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SERIES SOLUTIONS TO HOMMOGENEOUS LINEAR EQUATIONS
Theorem 3.3.6.
£ A(x) and B(z) are analytic functions in a neighborhood ofz =0

Alzi== Z AR, i) — Z Bx s Tl < R (3.3.222)
n=0 T =

the solutions of

u" + A(x)u' + B(zx)u =0 (3.3.223.)

are also analytic functions & can be represev\&ed as a power series

O

mn
Dreiat, o] <R (2.3.224-.)

g—0

Thursday, April 2, 15



Proof.
We first assume bhat there exists a solution of form (3.3.224)
and we will show that it converges

Big) u(z)= Y N ., (3.3.226.)
n=>0 m=0

Sunce

and
n—+1

Al) Wkl S ey S R G (3.3.226.)
n=0 =0

we substitute (3.3.224) inko (3.3.223) ko obkain
B n-+1

> 2" e+ 2)(n+ 1)+ > cm(MAn_mi1+ Bom)| =0
n=1

m=0

Since coefficient of ="' must cancel (3.3.227.)
n—+1
Zm:O Cm [mAn—m—Fl T Bn—m] = 9
(n+2)(n+1) e (2.5.227.)

it follows that ¢, 5 only depends on previous coefficients
Coy---3Cn+1

Cp L2 =
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For 1 = 2 w this leads ko a recursive reta&wnship
that determines every Cp i terms of Co and Cq

For e_xa\mpte gl O
2 )
_Alcl + 2Aq¢co + Bicg + Bgcs
§
co(By — AoBg) + c1(A; + By — A2)
§
This series can be proven to converge for | <

Let { be such that 0 < || <t < R
A necessary condition for series (3.3.222) to converge is that
lim- A, =iy Tisl =

n—oo n—oo

This implies that AM > 0 such Ehat
|B,| < M/tand® et e 5 (3.3.230.)
vn

(3.3.229.)

n—+1 m
MY lem] €7 Al (3.3.221.)
t" (n+2) (n+1)

Therefore m |Cn+2’ =
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By recursively defining non-negative coefficients

n-+1 m
M Zm—l_:O dm ™ (m+1) (3.3.232)
t" (n+2) (n+1)

dn—|—2 e

with dp = ‘CO‘,dl — ‘Cl‘me kave‘cn‘ )

In addition >
n Mt(n + 2)

n ) R ]

dpt2 = dptd (3.3.233.)

and so using the ratic test

(3.3.234.)

we show that series Z dnT" s absolutely convergent for |z| <t

n=0

e < R

This tn Furnn ewnkails Ehakb Z CnTn L8 O\bSOLM&QLv ﬁC}MV@.T‘SQM& §OT|33’ W

=u
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The general solution can be written as

u(z) = cour(z) + crus(x) (3.3.235)

u1 is solution for cp =1 and ¢1 =0

U2 is solution for cg = 0 and C1 = 1

15} By — AyB
——02132— 1 0 O.CUS

L

2

0f course same considerations apply
if coefficients are analytical in neighborhood of 2o

in which case A(z),B(z), and u(x)
can be expressed as power series of (z — x¢)
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Example 3.3.%. [Legendre polynomials]

The second order differential equation
(1 — z2)ut =20y’ 1 [ (3.3.23%.)

can be written it Sturm-Liouville form
(e s (O i — () (3.3.239.)

20 [(Il+1)
Sgh and D= >

it corresponds to A(z)

both functions are analytic i Bl 1

Legendre equation arises when considering
the angular part of Laplacian in spherical coordinates

Uy is only a function of 0

1 O
[sin 9 00 (Sm 9%)] they o)
5

Note Fhak wikth substibution = = = cosfl = : =
sin 6 006

(3.3.240.) becomes (3.3.23%.)
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Since [ B — NG o 2 | :
it is sufficient to consider Re(l) > o
Series (3.3.224-.) tales form

Y a™{ear2(m+ 29t 1) = culn(n— 1)+ 20 — I+ D} =0 (3.3241.)

