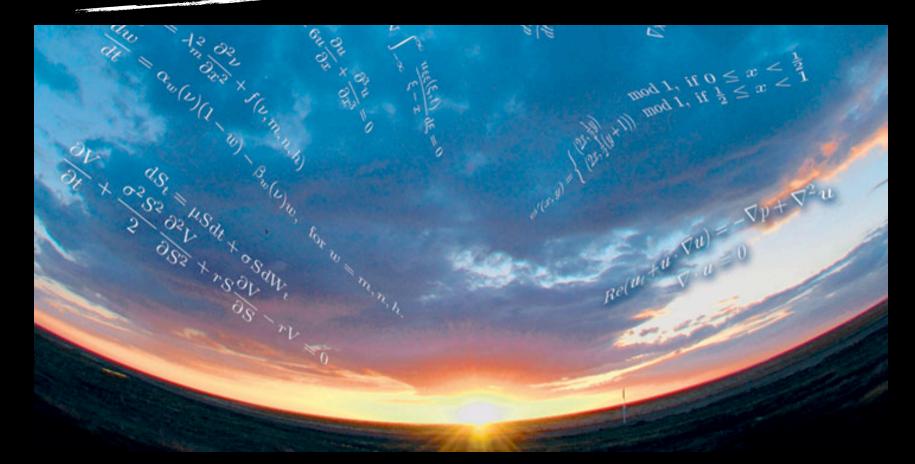
Physics 307



MATHEMATICAL PHYSICS

Luis Anchordoqui

ORDINARY DIFFERENTIAL EQUATIONS IV 3.1 Setting the stage 🗸 3.2 Initial Value Problem / Picard's existence and uniqueness theorem Systems of first-order linear differential equation Green matrix as a generalized function 3.3 Boundary Value Problem Self-adjointness of Sturm-Liouville operator Green function of sturm-Liouville operator Series solutions to homogeneous linear equations 3.4 Fourier Analysis Fourier series Fourier transform

SERIES SOLUTIONS TO HOMOGENEOUS LINEAR EQUATIONS Theorem 3.3.5. If A(x) and B(x) are analytic functions in a neighborhood of x = 0

$$A(x) = \sum_{n=0}^{\infty} A_n x^n, \quad B(x) = \sum_{n=0}^{\infty} B_n x^n, \quad |x| < R$$
 (3.3.222.)

the solutions of

$$u'' + A(x)u' + B(x)u = 0$$
 (3.3.223.)

are also analytic functions & can be represented as a power series

$$u(x) = \sum_{n=0}^{\infty} c_n x^n, \quad |x| < R$$
 (3.3.224.)

Proof. We first assume that there exists a solution of form (3.3.224) and we will show that it converges

since

$$B(x) \ u(x) = \sum_{n=0}^{\infty} x^n \sum_{m=0}^{n} B_{n-m} c_m$$
 (3.3.225.)

and

$$A(x) \ u'(x) = \sum_{n=0}^{\infty} x^n \sum_{m=0}^{n+1} A_{n-m+1} \ m \ c_m$$
 (3.3.226.)

we substitute (3.3.224) into (3.3.223) to obtain ∞ Γ n+1

$$\sum_{n=0} x^n \left[c_{n+2}(n+2)(n+1) + \sum_{m=0}^{n} c_m(mA_{n-m+1} + B_{n-m}) \right] = 0$$

Since coefficient of x^n must cancel

$$c_{n+2} = -\frac{\sum_{m=0}^{n+1} c_m [mA_{n-m+1} + B_{n-m}]}{(n+2)(n+1)}, \quad n \ge 0$$
(3.3.228.)
It follows that c_{n+2} only depends on previous coefficients
 c_0, \dots, c_{n+1}

(3.3.227.)

