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Series solutions to homogeneous linear equations
Theorem 3.3.5.

If andA(x)
B(x) x = 0are analytic functions in a neighborhood of 

A(x) =
1X

n=0

Anx
n
, B(x) =

1X

n=0

Bnx
n
, |x| < R

u

00 +A(x)u0 +B(x)u = 0

the solutions of

are also analytic functions & can be represented as a power series

u(x) =
1X

n=0

cn x

n
, |x| < R

(3.3.222.)

(3.3.223.)

(3.3.224.)
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Proof.
We first assume that there exists a solution of form (3.3.224)

Since
B(x) u(x) =

1X

n=0

x

n
nX

m=0

Bn�mcm

and

A(x) u0(x) =
1X

n=0

x

n
n+1X

m=0

An�m+1 m cm

we substitute (3.3.224) into (3.3.223) to obtain
1X

n=0

x

n

"
cn+2(n+ 2)(n+ 1) +

n+1X

m=0

cm(mAn�m+1 +Bn�m)

#
= 0

 Since coefficient of 
x

n must cancel

cn+2 = �
Pn+1

m=0 cm[mAn�m+1 +Bn�m]

(n+ 2)(n+ 1)
, n � 0

it follows that cn+2  only depends on previous coefficients
c0, . . . , cn+1

(3.3.225.)

(3.3.226.)

(3.3.227.)

(3.3.228.)

and we will show that it converges
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 ☛ this leads to a recursive relationshipFor n � 2
every cn in terms of c0 c1and

For example
c2 = �A0c1 +B0c0

2
,

c3 = �A1c1 + 2A0c2 +B1c0 +B0c1
6

= �c0(B1 �A0B0) + c1(A1 +B0 �A2
0)

6

This series can be proven to converge for |x| < R

Let t be such that 0  |x| < t < R

A necessary condition for series (3.3.222) to converge  is that 
lim
n!1

Ant
n = lim

n!1
Bnt

n = 0

This implies that 9M > 0 such that

|Bn|  M/tn and |An|  M/tn�1

8n

(3.3.229.)

(3.3.230.)

Therefore ☛ |cn+2| 
M

Pn+1
m=0 |cm| tm (m+ 1)

tn (n+ 2) (n+ 1)
(3.3.231.)

that determines

5Thursday, April 2, 15



By recursively defining non-negative coefficients

dn+2 =
M

Pn+1
m=0 dm tm (m+ 1)

tn (n+ 2) (n+ 1)
(3.3.232.)

d0 = |c0|, d1 = |c1|with we have |cn|  dn8n
In addition

dn+2 = dn+1


n

t(n+ 2)
+

Mt(n+ 2)

(n+ 2)(n+ 1)

�
(3.3.233.)

and so using the ratio test

lim
n!1

dn+2|x|n+2

dn+1|x|n+1
=

|x|
t

< 1 (3.3.234.)

we show that series 

1X

n=0

dnx
n

is absolutely convergent for |x| < t

8x < Ri.e.

This in turn entails that 

1X

n=0

cnxn |x| < Ris absolutely convergent for
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(3.3.235.)

The general solution can be written as

u(x) = c0u1(x) + c1u2(x)

u1  is solution for c0 = 1 c1 = 0and

is solution foru2 c0 = 0 c1 = 1and

i.e.
u1(x) = 1� B0

2
x

2 � B1 �A0B0

6
x

3 + . . . ,

u2(x) = x� A0

2
x

2 � A1 +B0 �A

2
0

6
x

3 + . . .

Of course same considerations apply 
x0

in which case
A(x), B(x)

can be expressed as power series of 
, and u(x)

(x� x0)

if coefficients are analytical in neighborhood of 
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Example 3.3.8. [Legendre polynomials]
The second order differential equation 

(1� x

2)u00 � 2xu0 + l(l + 1)u = 0
can be written in Sturm-Liouville form

[(1� x

2)u0]0 + l(l + 1)u = 0

A(x) = � 2x

1� x

2
and B(x) =

l(l + 1)

1� x

2it corresponds to

(3.3.238.)

(3.3.239.)

both functions are analytic if |x| < 1

(3.3.240.)

 in spherical coordinates
u ✓

1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆�
u(✓) = �l(l + 1)u(✓)

Legendre equation arises when considering
the angular part of Laplacian

if   is only a function of

Note that with substitution ☛ x = cos ✓ ) 1

sin ✓

@

@✓

= � @

@x

(3.3.240.) becomes  (3.3.238.)
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(3.3.241.)

