Physics 307

Mathematical Physics

Luis Anchordoqui

ORDINARY DIFFERENTIAL EQUATIONS IV 3.1 Setting the Stage ✔ 3.2 Initial Value Problem ✔ 3.3 Boundary Value Problem 3.4 Fourier Analysis Picard's existence and uniqueness theorem Systems of first-order linear differential equations Green matrix as a generalized function Self-adjointness of Sturm-Liouville operator Fourier transform Fourier series Green function of Sturm-Liouville operator Series solutions to homogeneous linear equations

Series solutions to homogeneous linear equations Theorem 3.3.5. If $A(x)$ and $B(x)$ are analytic functions in a neighborhood of $\overline{x}=0$

$$
A(x) = \sum_{n=0}^{\infty} A_n x^n, \quad B(x) = \sum_{n=0}^{\infty} B_n x^n, \quad |x| < R \quad \text{(3.3.222.)}
$$

the solutions of

$$
u'' + A(x)u' + B(x)u = 0
$$
 (3.3.223.)

are also analytic functions & can be represented as a power series

$$
u(x) = \sum_{n=0}^{\infty} c_n \ x^n, \quad |x| < R \tag{3.3.224.}
$$

Proof. We first assume that there exists a solution of form (3.3.224) Since $B(x) u(x) = \sum$ ∞ x^n *n* $B_{n-m}c_m$ (3.3.225.) and we will show that it converges

 $n=0$

and

$$
A(x) u'(x) = \sum_{n=0}^{\infty} x^n \sum_{m=0}^{n+1} A_{n-m+1} m c_m
$$
 (3.3.226.)

 $m=0$

we substitute (3.3.224) into (3.3.223) to obtain $\overline{}$ *n* $+1$

$$
\sum_{n=0}^{\infty} x^n \left[c_{n+2}(n+2)(n+1) + \sum_{m=0}^{n+1} c_m(mA_{n-m+1} + B_{n-m}) \right] = 0
$$

Since coefficient of *xⁿ* must cancel

$$
c_{n+2} = -\frac{\sum_{m=0}^{n+1} c_m [mA_{n-m+1} + B_{n-m}]}{(n+2)(n+1)}, \quad n \ge 0
$$
\nis follows that

\n
$$
c_{n+2}
$$
\nonly depends on previous coefficients

\n
$$
c_0, \ldots, c_{n+1}
$$

(3.3.227.)

For
$$
n \ge 2
$$
 \bullet this leads to a recursive relationship
\nthat determines every c_n in terms of c_0 and c_1
\nFor example
\n
$$
c_2 = -\frac{A_0c_1 + B_0c_0}{2},
$$
\n
$$
c_3 = -\frac{A_1c_1 + 2A_0c_2 + B_1c_0 + B_0c_1}{6} \qquad (3.3.229.)
$$
\n
$$
= -\frac{c_0(B_1 - A_0B_0) + c_1(A_1 + B_0 - A_0^2)}{6}
$$
\nThis series can be proven to converge for $|x| < R$
\nLet t be such that $0 \le |x| < t < R$
\nA necessary condition for series (3.3.222) to converge is that
\n
$$
\lim_{n \to \infty} A_nt^n = \lim_{n \to \infty} B_nt^n = 0
$$
\nThis implies that $\exists M > 0$ such that
\n $|B_n| \le M/t^n$ and $|A_n| \le M/t^{n-1}$
\n $|B_n| \le M/t^n$ and $|A_n| \le M/t^{n-1}$
\n $\forall n$ (3.3.230.)
\nTherefore $|c_{n+2}| \le \frac{M \sum_{m=0}^{n+1} |c_m| t^m (m+1)}{(n+2) (n+1)}$ (3.3.231.)

The general solution can be written as

$$
u(x) = c_0 u_1(x) + c_1 u_2(x) \quad \text{(3.3.235.)}
$$

 u_1 is solution for $c_0 = 1$ and $c_1 = 0$ u_2 is solution for $c_0 = 0$ and $c_1 = 1$

i.e.
$$
u_1(x) = 1 - \frac{B_0}{2}x^2 - \frac{B_1 - A_0B_0}{6}x^3 + \dots,
$$

 $u_2(x) = x - \frac{A_0}{2}x^2 - \frac{A_1 + B_0 - A_0^2}{6}x^3 + \dots$

Of course same considerations apply if coefficients are analytical in neighborhood of $\ket{x_0}$ in which case $A(x), B(x)$, and $u(x)$ can be expressed as power series of $(x-x_0)$