For
$$n \geq 2$$
 = this leads to a recursive relationship
that determines every c_n in terms of c_0 and c_1
For example
 $c_2 = -\frac{A_0c_1 + B_0c_0}{2}$,
 $c_3 = -\frac{A_1c_1 + 2A_0c_2 + B_1c_0 + B_0c_1}{6}$ (3.3.229.)
 $= -\frac{c_0(B_1 - A_0B_0) + c_1(A_1 + B_0 - A_0^2)}{6}$
This series can be proven to converge for $|x| < R$
Let t be such that $0 \leq |x| < t < R$
A necessary condition for series (3.3.222) to converge is that
 $\lim_{n \to \infty} A_n t^n = \lim_{n \to \infty} B_n t^n = 0$
This implies that $\exists M > 0$ such that
 $|B_n| \leq M/t^n$ and $|A_n| \leq M/t^{n-1} \neq n$ (3.3.230.)
Therefore $\Rightarrow |c_{n+2}| \leq \frac{M \sum_{m=0}^{n+1} |c_m| \ t^m \ (m+1)}{t^n \ (n+2) \ (n+1)}$ (3.3.231.)

By recursively defining non-negative coefficients $d_{n+2} = \frac{M \sum_{m=0}^{n+1} d_m t^m (m+1)}{t^n (n+2) (n+1)}$ (3.3.232.) with $d_0 = |c_0|, d_1 = |c_1|$ we have $|c_n| \leq d_n \forall n$ In addition > $d_{n+2} = d_{n+1} \left[\frac{n}{t(n+2)} + \frac{Mt(n+2)}{(n+2)(n+1)} \right] \quad (3.3.233.)$ and so using the ratio test (3.3.234.) $\lim_{n \to \infty} \frac{d_{n+2} |x|^{n+2}}{d_{n+1} |x|^{n+1}} = \frac{|x|}{t} < 1$ we show that series $\sum_{n=0}^{\infty} d_n x^n$ is absolutely convergent for |x| < ti.e. $\forall x < R$ This in turn entails that $\sum c_n x_n$ is absolutely convergent for |x| < R

The general solution can be written as

$$u(x) = c_0 u_1(x) + c_1 u_2(x)$$
 (3.3.235.)

 u_1 is solution for $c_0 = 1$ and $c_1 = 0$ u_2 is solution for $c_0 = 0$ and $c_1 = 1$

i.e.
$$u_1(x) = 1 - \frac{B_0}{2}x^2 - \frac{B_1 - A_0B_0}{6}x^3 + \dots,$$

 $u_2(x) = x - \frac{A_0}{2}x^2 - \frac{A_1 + B_0 - A_0^2}{6}x^3 + \dots$

Of course same considerations apply if coefficients are analytical in neighborhood of x_0 in which case A(x), B(x), and u(x)can be expressed as power series of $(x - x_0)$

Example 3.3.8. [Legendre polynomials] The second order differential equation $(1 - x^2)u'' - 2xu' + l(l+1)u = 0$ (3.3.238.) can be written in Sturm-Liouville form (3.3.239.) $\left[(1 - x^2)u' \right]' + l(l+1)u = 0$ it corresponds to $A(x) = -\frac{2x}{1-x^2}$ and $B(x) = \frac{l(l+1)}{1-x^2}$ both functions are analytic if $\left|x\right|<1$ Legendre equation arises when considering the angular part of Laplacian in spherical coordinates if u is only a function of θ $\left|\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)\right|u(\theta) = -l(l+1)u(\theta) \qquad (3.3.240.)$ $\frac{1}{\sin\theta}\frac{\partial}{\partial\theta} = -\frac{\partial}{\partial x}$ Note that with substitution $\blacktriangleright x = \cos \theta \quad \Rightarrow$ ∂x (3.3.240.) becomes (3.3.238.)