(3.3.242.)

Since l(l + 1) = (l + 1/2)2 � 1/4

 it is sufficient to consider 
Series (3.3.224.) takes form

1X

n=0

x

n{cn+2(n+ 2)(n+ 1)� cn[n(n� 1) + 2n� l(l + 1)]} = 0

cn+2 = cn
n(n+ 1)� l(l + 1)

(n+ 2)(n+ 1)
= �cn

(n+ l + 1)(l � n)

(n+ 2)(n+ 1)

and thus

<e(l) � �1

2

for c1 = 0 and c0 6= 0 we obtain even solution ☛ c2n+1 = 0

c2 = �c0
l(l + 1)

2!
, c4 = c0

l(l � 2)(l + 1)(l + 3)

4!
, . . .

c3 = �c0
(l � 1)(l + 2)

3!
, c5 = c0

(l � 1)(l � 3)(l + 2)(l + 4)

5!
, . . .

for c0 = 0 and c1 6= 0 we obtain odd solution ☛ c2n = 0
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Since lim
n!1

|cn+2/cn| ! 1radius of convergence of series is

If l /2 Z ☛ it is easily seen that                at|u(x)| ! 1
If l > 0 2 Z ☛ cl+2 = 0

 the solution becomes a polynomial of degree l
 called Legendre polynomial

|x| < 1

x = ±1

non-zero coefficients of Legendre polynomial are given by

c2n+i = ci
(�1)n (l2!)2(l + 2n)!

l!(l2 � n)!(l2 + n)!(2n+ i)!
, i = 0, 1, n = 0, . . . , l2

(3.3.243.)
corresponds to solution with even 

l2 = bl/2c
l

i = 1

ci = (�1)l2 l!/[(l2!)
22l�i], i = 0, 1

Pl(x) =
1

2l

l2X

k=0

(�1)k(2l � 2k)!

k!(l � k)!(l � 2k)!
x

l�2k

k = l2 � n

(3.3.244.)

Legendre polynomials are defined as solution to coefficients
corresponds to solution with odd l

i = 0
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(2l � 2k)!

(l � 2k)!
x

l�2k =
d

(l)

dx

l
x

2l�2k and k!(l � k)! = l!/
�
l
k

�

polynomials can also be written using Rodrigues formula

Since

Pl(x) =
1

2ll!

d

(l)

dx

l

lX

k=0

(�1)k(lk)x
2l�2k

=
1

2ll!

d

(l)

dx

l
(x2 � 1)l

First five Legendre polynomials are:
P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3 x

2 � 1)

P3(x) =
1

2
(5 x

3 � 3 x)

P4(x) =
1

8
(35 x

4 � 30 x

2 + 3);

(3.3.245.)

(3.3.246.)
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Semana 2 - Clase 6 19/10/10 Tema 1: Series

Figura 1: Polinomios de Legendre

• En coordenadas esféricas con u = Pn(cos(�))

1

sen(�)

d

d�

�
sen(�)

du

d�

⇥
+ ⇥(⇥+ 1)u = 0

• En coordenadas esféricas con u =
⇥
sen �Pn(cos �)

d2u

d�2
+

⇤�
⇥+

1

2

⇥2

+
1

4 sen2(�)

⌅
u = 0

1.6. Potencial Electrostático de un Dipolo Eléctrico

En F́ısica el ejemplo claro es el cálculo del potencial electrostático producido por dos
cargas q1 = +q y q2 = �q separadas por una distancia 2d en un punto P cualquiera de un
plano (x, y). El potencial en ese punto genérico viene dado por

V = q

�
1

R� �
1

R

⇥

Tal y como puede apreciarse de la figura 2

Héctor Hernández / Luis Núñez 10 Universidad de Los Andes, Mérida

Figure 3.3: Legendre polynomilas Pl(x).

Example 3.3.9. [Associated Legendre polynomials] The associated
Legendre polynomials are the canonical solutions of

(1� x2)u�� � 2xu� +

⇤
l(l + 1)� m2

1� x2

⌅
u = 0 . (3.3.248)

For m = 0, (3.3.248) reduces to the Legendre equation. The associated
Legendre equation arises when considering the angular part of the Laplacian
in spherical coordinates if u(�,⇥) = u(�)eim�,

⇤
1

sin �

⌃

⌃�

�
sin �

⌃

⌃�

⇥
� m2

sin2 �

⌅
u(�) = �l(l + 1)u(�) . (3.3.249)