n=0

et thus i) e (R
OGRS  C e n+1i+ —n el
e (n+2)(n+1) SRy (n+2)(n+1) o

for c1 =0 and cp #0 we obtain even solution = co,p 11 =0

(o) 1 3)
g

for cg =0 and c; #0 we obtain odd solution = o, =0

Cr—in

=11 =-3)1+2)(I+4)
o e

Cs — Cp
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Stince lim |c,19/Cn| — 1radius of convergence of series is |z| < 1
@)

I | ¢ 7 w it is easily seen that lu(z)] = ccak = +1

¥ I1>0€Z w c42=0
the solution becomes a polynomial of degree [

called Legendre Pott;v\omiat

non-zero coefficients of Legendre polynomial are given by
(=)™ (I.1)2(1 + 2n)!

na-¢ TRt SN .:Oala :Oa'“?l
it T N S L i .

lo = [1/2] (3.3.243.)

7 =) corresyov\ds ko solution with even |

i =1 corresponds to solution with odd [
Legendre polynomials are defined as solution to taeﬁmiemESD

E N0 ] i =0,1

[
1 & (CD)R@I=-2k) o (3.3.244.)
PHa) ?l;)k!(z—k)!a—%)! 5 '

k':lg—n
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Sunce

20 =2k % &
((l_%)% NE and E(I—k)!=1/() (2.3248)

polynomials can also be written using Rodriques formula

Pi(x) . (—1)" @)z %

First five Legendre polynomials are:
Py ()
P ()

a1
(52 B3 o)

(GBI ] r% 3
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Legendre polynomials satisfy following relations:
P e

T
P
/ 5 /
/_1Pz<x> Pule) do = bur g

[P (x) (20— DxP_1(x) — (I— 1)P_3(x),
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In summary bounded solutions of (3.3.23%.)

for € (—1,1) and [ > —1/2 are ounly obtained when | € Z

Solution is a polynomial proportional to polynomial of Legendre

Polynomial functions are odd or even (with respect to x = 0)

according to whether index [ is odd or even

FOT exam F:Le )

for | _ 0 Liv\eartsj E,Mciepev\demf: solutions of (3.3.23%.) are
1

ut(@) = Po(z) =1  and  u2(z) =5 Wnf(1+2)/(1—2)]

where ug(x) is odd solution which diverges for = — =£1
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Example 3.39. [Associated Legendre Potjmommts]
Associated Legendre polynomials are canonical solutions of

(1 — 2wl = 20 Es [l(l +1) —

2

u—=0 (3.324%)
1 — x?
For m = 0 (3.3.24%.) reduces to Legendre equation
Associated Legendre equation arises when considering

angular part of Laplacian in spherical coordinates
if u(0,9) = u(f)e™*

m

1 07 R :
[sin@ 06 (&nH%) gt 9] w(@) = =L+ Du(d) (3.3.249.)

Note that with substitubtion = cosf (3.3.249.) becomes (3.3.24%.)

We can assume that e (m) >0 and Re (1) > —1/2
it is convenient to introduce following change of variable

u = (128" Baw (3.3.250.)
so that (3.3.24%.) can be rewribten as
(1 — 2% w” — 2(m )P S =3, 3. 251 )
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Introducing a power series for W w (3.3.22%.) takes form

n(n— 1)+ 2nFmwmiim+ 1) — (I £1)
(n+2)(n+1)
(m+l+14+m)(l—m—n)
(n+2)(n+1)

4l —m=Fk with k a Posi&ive integer w then Crpi2 = 0

Cn4-2 Cn

(3.3.282.)

and solution (with same parity of k) is a polynomial of degree k
Although we can obtain such polynomials by means of (3.3.252.)

it is easily seen (wikh help of Leibniz formula) that
i u(x) is a solution of Legendre equation (3.3.23%.)

thew e’ TR deridabeus v (z) satisfies (3.3.261.)