Since $l(l+1) = (l+1/2)^2 - 1/4$ it is sufficient to consider $\Re e(l) \ge -\frac{1}{2}$ Series (3.3.224.) takes form

 $\sum_{n=0} x^n \{ c_{n+2}(n+2)(n+1) - c_n [n(n-1) + 2n - l(l+1)] \} = 0 \quad (3.3.241.)$

and thus

$$c_{n+2} = c_n \frac{n(n+1) - l(l+1)}{(n+2)(n+1)} = -c_n \frac{(n+l+1)(l-n)}{(n+2)(n+1)}$$
(3.3.24)

for $c_1 = 0$ and $c_0 \neq 0$ we obtain even solution $rec c_{2n+1} = 0$ $c_2 = -c_0 \frac{l(l+1)}{2!}, \quad c_4 = c_0 \frac{l(l-2)(l+1)(l+3)}{4!}, \dots$

for $c_0=0$ and $c_1
eq 0$ we obtain odd solution \blacktriangleright $c_{2n}=0$

$$c_3 = -c_0 \frac{(l-1)(l+2)}{3!}, \quad c_5 = c_0 \frac{(l-1)(l-3)(l+2)(l+4)}{5!}, \dots$$

Since $\lim_{n \to \infty} |c_{n+2}/c_n| \to 1$ radius of convergence of series is |x| < 1If $l \notin \mathbb{Z}$ — it is easily seen that $|u(x)| o \infty$ at $x = \pm 1$ If $l>0\in\mathbb{Z}$ is $c_{l+2}=0$ the solution becomes a polynomial of degree lcalled Legendre polynomial non-zero coefficients of Legendre polynomial are given by $c_{2n+i} = c_i \frac{(-1)^n (l_2!)^2 (l+2n)!}{l!(l_2-n)!(l_2+n)!(2n+i)!}, \quad i = 0, 1, \quad n = 0, \dots, l_2$ $l_2=\lfloor l/2
floor$ (3.3.243.) $i=0\,$ corresponds to solution with even $\,l$ i=1 corresponds to solution with odd lLegendre polynomials are defined as solution to coefficients $c_i = (-1)^{l_2} l! / [(l_2!)^2 2^{l-i}], i = 0, 1$ $P_{l}(x) = \frac{1}{2^{l}} \sum_{k=0}^{l_{2}} \frac{(-1)^{k} (2l-2k)!}{k! (l-k)! (l-2k)!} x^{l-2k} \quad (3.3.244.)$ $k = l_{2} - 2k$ $k = l_2 - n$

Since

01

101

7(1)

$$\frac{(2l-2k)!}{(l-2k)!}x^{l-2k} = \frac{d^{(l)}}{dx^l}x^{2l-2k} \text{ and } k!(l-k)! = l!/\binom{l}{k} \text{ (3.3.245.)}$$
polynomials can also be written using Rodrigues formula
$$P_l(x) = \frac{1}{2^l l!}\frac{d^{(l)}}{dx^l}\sum_{k=0}^{l}(-1)^k\binom{l}{k}x^{2l-2k}$$

$$= \frac{1}{2^l l!}\frac{d^{(l)}}{dx^l}(x^2-1)^l \text{ (3.3.246.)}$$
First five Legendre polynomials are:
$$P_0(x) = 1$$

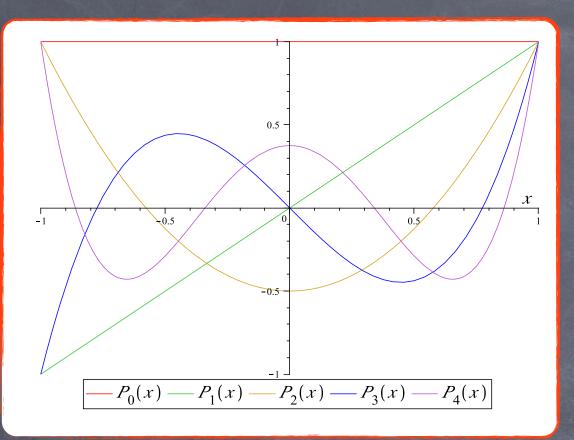
$$P_1(x) = x$$

$$P_2(x) = \frac{1}{2}(3x^2-1)$$

$$P_3(x) = \frac{1}{2}(5x^3-3x)$$

$$P_4(x) = \frac{1}{8}(35x^4-30x^2+3);$$

11



Legendre polynomials satisfy following relations: $P_{l}(1) = 1$ $\int_{-1}^{1} P_{l}(x) P_{l'}(x) dx = \delta_{ll'} \frac{2}{2l+1}$ $lP_{l}(x) = (2l-1)xP_{l-1}(x) - (l-1)P_{l-2}(x), \quad l \ge 2$ (3.3.247.)