Note that with the substitution x = cos �, (3.3.249) becomes (3.3.248). We
can assume that ⇤e[m] ⇥ 0, ⇤e[l] ⇥ �1/2. It is convinient to introduce the
following change of variable

u = (1� x2)m/2 w , (3.3.250)

so that (3.3.248) can be rewritten as

(1� x2)w�� � 2(m+ 1)xw� + [l(l + 1)�m(m+ 1)]w = 0 . (3.3.251)

Introducing a power series for w, (3.3.228) takes the form

cn+2 = cn
n(n� 1) + (2n+m)(m+ 1)� l(l + 1)

(n+ 2)(n+ 1)

= �cn
(n+ l + 1 +m)(l �m� n)

(n+ 2)(n+ 1)
. (3.3.252)

118

Legendre polynomials satisfy following relations:
Pl(1) = 1

Z 1

�1
Pl(x) Pl0(x) dx = �ll0

2

2l + 1

lPl(x) = (2l � 1)xPl�1(x)� (l � 1)Pl�2(x), l � 2

(3.3.247.)
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In summary    bounded solutions of (3.3.238.)

x 2 (�1, 1) l � �1/2and  are only obtained when l 2 Z

Solution is a polynomial proportional to polynomial of Legendre 

Polynomial functions are odd or even (with respect to 
x = 0)

according to whether index is odd or evenl

For example

l = 0 linearly independent solutions of (3.3.238.)

u1(x) = P0(x) = 1

are

and u2(x) =
1

2
ln[(1 + x)/(1� x)]

where
u2(x) is odd solution which diverges for x ! ±1

for

 for 
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Example 3.3.9. [Associated Legendre polynomials]
Associated Legendre polynomials are canonical solutions of

(1� x

2)u00 � 2xu0 +


l(l + 1)� m

2

1� x

2

�
u = 0

m = 0For  (3.3.248.) reduces to Legendre equation
Associated Legendre equation arises when considering 

u(✓,�) = u(✓)eim�


1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
� m2

sin2 ✓

�
u(✓) = �l(l + 1)u(✓)

(3.3.248.)

(3.3.249.)

angular part of Laplacian in spherical coordinates

Note that with substitution 
x = cos ✓

 (3.3.249.) becomes (3.3.248.)
We can assume that                 and

(3.3.250.)

(3.3.251.)

It is convenient to introduce following change of variable

u = (1� x

2)m/2
w

so that (3.3.248.) can be rewritten as

(1� x

2)w00 � 2(m+ 1)xw0 + [l(l + 1)�m(m+ 1)]w = 0

<e (m) � 0 <e (l) � �1/2

if
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Introducing a power series for     ☛  (3.3.228.) takes form w

cn+2 = cn
n(n� 1) + (2n+m)(m+ 1)� l(l + 1)

(n+ 2)(n+ 1)

= �cn
(n+ l + 1 +m)(l �m� n)

(n+ 2)(n+ 1)

If l �m = k with k a positive integer ☛ then ck+2 = 0

(with same parity of   ) is a polynomial of degreeand solution k k

Although we can obtain such polynomials by means of (3.3.252.)

(3.3.252.)

it is easily seen (with help of Leibniz formula) that

u(x)  is a solution of Legendre equation (3.3.238.)

satisfies (3.3.251.)-th derivativem
Namely

u

(m)(x)

(3.3.253.)(1� x

2)u(m+2) � 2(m+ 1)xu(m+1) + [l(l + 1)�m(m+ 1)]u(m) = 0

then ☛

if
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solutions of (3.3.248.) are of form Form > 0 2 Z (1� x

2)m/2
u

(m)(x)

with u(x) a solution of Legendre equation (3.3.238)

For integers m land

 we can write the so-called associated Legendre polynomials

P

m
l (x) = (1� x

2)m/2 d
(m)

dx

m
Pl(x), with 0  m  l

(3.3.254.)

(3.3.257.)

(3.3.255.)

(3.3.256.)

which constitute only bounded solutions of (3.3.248.) in 

Using Leibniz differentiation formula once again 
P

m
l (x)that P�m

land are related by

P

�m
l (x) = (�1)m

(l �m)!

(l +m)!
P

m
l (x)

Z 1

�1
P

m
l (x) Pm

l0 (x) dx = �ll0
2

2l + 1

(l �m)!

(l +m)!

