

�a

e

�ikx

dx =
e

ika � e

�ika

p
2⇡ik

=

r
2

⇡

sin(ak)

k

Reconstruction of pulse via inverse transform (3.4.379.) tells us that

(3.4.389.)

(3.4.390.)

(3.4.391.)

Note convergence to middle of jump discontinuities at 
x = ±a

1

⇡

Z 1

�1

e

ikx sin(ak)

k

dk =

8
<

:

1 �a < x < a

1/2 x = ±a

0 |x| > a
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Real part of this complex integral                                    
produces a striking trigonometric integral identity 

1

⇡

Z 1

�1

cos(kx) sin(ak)

k

dk =

8
<

:

1 �a < x < a

1/2 x = ±a

0 |x| > a

identity resulting from imaginary part

1

⇡

Z 1

�1

sin(kx) sin(ak)

k

dk = 0

is   not surprising because integrand is odd
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a = 1, its Fourier transform, along with a reconstruction obtained by numer-
ically integrating (3.4.392). Since we are dealing with an infinite integral, we
must break o� the numerical integrator by restricting it to a finite interval.
The first graph is obtained by integrating from �5 ⇥ k ⇥ 5 while the second
is from �10 ⇥ k ⇥ 10. The non-uniform convergence of the integral leads to
the appearance of a Gibbs phenomenon at the two discontinuities, similar to
what we observed in the non-uniform convergence of a Fourier series.

-2 -1 1 2
-0.2

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 1 2 3
-0.5

0.5

1

1.5

2

-2 -1 1 2
-0.2

0.2
0.4
0.6
0.8
1

1.2

-2 -1 1 2
-0.2

0.2
0.4
0.6
0.8
1

1.2

Figure 8.1. Fourier Transform of a Rectangular Pulse.

at the two discontinuities, similar to what we observed in the non-uniform convergence of
a Fourier series.

On the other hand, the identity resulting from the imaginary part,

1
�

⇤ ⇥

�⇥

sin kx sin ak

k
dk = 0,

is, on the surface, not surprising because the integrand is odd. However, it is far from
obvious that either integral converges; indeed, the amplitude of the oscillatory integrand
decays like 1/| k |, but the latter function does not have a convergent integral, and so
the usual comparison test for infinite integrals, [8], fails to apply. Their convergence is
marginal at best, and the trigonometric oscillations somehow manage to ameliorate the
slow rate of decay of 1/k.

Example 8.2. Consider an exponentially decaying right-handed pulse†

fr(x) =
⇥

e�ax, x > 0,

0, x < 0,
(8.16)

where a > 0. We compute its Fourier transform directly from the definition:

⌅fr(k) =
1⇤
2�

⇤ ⇥

0
e�ax e� i kx dx = � 1⇤

2�

e�(a+ i k)x

a + i k

����
⇥

x=0

=
1⇤

2� (a + i k)
.

† Note that we can’t Fourier transform the entire exponential function e�ax because it does
not go to zero at both ±�, which is required for the integral (8.6) to converge.

10/17/12 288 c⇥ 2012 Peter J. Olver

Figure 3.7: Fourier transform of a rectangular pulse.

On the other hand, the identity resulting from the imaginary part,

1

�

� ⇥

�⇥

sin(kx) sin(ak)

k
dk = 0 , (3.4.393)

is, on the surface, not surprising because the integrand is odd. However, it is
far from obvious that either integral converges; indeed, the amplitude of the
oscillatory integrand decays like 1/|k|, but the latter function does not have
a convergent integral, and so the usual comparison test for infinite integrals
fails to apply. Their convergence is marginal at best, and the trigonometric
oscillations somehow manage to ameliorate the slow rate of decay of 1/k.

151

Non-uniform convergence of the integral                                
leads to appearance of a Gibbs phenomenon at two discontinuities 
similar to the non-uniform convergence of a Fourier series

Left graph is obtained by integrating from �5  k  5

Since we are dealing with an infinite integral                                
must break off numerical integrator restricting it to a finite interval

�10  k  10Right graph is obtained by integrating from 
40Tuesday, April 21, 15



41Tuesday, April 21, 15