In summary bounded solutions of (3.3.238.) for $x\in(-1,1)$ and $l\geq -1/2$ are only obtained when $l\in\mathbb{Z}$ Solution is a polynomial proportional to polynomial of Legendre Polynomial functions are odd or even (with respect to x=0) according to whether index l is odd or even For example 5 linearly independent solutions of (3.3.238.) for l=0are $u_2(x) = \frac{1}{2} \ln[(1+x)/(1-x)]$ $u_1(x) = P_0(x) = 1$ and where $u_2(x)$ is odd solution which diverges for $x
ightarrow \pm 1$

Example 3.3.9. [Associated Legendre polynomials] Associated Legendre polynomials are canonical solutions of $\left(1-x^2\right)u''-2xu'+\left[l(l+1)-\frac{m^2}{1-x^2}\right]u=0$ (3.3.248.) For m=0 (3.3.248.) reduces to Legendre equation Associated Legendre equation arises when considering angular part of Laplacian in spherical coordinates if $u(heta,\phi)=u(heta)e^{im\phi}$ $\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) - \frac{m^2}{\sin^2\theta}\right]u(\theta) = -l(l+1)u(\theta)$ (3.3.249.) Note that with substitution $x=\cos heta$ (3.3.249.) becomes (3.3.248.) We can assume that $\Re e \; (m) \geq 0$ and $\Re e \; (l) \geq -1/2$ It is convenient to introduce following change of variable $u = (1 - x^2)^{m/2} w$ (3.3.250.) so that (3.3.248.) can be rewritten as $(1-x^2)w'' - 2(m+1)xw' + [l(l+1) - m(m+1)]w = 0$ (3.3.251.)

ntroducing a power series for
$$w \leftarrow (3.3.228.)$$
 takes form

$$c_{n+2} = c_n \frac{n(n-1) + (2n+m)(m+1) - l(l+1)}{(n+2)(n+1)}$$

$$= -c_n \frac{(n+l+1+m)(l-m-n)}{(n+2)(n+1)} \quad (3.3.252.)$$

If l-m=k with k a positive integer r then $c_{k+2}=0$ and solution (with same parity of k) is a polynomial of degree kAlthough we can obtain such polynomials by means of (3.3.252.) it is easily seen (with help of Leibniz formula) that if u(x) is a solution of Legendre equation (3.3.238.) then - m-th derivative $u^{(m)}(x)$ satisfies (3.3.251.) Namely $(1-x^2)u^{(m+2)} - 2(m+1)xu^{(m+1)} + [l(l+1) - m(m+1)]u^{(m)} = 0$ (3.3.253.)

For $m>0\in\mathbb{Z}$ solutions of (3.3.248.) are of form $(1-x^2)^{m/2}u^{(m)}(x)$ with u(x) a solution of Legendre equation (3.3.238) For integers m and lwe can write the so-called associated Legendre polynomials $P_l^m(x) = (1 - x^2)^{m/2} \frac{d^{(m)}}{dx^m} P_l(x), \text{ with } 0 \le m \le l \quad (3.3.254.)$ which constitute only bounded solutions of (3.3.248.) in $\left[-1,1
ight]$ Using Leibniz differentiation formula once again it is easily seen that $P_l^m(x)$ and P_l^{-m} are related by $P_l^{-m}(x) = (-1)^m \ \frac{(l-m)!}{(l+m)!} \ P_l^m(x)$ (3.3.255.) Orthogonality integral reads and hence $\int_{-1}^{1} P_{l}^{m}(x) P_{l'}^{m}(x) dx = \delta_{ll'} \frac{2}{2l+1} \frac{(l-m)!}{(l+m)!} \quad (3.3.256.)$ $\int_{-1}^{1} P_{l}^{m}(x) P_{l'}^{-m}(x) dx = \delta_{ll'} \frac{2}{2l+1} \quad (3.3.257.)$