Orthogonality integral reads

and hence Z 1

�1
P

m
l (x) P�m

l0 (x) dx = �ll0
2

2l + 1

[�1, 1]

it is easily seen 
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Theorem 3.3.6. [Frobenius-Fuchs theorem]

If
A(x) has at least a simple pole at

x = 0
and x = 0B(x) has at least a pole of order two at

 such that 
A(x) =

1X

n=�1

Anx
n =

A�1

x

+A0 + . . .

B(x) =
1X

n=�2

Bnx
n =

B�2

x

2
+

B�1

x

+ . . . ,

  one of linearly independent solutions of (3.3.223.) 

0 < |x| < R

can expanded as a generalized power series

u1(x) =
1X

n=0

anx
n+s+ = x

s+

1X

n=0

anx
n

a0 6= 0 s+where and  is a root of indicial polynomial

s(s� 1) +A�1s+B�2 = 0

(3.3.258.)

(3.3.259.)
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s± =
1�A�1 ± r

2
that is ☛ with (3.3.260.)

If the difference between two roots of this equation 
  2nd solution of (3.3.223.) is also a generalized power series 

r =
p

(1�A�1)2 � 4B�2

r /2 Z

s�on  ☛ other root of (3.3.259.) 
On other hand ☛ if r 2 Z second solution has form

u2(x) = Cu1(x) lnx+ x

s�

1X

n=0

bnx
n

if r = 0 s+ = s�(i.e. C 6= 0) then

(3.3.261.)

Proof. Need for a generalized power series can be understood 
by analyzing behavior of solution for

x ! 0
Retaining only higher-order terms (3.3.223.) becomes Euler eq.

u

00 +
A�1

x

u

0 +
B�2

x

2
u = 0

For single roots ☛ solutions are of the form u(x) = cx

s

which leads to indicial equationcx

s [s(s� 1) +A�1s+B�2] = 0

(3.3.262.)

 for multiple roots ☛
x

s ln s
Substituting (3.3.263.) into (3.3.262.) we obtain

is also a solution
(3.3.263.)
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Alternatively ☛ we can obtain indicial equation 

1X

n=0

x

s+n�2

(
an(n+ s)(n+ s� 1) +

nX

m=0

am [An�m�1(m+ s) +Bn�m�2]

)

Cancellation of coefficient of x

s�2 implies( i.e. ☛ )n = 0

a0[s(s� 1) +A�1s+B�2] = 0
which leads to indicial equation because a0 6= 0

 ☛ cancelation of coefficient ofFor n � 1 x

n+s�2

leads to recursive relation

an = �
Pn�1

m=0 am(An�m�1(m+ s) +Bn�m�2)

(n+ s)(n+ s� 1) +A�1(n+ s) +B�2

= �
Pn�1

m=0 am(An�m�1(m+ s) +Bn�m�2)

n(n+ 2s+A�1 � 1)

Since n+ 2s+A�1 � 1 = n± r   this is valid if n± r 6= 0

(3.3.265.)

(3.3.266.)

substituting (3.3.258.) in (3.3.223.)

☛
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(3.3.267.)

Example 3.3.10. [Bessel functions]

Bessel equation

is of the form contemplated in theorem 3.3.6.

It arises when finding separable solutions                             

By employing method of generalized power series we obtain
1X

n=0

x

s+n�2{an[(n+ s)(n+ s� 1) + (n+ s)� ⌫

2] + an�2} = 0 (3.3.268.)

with a�2 = a�1 = 0

For n = 0

to Laplace & Helmhotz eqs. in cylindrical or spherical coordinates

☛ a0[s(s� 1) + s� ⌫2] = 0

which leads to indicial equation s2 � ⌫2 = 0 ☛ s = ±⌫

For n � 2 ☛ an = � an�2

(n+ s)2 � ⌫2
= � an�2

n(n+ 2s)

(3.3.269.)

(3.3.270.)

u

00 +
u

0

x

+

✓
1� ⌫

2

x

2

◆
u = 0
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The coefficients for even powers of   are found to ben
a2n

a2n�2
= � 1

4n(n+ ⌫)

=
(�1)n+1 22n (n� 1)! �(n+ ⌫)

(�1)n 22n+2 n! �(n+ ⌫ + 1)
(3.3.271.)

where in last line we have use properties of Gamma function

The recursive relation is satisfied if

a2n = (�1)n
c

22n n! �(n+ ⌫ + 1) (3.3.272.)

(3.3.273.)

c = 2�⌫For ☛ we obtain Bessel function of first kind of order ⌫

J⌫(x) =
1X

n=0

(�1)n

�(n+ 1)�(n+ ⌫ + 1)

⇣
x

2

⌘2n+⌫

which is one of solutions of (3.3.267.)
By applying ratio test ☛ series converges                        8x 2 R (or 

x 2 C )

and using (3.3.270.) we see that an = 0 for all n = odd integers
Substituting s = ⌫ into (3.3.268.) we determine a1 = 0
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(3.3.274.)