Example 3.3.8. [Legendre polynomials] The second order differential equation $(1-x^2)u'' - 2xu' + l(l+1)u = 0$ can be written in Sturm-Liouville form $[(1 - x^2)u']' + l(l+1)u = 0$ it corresponds to $A(x) = -\frac{2x}{1-x^2}$ and $B(x) = \frac{l(l+1)}{1-x^2}$ (3.3.238.) (3.3.239.) both functions are analytic if $|x| < 1$ $(3.3.240)$ the angular part of Laplacian in spherical coordinates $\lceil 1$ if u is only a function of $\,\theta$ $\sin\theta$ $\frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right] u(\theta) = -l(l+1)u(\theta)$ Legendre equation arises when considering Note that with substitution \blacksquare $x = \cos \theta \implies$ 1 $\sin\theta$ ∂ $\partial \theta$ $=-\frac{\partial}{\partial x}$ ∂x (3.3.240.) becomes (3.3.238.)

since
$$
l(l + 1) = (l + 1/2)^2 - 1/4
$$

\nit is sufficient to consider $\Re(l) \ge -\frac{1}{2}$
\nSeries (3.3.224.) takes form
\n
$$
\sum_{n=0}^{\infty} x^n \{c_{n+2}(n+2)(n+1) - c_n[n(n-1) + 2n - l(l+1)]\} = 0
$$
\n(3.3.241.)
\nand thus
\n
$$
c_{n+2} = c_n \frac{n(n+1) - l(l+1)}{(n+2)(n+1)} = -c_n \frac{(n+l+1)(l-n)}{(n+2)(n+1)}
$$
\n(3.3.242.)
\nfor $c_1 = 0$ and $c_0 \ne 0$ we obtain even solution $\leftarrow c_{2n+1} = 0$
\n
$$
c_2 = -c_0 \frac{l(l+1)}{2!}, \quad c_4 = c_0 \frac{l(l-2)(l+1)(l+3)}{4!}, \dots
$$
\nfor $c_0 = 0$ and $c_1 \ne 0$ we obtain odd solution $\leftarrow c_{2n} = 0$
\n
$$
c_3 = -c_0 \frac{(l-1)(l+2)}{3!}, \quad c_5 = c_0 \frac{(l-1)(l-3)(l+2)(l+4)}{5!}, \dots
$$

Since $\lim\limits_{n\to\infty}|c_{n+2}/c_n|\to1$ radius of convergence of series is $|x|< 1$ If $l \notin \mathbb{Z}$ \blacktriangleright it is easily seen that $|u(x)| \to \infty$ at $x = \pm 1$ $\mathbf{I} \mathbf{F} \quad l > 0 \in \mathbb{Z} \quad \mathbf{F} \quad c_{l+2} = 0$ the solution becomes a polynomial of degree *l* called Legendre polynomial non-zero coefficients of Legendre polynomial are given by $c_{2n+i} = c_i$ $\frac{(-1)^n (l_2!)^2 (l + 2n)!}{(l_2!)^2}$ $\frac{(i)(i)(i)(i)(j)(j)(j)(k-1)(k-1)(j)}{l!(l)(l+(l+1))!}, i = 0, 1, n = 0, \ldots, l_2$ $l_2=\lfloor l/2 \rfloor$ (3.3.243.) $i=0$ corresponds to solution with even l $i=1$ $c_i = (-1)^{l_2} l! /[(l_2!)^2 2^{l-i}], i = 0,1$ $P_l(x) = \frac{1}{2l}$ 2*l* $\sqrt{}$ l_2 $k=0$ $\frac{(-1)^k(2l - 2k)!}{k!}$ $\frac{(k-1)(2k-2k)!}{k!(l-k)!(l-2k)!} x^{l-2k}$ (3.3.244.)
 $k = l_2$ *k* = $l_2 - n$ Legendre polynomials are defined as solution to coefficients corresponds to solution with odd *l*