Theorem 3.3.6. [Frobenius-Fuchs theorem]

If A(x) has at least a simple pole at x = 0and B(x) has at least a pole of order two at x = 0such that $A(x) = \sum_{n=-1}^{\infty} A_n x^n = \frac{A_{-1}}{x} + A_0 + \dots$ $B(x) = \sum_{n=-2}^{\infty} B_n x^n = \frac{B_{-2}}{x^2} + \frac{B_{-1}}{x} + \dots, \qquad 0 < |x| < R$

one of linearly independent solutions of (3.3.223.) can expanded as a generalized power series

$$u_1(x) = \sum_{n=0}^{\infty} a_n x^{n+s_+} = x^{s_+} \sum_{n=0}^{\infty} a_n x^n \qquad (3.3.258.)$$

where $a_0
eq 0$ and s_+ is a root of indicial polynomial

$$s(s-1) + A_{-1}s + B_{-2} = 0$$
 (3.3.259.)

that is $rac{}{} s_{\pm} = \frac{1 - A_{-1} \pm r}{2}$ with $r = \sqrt{(1 - A_{-1})^2 - 4B_{-2}}$ (3.3.260.) If the difference between two roots of this equation $r \notin \mathbb{Z}$ 2nd solution of (3.3.223.) is also a generalized power series on S_{-} = other root of (3.3.259.) On other hand \blacksquare if $r \in \mathbb{Z}$ second solution has form (3.3.261.) $u_2(x) = Cu_1(x)\ln x + x^{s_-} \sum b_n x^n$ if r=0 (i.e. $s_+=s_-$) then C
eq 0Proof. Need for a generalized power series can be understood by analyzing behavior of solution for x
ightarrow 0Retaining only higher-order terms (3.3.223.) becomes Euler eq. $u'' + \frac{A_{-1}}{x}u' + \frac{B_{-2}}{x^2}u = 0$ (3.3.262.) For single roots ullet solutions are of the form $u(x)=cx^s$ (3.3.263.) for multiple roots $- x^s \ln s$ is also a solution Substituting (3.3.263.) into (3.3.262.) we obtain $cx^{s}[s(s-1) + A_{-1}s + B_{-2}] = 0$ which leads to indicial equation

Alternatively - we can obtain indicial equation substituting (3.3.258.) in (3.3.223.) $\sum_{n=0}^{\infty} x^{s+n-2} \left\{ a_n(n+s)(n+s-1) + \sum_{m=0}^{n} a_m \left[A_{n-m-1}(m+s) + B_{n-m-2} \right] \right\}$ Cancellation of coefficient of x^{s-2} (i.e. ractriangle n=0) implies $a_0[s(s-1) + A_{-1}s + B_{-2}] = 0$ (3.3.265.) which leads to indicial equation because $a_0
eq 0$ For $n \geq 1$ - cancelation of coefficient of x^{n+s-2} leads to recursive relation $\sum_{m=0}^{n-1} a_m (A_{n-m-1}(m+s) + B_{n-m-2})$ a_n

$$= -\frac{\sum_{m=0}^{n-1} a_m (A_{n-m-1}(m+s) + B_{n-m-2})}{n(n+2s+A_{-1}-1)}$$
(3.3.266.)

Since $n+2s+A_{-1}-1=n\pm r$, this is valid if $n\pm r
eq 0$

Example 3.3.10. [Bessel functions]

Bessel equation

$$\int u'' + \frac{u'}{x} + \left(1 - \frac{\nu^2}{x^2}\right)u = 0$$
 (3.3.267.)

is of the form contemplated in theorem 3.3.6.