⌫ /2 ZIf other linear independent solution of (3.3.267.) is

J�⌫(x) =
1X

n=0

(�1)n

n!�(n� ⌫ + 1)

⇣
x

2

⌘2n�⌫

If
n � 0 2 Z, J�n(x) ⌘ lim

⌫!�n
J⌫(x) = (�1)nJn(x)

 Thus ☛ we take particular linear combination of
J⌫(x) J�⌫(x)and

Y⌫(x) =
cos(⌫⇡)J⌫(x)� J�⌫(x)

sin(⌫⇡)

known as Bessel function of second kind

For satisfies Bessel equation

combination of known solutions J⌫(x) J�⌫(x)and

(3.3.275.)

☛

for it is linear 
⌫ /2 Z ☛

Y⌫(x)

However ☛ for ⌫ 2 Z (3.3.275.) becomes indeterminate

Yn(x) for integer    is defined asn

Yn(x) = lim
⌫!n

Y⌫(x) (3.3.277.)

In fact ☛ 
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Y⌫(x) =
2

⇡

"
J⌫(x) ln

⇣
x

2

⌘
�

⇣
x

2

⌘⌫ 1X

n=0

(�1)n
[�(n) + �(n+ ⌫)]

2n! (n+ ⌫)!

✓
x

2

4

◆n

�
⇣
x

2

⌘�⌫ ⌫�1X

n=0

(⌫ � n� 1)!

2n!

✓
x

2

4

◆2n
#

(3.3.278.)

It is easily seen that explicit form of Y⌫ isfor ⌫ 2 Z

�(m) = �0(m+ 1)/�(m) and last sum is only present if ⌫ 6= 0

Asymptotic forms are
J⌫(x) ⇡

r
2

⇡x

cos


x�

✓
⌫ +

1

2

◆
⇡

2

�

(3.3.281.)

(3.3.280.)

(3.3.279.)

Y⌫(x) ⇡
r

2

⇡x

sin


x�

✓
⌫ +

1

2

◆
⇡

2

�and

Note that for 

u

00 +
u

0

x

+

✓
k

2 � ⌫

2

x

2

◆
u = 0

Y⌫(kx)and  are solutions ofk 6= 0 ☛
J⌫(kx)
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Apéndice: Funciones de Bessel

Jν(z) = (
z

2
)ν

∞
∑

n=0

(−1)n

n!Γ(n + ν + 1)
(
z2

4
)n, Yν(z) =

cos(νπ)Jν (z) − J−ν(z)

sin(νπ)
(ν ∈/ Z)

Yν(z) =
2

π
[Jν(z) ln

z

2
− (

z

2
)ν

∞
∑

n=0

(−1)n[φ(n) + φ(n + ν)]

2n!(n + ν)!
(
z2

4
)n − (

z

2
)−ν

ν−1
∑

n=0

(ν − n − 1)!

2n!
(
z2

4
)2n] ν ∈ Z

con φ(m) = Γ′(m + 1)/Γ(m) y la última suma presente si ν #= 0. Jν(kx) y Yν(kx) son soluciones de la
ec. diferencial

u′′ +
u′

x
+ (k2 −

ν2

x2
)u = 0

Fórmulas asintóticas para z grande:

Jν(z) ≈
√

2

πz
cos[z − (ν +

1

2
)
π

2
], Yν(z) ≈

√

2

πz
sin[z − (ν +

1

2
)
π

2
]

Funciones de Hankel (o funciones de Bessel de 3a especie): H1,2
ν (z) = Jν(z) ± iYν(z).

Funciones de Bessel modificadas:

Iν(z) = i−νJν(iz), Kν(z) = iν+1 π

2
[Jν(iz) + iYν(iz)]

Iν(kz) y Kν(kz) son soluciones de la ec. diferencial

u′′ +
u′

x
− (k2 +

ν2

x2
)u = 0

Para z grande,

Iν(z) ≈
ez

√
2πz

, Kν(z) ≈
√

π

2z
e−z
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Properties of various Bessel functions

Bessel functions of second kind are irregular at       
 but with increasing    ☛ become oscillatory 

x

x = 0
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Theorem 3.3.8.
Last class we saw that for p(x) > 0 q(x)and continuous in [a, b]
Sturm-Liouville eigenvalue problem (3.3.181.) can be written as

u

00 +A(x)u0 +B(x)u = 0

A(x) =
p

0(x)

p(x)
and B(x) =

�⇢(x)� q(x)

p(x)
with

Consider the case in which has a zero of order one at p(x)
x = a

p(x) = c1(x� a) + c2(x� a)2 + . . . , c1 6= 0

and is positive and continuous in rest of interval [a, r]

 In such a case A(x) has a single pole with residue  A�1 = 1

 There is only one l.i. bounded solution of (3.3.288.)  for
x ! a

+

 Then ☛ boundary condition to be imposed

x ! a

(3.3.288.)