Since

$$
\frac{(2l-2k)!}{(l-2k)!}x^{l-2k} = \frac{d^{(l)}}{dx^l}x^{2l-2k} \text{ and } k!(l-k)! = l! / {l \choose k} \quad \text{(3.3.245.)}
$$
\n
$$
\text{polynomials can also be written using Rodrigues formula}
$$
\n
$$
P_l(x) = \frac{1}{2^l l!} \frac{d^{(l)}}{dx^l} \sum_{k=0}^l (-1)^k {l \choose k} x^{2l-2k}
$$
\n
$$
= \frac{1}{2^l l!} \frac{d^{(l)}}{dx^l} (x^2 - 1)^l \quad \text{(3.3.246.)}
$$
\n
$$
\text{First five Legendre polynomials are:}
$$
\n
$$
P_0(x) = 1
$$
\n
$$
P_1(x) = x
$$
\n
$$
P_2(x) = \frac{1}{2}(3x^2 - 1)
$$
\n
$$
P_3(x) = \frac{1}{2}(5x^3 - 3x)
$$
\n
$$
P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3);
$$
\nThus, Apply, April 2, 15

Semana 2 - Clase 6 19/10/10 Tema 1: Series

• En coordenadas esf´ericas con *u* = *Pn*(cos()) $P_l(1) = 1$ $\overline{}$ $\int_{-1}^{\infty} P_l(x) P_{l'}(x) dx = o_{ll'} \frac{1}{2l+1}$ $\sqrt{2}$ $\sqrt{-1}$ ⇥ + $)x$, $\frac{1}{\sqrt{2}}$ (x) - \sqrt{v} Figure 3.3: Legendre polynomilas *Pl*(*x*). Legendre polynomials satisfy following relations: $lP_l(x) = (2l-1)xP_{l-1}(x) - (l-1)xP_{l-1}(x)$ (1 *^x*²)*u* 2*xu* + *^l*(*^l* + 1) *^m*² *u* = 0 *.* (3.3.248) \int_0^1 -1 $P_l(x)$ $P_{l'}(x)$ $dx = \delta_{ll'}$ 2 $2l + 1$ $lP_l(x) = (2l - 1)xP_{l-1}(x) - (l - 1)P_{l-2}(x), \quad l \ge 2$ $(3.3.247)$

1 *x*²

1.6. Potencial Electrostico de un Dipolo Electrico de un Dipolo Electrico de un Dipolo Electrico de un Dipolo E
Dipolo Electrico de un Dipolo Electrico de un Dipolo Electrico de un Dipolo Electrico de un Dipolo Electrico Thursday, April 2, 15 12 In summary bounded solutions of (3.3.238.) for $x \in (-1,1)$ and $l \geq -1/2$ are only obtained when $l \in \mathbb{Z}$ Solution is a polynomial proportional to polynomial of Legendre Polynomial functions are odd or even (with respect to $x=0$) according to whether index *l* is odd or even For example linearly independent solutions of (3.3.238.) $u_1(x) = P_0(x) = 1$ are and $u_2(x) = \frac{1}{2}$ $\frac{1}{2}$ ln[(1 + *x*)/(1 - *x*)] where $u_2(x)$ is odd solution which diverges for $x\to \pm 1$ for $l=0$

Example 3.3.9. [Associated Legendre polynomials] Associated Legendre polynomials are canonical solutions of $(1 - x^2)u'' - 2xu' +$ $l(l+1) - \frac{m^2}{1 - 4}$ $1 - x^2$ $\overline{1}$ $u=0$ (3.3.248.) For $m=0$ (3.3.248.) reduces to Legendre equation Associated Legendre equation arises when considering $\partial \mathbf{f} \ \ u(\theta, \phi) = u(\theta) e^{i m \phi}$ 1 $\sin\theta$ $\frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - \frac{m^2}{\sin^2 \theta}$ $\sin^2\theta$ \mathbb{I} $u(\theta) = -l(l+1)u(\theta)$ (3.3.249.) angular part of Laplacian in spherical coordinates Note that with substitution $x = \cos \theta$ (3.3.249.) becomes (3.3.248.) We can assume that $\Re{\rm e}\ (m)\geq 0$ and $\Re{\rm e}\ (l)\geq -1/2$ $(3.3.250.)$ $(1-x^2)w'' - 2(m+1)xw' + [l(l+1) - m(m+1)]w = 0$ (3.3.251.) It is convenient to introduce following change of variable $u = (1 - x^2)^{m/2}$ *w* so that (3.3.248.) can be rewritten as

Thursday, April 2, 15 14

Introducing a power series for
$$
w \in (3.3.228)
$$
 takes form

\n
$$
c_{n+2} = c_n \frac{n(n-1) + (2n+m)(m+1) - l(l+1)}{(n+2)(n+1)}
$$
\n
$$
= -c_n \frac{(n+l+1+m)(l-m-n)}{(n+2)(n+1)}
$$
\n(3.3.252.)