It arises when finding separable solutions to Laplace & Helmhotz eqs. in cylindrical or spherical coordinates By employing method of generalized power series we obtain

$$\sum_{n=0}^{\infty} x^{s+n-2} \{ a_n [(n+s)(n+s-1) + (n+s) - \nu^2] + a_{n-2} \} = 0$$
 (3.3.268.)

with $a_{-2} = a_{-1} = 0$ For n = 0 \leftarrow $a_0[s(s-1) + s - \nu^2] = 0$ (3.3.269.) which leads to indicial equation $s^2 - \nu^2 = 0$ \leftarrow $s = \pm \nu$ a_{n-2} a_{n-2}

For
$$n \ge 2$$
 $rac{a_n}{=} -\frac{n^2}{(n+s)^2 - \nu^2} = -\frac{n^2}{n(n+2s)}$ (3.3.270.)

Substituting s=
u into (3.3.268.) we determine $a_1=0$ and using (3.3.270.) we see that $a_n=0$ for all n= odd integers The coefficients for even powers of n are found to be a_{2n} $4n(n+\nu)$ a_{2n-2} $(-1)^{n+1} 2^{2n} (n-1)! \Gamma(n+\nu)$ (3.3.271.) $(-1)^n 2^{2n+2} n! \Gamma(n+\nu+1)$ where in last line we have use properties of Gamma function The recursive relation is satisfied if $a_{2n} = (-1)^n \frac{\sigma}{2^{2n} n! \Gamma(n+\nu+1)}$ (3.3.272.)For $c = 2^{-\nu}$ = we obtain Bessel function of first kind of order ν $J_{\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\Gamma(n+1)\Gamma(n+\nu+1)} \left(\frac{x}{2}\right)^{2n+\nu}$ (3.3.273.)which is one of solutions of (3.3.267.) By applying ratio test abla series converges $orall x \in \mathbb{R}$ (or $x \in \mathbb{C}$)

If
$$\nu \notin \mathbb{Z}$$
 = other linear independent solution of (3.3.267.) is

$$J_{-\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n-\nu+1)} \left(\frac{x}{2}\right)^{2n-\nu}$$
(3.3.274.)
If $n \ge 0 \in \mathbb{Z}, J_{-n}(x) \equiv \lim_{\nu \to -n} J_{\nu}(x) = (-1)^n J_n(x)$
Thus = we take particular linear combination of $J_{\nu}(x)$ and $J_{-\nu}(x)$

$$Y_{\nu}(x) = \frac{\cos(\nu\pi)J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu\pi)}$$
(3.3.275.)
Known as Bessel function of second kind
For $\nu \notin \mathbb{Z} = Y_{\nu}(x)$ satisfies Bessel equation
for it is linear combination of known solutions $J_{\nu}(x)$ and $J_{-\nu}(x)$
However = for $\nu \in \mathbb{Z}$ (3.3.275.) becomes indeterminate
In fact = $Y_n(x)$ for integer n is defined as

$$Y_n(x) = \lim_{\nu \to n} Y_{\nu}(x)$$
(3.3.277.)

It is easily seen that explicit form of $Y_
u$ for $u\in\mathbb{Z}$ is

$$Y_{\nu}(x) = \frac{2}{\pi} \left[J_{\nu}(x) \ln\left(\frac{x}{2}\right) - \left(\frac{x}{2}\right)^{\nu} \sum_{n=0}^{\infty} (-1)^{n} \frac{[\phi(n) + \phi(n+\nu)]}{2n! (n+\nu)!} \left(\frac{x^{2}}{4}\right)^{n} - \left(\frac{x}{2}\right)^{-\nu} \sum_{n=0}^{\nu-1} \frac{(\nu - n - 1)!}{2n!} \left(\frac{x^{2}}{4}\right)^{2n} \right]$$