(3.3.289.)

(3.3.290.)

eigenfunction remains bounded for
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(3.3.291.)

Proof.

lim
x!a

+
p(x)u(x) = 0 and lim

x!a

+
p(x)u0(x) = 0

is continuous in If
q(x) [a, b]  then

B(x) has at most a simple pole at 
x = a B�2 = 0and so

roots of indicial equation at x = a

s = 0
are:

s = 1�A�1 = 0and
one of solutions of (3.3.288.) is a power series  

x = a

) 

a logarithmic divergence at x = a

Note that Sturm-Liouville operator remains self-adjoint if

u(x) u

0(x)
x ! a

+are bounded forIf and

are satisfied asthen (3.3.291.) conditions p(a) = 0 by hypothesis

(which is bounded in
whereas other solution has 

The above reasoning extends easily 
to the case in which       has a simple pole at q(x)

x = a
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 Corollary 3.3.3.
(i) Legendre polynomial series
Legendre equation (3.3.238.)

eigenvalue problem

�
⇥
(1� x

2)u0⇤0 = �u, x 2 [�1, 1] (3.3.292.)

p(x) = 1� x

2 = (1 + x)(1� x) has a zero of order one at

Boundary condition to be imposed is that remains bounded  
u(x)

can be rewritten as a Sturm-Liouville

x = ±1

This condition determines eigenvalues � = l(l + 1) with l = 0, 1, . . .

cl =
2l + 1

2

Z 1

�1
f(x) Pl(x) dxSince

Z 1

�1
P

2
l (x)dx = 2/(2l + 1) we have ☛

f(x) =
1X

l=0

clPl(x)

Any function f(x) 2 C2([�1, 1]) can be expanded as 

Pl(x) polynomials form a complete set in [�1, 1]

 ☛ orthogonal basis of vector space of differentiable      to 2nd orderf(x)
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(iii) Bessel series
(3.3.281.) also defines a Sturm-Lioville eigenvalue problem

�(xu0)0 +
⌫

2

x

u = �xu

(3.3.298.)

p(x) = x, q(x) = ⌫/x

where and ⇢(x) = x

� = k2with

As an illustration ☛ we consider here 
x 2 [0, a]

Since has a simple pole at
 we impose the boundary 

p(x) x = 0
|u(0)| < 1condition 

x = aAt we set a Dirichlet boundary condition: u(a) = 0
General solution of (3.3.298.) is

u(x) = A J⌫(
p
�x) +B Y⌫(

p
�x) (3.3.299.)

Boundary condition |u(0)| < 1 sets B = 0

whereas u(a) = 0 leads to J⌫(
p
�a) = 0

(3.3.300.)that is
p
�a = k⌫n, n = 1, 2, . . . J⌫(k

⌫
n) = 0with

k⌫n are roots of 
J⌫(x) that form a countable set in R
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(3.3.308.)

(3.3.309.)

Eigenfunction set {J⌫(k⌫nx/a), n = 1, 2, . . . , } is complete on [0, a]

L is self-adjoint with present boundary conditionsbecause

We can then expand a function                 as
f(x) 2 [0, a]

f(x) =
1X

n=0

cn J⌫(k
⌫
nx/a)

cn =
2

a

2
J

0
⌫
2(k⌫n)

Z a

0
f(x) J⌫(k

⌫
nx/a) x dxwith

Note that summation in (3.3.308.) is over   and not overn ⌫

First zeros of are
J0(x)

k01 ⇡ 2.405 = 0.765⇡, k02 ⇡ 5.52 = 1.76⇡, k03 ⇡ 8.65 = 2.75⇡

Asymptotic form ☛ k0n ⇡ (n� 1
4 )⇡

Eigenfunctions associated with eigenvalues � = (k⌫n/a)
2

are orthogonal in inner product hu, vi
x

=

Z
a

0
u(x) v(x) x dx
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