If $l - m = k$ with k a positive integer \blacktriangleright then $c_{k+2} = 0$ and solution (with same parity of k) is a polynomial of degree k Although we can obtain such polynomials by means of (3.3.252.) it is easily seen (with help of Leibniz formula) that if $u(x)$ is a solution of Legendre equation (3.3.238.) t hen ► m -th derivative $u^{(m)}(x)$ satisfies (3.3.251.) Namely $(1 - x^2)u^{(m+2)} - 2(m+1)xu^{(m+1)} + [l(l+1) - m(m+1)]u^{(m)} = 0$ (3.3.253.)

For $m>0\in\mathbb{Z}$ solutions of (3.3.248.) are of form $(1-x^2)^{m/2}u^{(m)}(x)$ with *u*(*x*) a solution of Legendre equation (3.3.238) For integers *m* and *l* we can write the so-called associated Legendre polynomials $P_l^m(x) = (1 - x^2)$ $m/2$ $\frac{d^{(m)}}{m}$ *dx^m P*_{*l*}(*x*)*,* with $0 \le m \le l$ (3.3.254.) (3.3.257.) $P_l^{-m}(x) = (-1)^m \frac{(l-1)l \cdot k}{(l-1)!} P_l^m(x)$ (3.3.255.) (3.3.256.) which constitute only bounded solutions of (3.3.248.) in $\left[-1,1\right]$ Using Leibniz differentiation formula once again it is easily seen that $P_l^m(x)$ and $\overline{P_l^{-m}}$ are related by $\Omega_l^{-m}(x)=(-1)^m \frac{(l-m)!}{(l+m)!}$ $\frac{(i - m)!}{(l + m)!} P_l^m(x)$ \int_0^1 -1 $P_l^m(x)$ $P_{l'}^m(x)$ $dx = \delta_{ll'}$ 2 $2l + 1$ $\frac{(l-m)!}{m}$ $(l + m)!$ Orthogonality integral reads and hence \int_0^1 -1 $P_l^m(x)$ $P_{l'}^{-m}(x)$ $dx = \delta_{ll'}$ 2 $2l + 1$

Theorem 3.3.6. [Frobenius-Fuchs theorem]

If $A(x)$ has at least a simple pole at $x=0$ and $B(x)$ has at least a pole of order two at $x=0$ such that $A(x) = \sum$ ∞ $n = -1$ $A_n x^n =$ A_{-1} *x* $+ A_0 + \ldots$ $B(x) = \sum$ ∞ *n*=2 $B_n x^n =$ B_{-2} $\frac{x^2}{x^2} +$ B_{-1} *x* + *... ,* $0 < |x| < R$

 one of linearly independent solutions of (3.3.223.) can expanded as a generalized power series

$$
u_1(x) = \sum_{n=0}^{\infty} a_n x^{n+s_+} = x^{s_+} \sum_{n=0}^{\infty} a_n x^n
$$
 (3.3.258.)

where $a_0\neq 0$ and s_+ is a root of indicial polynomial

$$
s(s-1) + A_{-1}s + B_{-2} = 0
$$
 (3.3.259.)

 s_{\pm} = $1 - A_{-1} \pm r$ 2 that is $\blacksquare s_\pm = \frac{1-A_{-1}\pm r}{2}$ with $r = \sqrt{(1-A_{-1})^2 - 4B_{-2}}$ (3.3.260.) If the difference between two roots of this equation $\;r \notin \mathbb{Z}$ 2nd solution of (3.3.223.) is also a generalized power series on s_- \bullet other root of (3.3.259.) On other hand \blacksquare if $r\in\mathbb{Z}$ second solution has form $u_2(x) = Cu_1(x) \ln x + x^{s-} \sum b_n x^n$ *n*=0 if $r = 0$ (i.e. $s_+ = s_-$) then $C \neq 0$ (3.3.261.) Proof. Need for a generalized power series can be understood by analyzing behavior of solution for $x \to 0$ Retaining only higher-order terms (3.3.223.) becomes Euler eq. $u'' +$ A_{-1} *x* $u' +$ B_{-2} $\frac{x^{-2}}{x^2}u=0$ For single roots \blacktriangleright solutions are of the form $u(x)=cx^s$ (3.3.263.) $cx^{s}[s(s-1) + A_{-1}s + B_{-2}] = 0$ which leads to indicial equation (3.3.262.) for multiple roots $\mathbf{r} \cdot x^s \ln s$ is also a solution Substituting (3.3.263.) into (3.3.262.) we obtain