$$(3.3.278.)$$

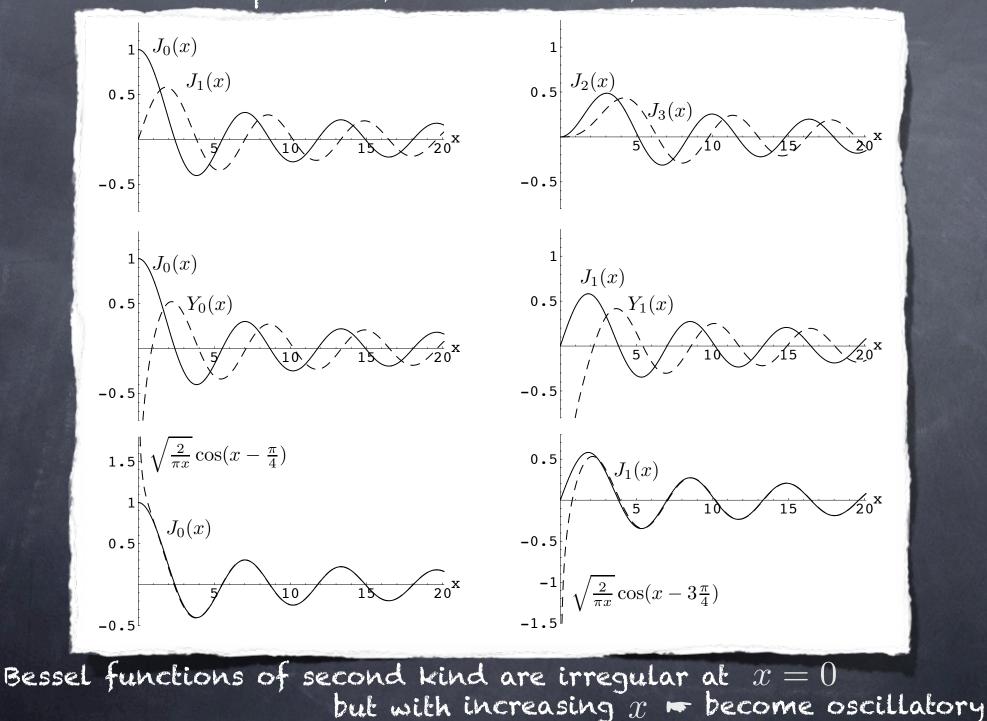
 $\phi(m) = \Gamma'(m+1)/\Gamma(m)$ and last sum is only present if $\nu \neq 0$ Asymptotic forms are $J_{\nu}(x) \approx \sqrt{\frac{2}{\pi x}} \cos \left[x - \left(\nu + \frac{1}{2} \right) \frac{\pi}{2} \right]$ (3.3.279.)

$$Y_{\nu}(x) \approx \sqrt{\frac{2}{\pi x}} \sin\left[x - \left(\nu + \frac{1}{2}\right)\frac{\pi}{2}\right]$$
 (3.3.280.)

Note that for k
eq 0 = $J_
u(kx)$ and $Y_
u(kx)$ are solutions of

$$u'' + rac{u'}{x} + \left(k^2 - rac{
u^2}{x^2}
ight) u = 0$$
 (3.3.281.)

Properties of various Bessel functions



Theorem 3.3.8.

Last class we saw that for $p(x)>0\,$ and q(x) continuous in [a,b]Sturm-Liouville eigenvalue problem (3.3.181.) can be written as u'' + A(x)u' + B(x)u = 0 (3.3.288.) with $A(x) = rac{p'(x)}{p(x)}$ and $B(x) = rac{\lambda \rho(x) - q(x)}{p(x)}$ (3.3.289.) Consider the case in which $p(\boldsymbol{x})$ has a zero of order one at $\boldsymbol{x}=\boldsymbol{a}$ $p(x) = c_1(x-a) + c_2(x-a)^2 + \dots, \quad c_1 \neq 0$ (3.3.290.) and is positive and continuous in rest of interval $\left[a,r
ight]$ In such a case A(x) has a single pole with residue $A_{-1}=1$ There is only one l.i. bounded solution of (3.3.288.) for $x
ightarrow a^+$ Then - boundary condition to be imposed 5 eigenfunction remains bounded for x
ightarrow a

Proof. If q(x) is continuous in [a,b] then \supset B(x) has at most a simple pole at x=a and so $B_{-2}=0$ roots of indicial equation at x = a are: s=0 and $s=1-A_{-1}=0$ one of solutions of (3.3.288.) is a power series (which is bounded in x=a) whereas other solution has a logarithmic divergence at x=aNote that sturm-Liouville operator remains self-adjoint if $\lim_{x \to a^{+}} p(x)u(x) = 0 \text{ and } \lim_{x \to a^{+}} p(x)u'(x) = 0$ (3.3.291.) If u(x) and u'(x) are bounded for $x \to a^+$ then (3.3.291.) conditions are satisfied as p(a)=0 by hypothesis The above reasoning extends easily to the case in which q(x) has a simple pole at x=a

Corollary 3.3.3. (i) Legendre polynomial series Legendre equation (3.3.238.) can be rewritten as a Sturm-Liouville eigenvalue problem $-[(1-x^2)u']' = \lambda u, \quad x \in [-1,1]$ (3.3.292.) $p(x) = 1 - x^2 = (1 + x)(1 - x)$ has a zero of order one at $x = \pm 1$ Boundary condition to be imposed is that u(x) remains bounded This condition determines eigenvalues $\lambda = l(l+1)$ with $l=0,1,\ldots$ $P_l(x)$ polynomials form a complete set in $\left[-1,1
ight]$ \blacktriangleright orthogonal basis of vector space of differentiable f(x) to 2nd order Any function $f(x) \in \mathcal{C}^2([-1,1])$ can be expanded as $f(x) = \sum c_l P_l(x)$ Since $\int_{-1}^{1} P_l^2(x) dx = 2/(2l+1)$ we have $r c_l = \frac{2l+1}{2} \int_{-1}^{1} f(x) P_l(x) dx$

(iii) Bessel series

whe

As

Sin

AŁ

(3.3.281.) also defines a sturm-Lioville eigenvalue problem

$$-(xu')' + \frac{\nu^2}{x}u = \lambda xu$$
(3.3.298.)
The $p(x) = x, q(x) = \nu/x$ and $\rho(x) = x$ with $\lambda = k^2$
an illustration \leftarrow we consider here $x \in [0, a]$
the p(x) has a simple pole at $x = 0$
we impose the boundary condition $|u(0)| < \infty$
 $x = a$ we set a Dirichlet boundary condition: $u(a) = 0$

General solution of (3.3.298.) is

 $u(x)=A\;J_{\nu}(\sqrt{\lambda}x)+B\;Y_{\nu}(\sqrt{\lambda}x) \qquad \hbox{(3.3.299.)}$ Boundary condition $|u(0)|<\infty\;$ sets B=0

whereas u(a)=0 leads to $J_{
u}(\sqrt{\lambda}a)=0$

that is $\sqrt{\lambda}a = k_n^{\nu}$, $n = 1, 2, \dots$ with $J_{\nu}(k_n^{\nu}) = 0$ (3.3.300.) k_n^{ν} are roots of $J_{\nu}(x)$ that form a countable set in \mathbb{R}

Eigenfunctions associated with eigenvalues $\lambda=(k_n^
u/a)^2$ are orthogonal in inner product $\langle u,v
angle_x=\int_0^u u(x)\;v(x)\;x\;dx$ Eigenfunction set $\{J_
u(k_n^
u x/a),\ n=1,2,\ldots,
\}^0$ is complete on [0,a]because L is self-adjoint with present boundary conditions We can then expand a function $f(x) \in [0,a]$ as $f(x) = \sum c_n J_{\nu}(k_n^{\nu} x/a)$ (3.3.308.) with $c_n = \frac{2}{a^2 J_{\nu}'^2(k_n^{\nu})} \int_0^a f(x) J_{\nu}(k_n^{\nu} x/a) x dx$ (3.3.309.) Note that summation in (3.3.308.) is over n and not over uFirst zeros of $J_0(x)$ are $k_1^0 \approx 2.405 = 0.765\pi, \ k_2^0 \approx 5.52 = 1.76\pi, \ k_3^0 \approx 8.65 = 2.75\pi$ Asymptotic form - $k_n^0 \approx (n - \frac{1}{4})\pi$