Alternatively ☛ we can obtain indicial equation $\overline{}$ ∞ *n*=0 x^{s+n-2} $\sqrt{ }$ $a_n(n+s)(n+s-1) + \sum$ *n* $m=0$ a_m [$A_{n-m-1}(m+s) + B_{n-m-2}$]) Cancellation of coefficient of x^{s-2} (i.e. \blacksquare *n* = 0) implies $a_0[s(s-1)+A_{-1}s+B_{-2}]=0$ (3.3.265.) which leads to indicial equation because $a_0\neq 0$ For $n \geq 1$ \blacktriangleright cancelation of coefficient of x^{n+s-2} leads to recursive relation substituting (3.3.258.) in (3.3.223.)

$$
a_n = -\frac{\sum_{m=0}^{n-1} a_m (A_{n-m-1}(m+s) + B_{n-m-2})}{(n+s)(n+s-1) + A_{-1}(n+s) + B_{-2}}
$$

=
$$
-\frac{\sum_{m=0}^{n-1} a_m (A_{n-m-1}(m+s) + B_{n-m-2})}{n(n+2s+A_{-1}-1)}
$$
(3.3.266.)

Since $n + 2s + A_{-1} - 1 = n \pm r$ **F** this is valid if $n \pm r \neq 0$

Example 3.3.10. [Bessel functions]

Bessel equation

$$
u'' + \frac{u'}{x} + \left(1 - \frac{\nu^2}{x^2}\right)u = 0 \quad (3.3.267)
$$

is of the form contemplated in theorem 3.3.6.

It arises when finding separable solutions By employing method of generalized power series we obtain to Laplace & Helmhotz eqs. in cylindrical or spherical coordinates

$$
\sum_{n=0}^{\infty} x^{s+n-2} \{ a_n [(n+s)(n+s-1) + (n+s) - \nu^2] + a_{n-2} \} = 0
$$
 (3.3.268.)

with
$$
a_{-2} = a_{-1} = 0
$$

\nFor $n = 0$ \leftarrow $a_0[s(s-1) + s - \nu^2] = 0$ (3.3.269.)
\nwhich leads to indicial equation $s^2 - \nu^2 = 0$ \leftarrow $s = \pm \nu$
\n a_{n-2} a_{n-2}

For
$$
n \ge 2
$$
 \leftarrow $a_n = -\frac{a_{n-2}}{(n+s)^2 - \nu^2} = -\frac{a_{n-2}}{n(n+2s)}$ (3.3.270.)

The coefficients for even powers of n are found to be a_{2n} a_{2n-2} $=$ $-\frac{1}{4n(n)}$ $4n(n+\nu)$ = $(-1)^{n+1} 2^{2n} (n-1)! \Gamma(n+\nu)$ $\frac{(-1)^n}{(-1)^n} \frac{2^{2n+2} n! \Gamma(n+\nu+1)}{2^{2n+2} n! \Gamma(n+\nu+1)}$ (3.3.271.) where in last line we have use properties of Gamma function The recursive relation is satisfied if $a_{2n} = (-1)^n \frac{c}{2n}$ $\overline{2^{2n} n! \Gamma(n+\nu+1)}$ (3.3.272.) (3.3.273.) For $c=2^{-\nu}$ \blacktriangleright we obtain Bessel function of first kind of order ν $J_{\nu}(x) = \sum$ ∞ *n*=0 $(-1)^n$ $\Gamma(n+1)\Gamma(n+\nu+1)$ ⇣*x* 2 $\sum_{n=1}^{\infty}$ which is one of solutions of (3.3.267.) By applying ratio test \blacktriangleright series converges $\forall x\in\mathbb{R}$ (or $x\in\mathbb{C}$) and using (3.3.270.) we see that $a_n = 0$ for all $n =$ odd integers Substituting $s=\nu$ into (3.3.268.) we determine $a_1=0$

Thursday, April 2, 15 21

If
$$
\nu \notin \mathbb{Z} \rightarrow
$$
 other linear independent solution of (3.3.267.) is
\n
$$
J_{-\nu}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n-\nu+1)} \left(\frac{x}{2}\right)^{2n-\nu}
$$
\n
$$
(3.3.274.)
$$
\nIf $n \ge 0 \in \mathbb{Z}, J_{-n}(x) \equiv \lim_{\nu \to -n} J_{\nu}(x) = (-1)^n J_n(x)$
\nThus $\rightarrow \infty$ take particular linear combination of $J_{\nu}(x)$ and $J_{-\nu}(x)$
\n
$$
Y_{\nu}(x) = \frac{\cos(\nu \pi) J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu \pi)}
$$
\n
$$
\text{known as Bessel function of second kind}
$$
\nFor $\nu \notin \mathbb{Z} \rightarrow Y_{\nu}(x)$ satisfies Bessel equation
\nfor it is linear combination of known solutions $J_{\nu}(x)$ and $J_{-\nu}(x)$
\nHowever \rightarrow for $\nu \in \mathbb{Z}$ (3.3.275.) becomes indeterminate
\nIn fact $\rightarrow Y_n(x)$ for integer *n* is defined as
\n
$$
Y_n(x) = \lim_{\nu \to n} Y_{\nu}(x)
$$
\n(3.3.277.)

It is easily seen that explicit form of Y_ν for $\nu\in\mathbb{Z}$ is

$$
Y_{\nu}(x) = \frac{2}{\pi} \left[J_{\nu}(x) \ln \left(\frac{x}{2} \right) - \left(\frac{x}{2} \right)^{\nu} \sum_{n=0}^{\infty} (-1)^n \frac{[\phi(n) + \phi(n+\nu)]}{2n! (n+\nu)!} \left(\frac{x^2}{4} \right)^n - \left(\frac{x}{2} \right)^{-\nu} \sum_{n=0}^{\nu-1} \frac{(\nu-n-1)!}{2n!} \left(\frac{x^2}{4} \right)^{2n} \right]
$$
(3.3.278.)

 $\phi(m)=\Gamma'(m+1)/\Gamma(m)$ and last sum is only present if $\nu\neq 0$ Asymptotic forms are $J_{\nu}(x) \approx$ $\sqrt{2}$ πx $\cos\left[x\right] \sqrt{2}$ $\nu +$ 1 2 $\bigwedge \pi$ 2 $\overline{}$ (3.3.279.)

$$
Y_{\nu}(x) \approx \sqrt{\frac{2}{\pi x}} \sin \left[x - \left(\nu + \frac{1}{2} \right) \frac{\pi}{2} \right]
$$
 (3.3.280.)

Note that for $k\neq 0$ \blacktriangleright $J_{\nu}(kx)$ and $Y_{\nu}(kx)$ are solutions of

$$
u'' + \frac{u'}{x} + \left(k^2 - \frac{\nu^2}{x^2}\right)u = 0 \quad \textbf{(3.3.281.)}
$$

Properties of various Bessel functions

2z

i
20a

3

 $\mathcal{D}\mathcal{U}\mathcal{C}$ with increasing \mathcal{U} if become

3 Thursday, April 2, 15 24

Theorem 3.3.8.

Last class we saw that for $p(x) > 0$ and $q(x)$ continuous in $[a, b]$ Sturm-Liouville eigenvalue problem (3.3.181.) can be written as $u'' + A(x)u' + B(x)u = 0$ (3.3.288.) with $A(x)=\frac{p'(x)}{p(x)}$ and $B(x)=\frac{\lambda\rho(x)-q(x)}{p(x)}$ (3.3.289.) Consider the case in which $p(x)$ has a zero of order one at $x=a$ $p(x) = c_1(x - a) + c_2(x - a)^2 + \ldots, \quad c_1 \neq 0$ and is positive and continuous in rest of interval $\,[a,r]\,$ In such a case $A(x)$ has a single pole with residue $A_{-1} = 1$ There is only one L.i. bounded solution of (3.3.288.) for $x \to a^+$ Then \leftarrow boundary condition to be imposed eigenfunction remains bounded for $x\to a$ (3.3.290.)

(3.3.291.) Proof. lim $x \rightarrow a^+$ $p(x)u(x) = 0$ and lim $x \rightarrow a^+$ $p(x)u'(x)=0$ If $q(x)$ is continuous in $[a, b]$ then $B(x)$ has at most a simple pole at $x = a$ and so $B_{-2} = 0$ roots of indicial equation at $x=a$ are: $s = 0$ and $s = 1 - A_{-1} = 0$ one of solutions of (3.3.288.) is a power series (which is bounded in $x = a$) whereas other solution has a logarithmic divergence at $x=a$ Note that Sturm-Liouville operator remains self-adjoint if If $u(x)$ and $u'(x)$ are bounded for $x \to a^+$ then (3.3.291.) conditions are satisfied as $p(a)=0$ by hypothesis The above reasoning extends easily to the case in which $q(x)$ has a simple pole at $x = a$

 Corollary 3.3.3. (i) Legendre polynomial series Legendre equation (3.3.238.) can be rewritten as a Sturm-Liouville eigenvalue problem $-\left[(1-x^2)u' \right]' = \lambda u, \quad x \in [-1,1]$ (3.3.292.) $p(x)=1-x^2=(1+x)(1-x)$ has a zero of order one at $x=\pm 1$ Boundary condition to be imposed is that *u*(*x*) remains bounded This condition determines eigenvalues $\lambda = l(l+1)$ with $l = 0, 1, \ldots$ $c_l =$ $2l + 1$ 2 \int_0^1 -1 Since $\int_0^1 P_l^2(x) dx = 2/(2l+1)$ we have $\blacktriangleright c_l = \frac{2l+1}{2} \int_0^1 f(x) \; P_l(x) \; dx$ -1 $P_l^2(x)dx=2/(2l+1)$ we have \blacktriangleright $f(x) = \sum$ ∞ *l*=0 $c_lP_l(x)$ Any function $f(x) \in C^2([-1, 1])$ can be expanded as $P_l(x)$ polynomials form a complete set in $[-1, 1]$ \blacktriangleright orthogonal basis of vector space of differentiable $f(x)$ to 2nd order

Thursday, April 2, 15 27

(iii) Bessel series

(3.3.281.) also defines a Sturm-Lioville eigenvalue problem

$$
-(xu')' + \frac{\nu^2}{x}u = \lambda xu
$$
\n(3.3.298.)
\nwhere $p(x) = x, q(x) = \nu/x$ and $\rho(x) = x$ with $\lambda = k^2$
\nAs an illustration \rightarrow we consider here $x \in [0, a]$
\nSince $p(x)$ has a simple pole at $x = 0$
\nwe impose the boundary condition $|u(0)| < \infty$
\nAt $x = a$ we set a Dirichlet boundary condition: $u(a) = 0$
\nGeneral solution of (3.3.298.) is
\n $u(x) = A J_{\nu}(\sqrt{\lambda}x) + B Y_{\nu}(\sqrt{\lambda}x)$ (3.3.299.)
\nBoundary condition $|u(0)| < \infty$ sets $B = 0$
\nwhereas $u(a) = 0$ leads to $J_{\nu}(\sqrt{\lambda}a) = 0$

that is $\sqrt{\lambda}a = k_n^{\nu}, \quad n = 1, 2, \ldots$ with $J_{\nu}(k_n^{\nu}) = 0$ (3.3.300.) k_n^ν are roots of $J_\nu(x)$ that form a countable set in $\mathbb R$

(3.3.308.) (3.3.309.) Eigenfunction set $\{J_{\nu}(k_n^{\nu}x/a),\; n=1,2,\ldots,\;\}$ is complete on $[0,a]$ because *L* is self-adjoint with present boundary conditions We can then expand a function $f(x) \in [0,a]$ as $f(x) = \sum$ ∞ *n*=0 c_n *J*_{ν} $(k_n^{\nu}x/a)$ $c_n =$ 2 $a^2 J_{\nu}^{\prime\,2}(k_n^{\nu})$ \int_a^a 0 with $c_n = \frac{2}{\sqrt{2}I(2/L\nu)} \int f(x) J_\nu(k_n^\nu x/a) x dx$ Note that summation in (3.3.308.) is over n and not over ν First zeros of $J_0(x)$ are $k_1^0 \approx 2.405 = 0.765\pi, \; k_2^0 \approx 5.52 = 1.76\pi, \; k_3^0 \approx 8.65 = 2.75\pi$ Asymptotic form $\blacktriangleright k_n^0 \approx (n-\frac{1}{4})\pi$ Eigenfunctions associated with eigenvalues $\lambda = (k_n^\nu/a)^2$ are orthogonal in inner product $\langle u, v \rangle_x =$ \int_a^a 0 $u(x)$ $v(x)$ *x dx*

Thursday, April 2, 15 30