(1 — 22)u™+2) — o(m + V) el VESENET (1) =6 (3.3.263.)
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Form > 0 € Zsolutions of (3.3.24%.) are of form (1 — 22)™/ 2™ (1)
with u(T) a solution of Legendre equation (3.3.23%)
For integers m and [
we can write the so-called associated Legendre polynomials

o 4(m)

P (z) = (1 — z2)™ D), with 0<m <1 (3.3.264.)
af;m

which constitute only bounded solutions of (3.3.24%.) in [—1, 1]

Using Leibniz differentiation formula once again
ik is easily seen that s (.CC‘) and I l_mare related bj

Pm(e) = (P

le (.CE) (3.3.255«)

Orthogonality integral reads

; 2 (- m)!
[ P B de=sws T (25256

and hence

I
m Tl 2
/_1 Pl (.I‘) Pl’ (CU) o= 5ll’ 5 S (3‘3.257‘3
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Theorem 3.3.6. [Frobenius-Fuchs theorem]

I“FA(:I;‘) has ot Lleast a sLmF:La Pote. atk £ =0

and B(r) has ot least a pole of order two at x = 0

oo

such Ehakt A(gj) —

0<|z| <R

one of linearly independent solutions of (3.3.223.)
cal expanded as a genheralized power series

©. @) ©.@)

Z o = Z 0% ¥ (3.3.28%.)

where ag 7 0 and S is a rook of indicial polynomial

s(s—1)+A_1s+B_5=0 (3.3.259.)
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1 — A_l =T
2
If the difference between two roots of this equation T ¢ 7

2nd solution of (3.3.223.) is also a generalized power series
on S_ m other root of (3.3.269.)

On other hand w if 7 € 7, second solution has form
o

that is m 5, — with r=,/(1-A_1)2=4B_, (3.3.260.)

uz(z) = Cup(z)Inz + x°- Z b5 (3.3.261.)
=l

4y r=0 (le. 5S4 =5_)then C #0

Proof. Need for a gemeralized power series can be understood
by analyzing behavior of solution for z — 0

Retaining only higher-order terms (3.3.223.) becomes Euler eq,
Ag i
W T ) (3.3.262.)
4 i ;
For single rooks m solutions are of the form u(x) = cx® (3.3.263.)
for multiple roots m r°Ins is also a solution

Substituting (3.3.263.) into (3.3.262.) we ob&am>
S A
cx” [s(s = 1) + A TEEEES UBtch leadsta adicial equation
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Alternatively m we can obtain indicial equation
subs&iEuELMS (3.3.28%.) in (3.3.223.)

szJrn 2{ (n+s)(n+s—1) +Zam e VRl o)+ B o B 2]}

=90

Cancellation of coefficient of 5% (e wn=0) implies

apls(s — 1)+ A_1s+ B 5] =0 (3.3.268.)

which leads ko indicial equa&ioh because Qo 7£ 0

For n > 1 m cancelation of coefficient of e o

leads ko recursive relakion )

" 221;10 afm(An—m—l(m L S) s Bn—m—2)
n+s)in+s—1)+A 1(n+s)+ B_»

S AR R T e TN
nn+2s+A_1—1) (3.3.266.)

Smece n+2s+ A 7—1l=ntr w Ethisisvalidif nLtr #0
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Example 3.3.10, [Bessel functions]

Bessel equation /

e % o i ) u=0 (3.3.267)

is of the form contemplated in theorem 3.3.6.

It arises when finding separable solutions
ko Lapi.m:e. % Helmhotz eqgs. in cvtiv\driaat or spheriﬁat coordinates

By employing method of generalized power series we obtain

f: 5T 2 Tn Felln - 5 8 g e e )~ (06313,26%.)

71=10)

with alg = g =4
Forn =0 w Gg|s(sr PR o) (3.3.269.)

2

which leads ko indicial equa&ian g2 1?2 — [t 5 — 1/

Apn—2 Apn—2

OorT 1N Z 2 mwr Oy (n 5k 8)2 i V2 o n(n AN 28) (3.3.270.>
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Subsﬁ&u,&v\g S = U inko (3.3.26%.) we determine ] = 0
and using (3.3.270,) we see that a, =0 for all n = odd integers

The coefficients for even powers of 11 are found to be

Aon 1

4979 3 dn(n + v)

= L PP s T
Gl (=) (51 R
(—1)" 2272 0! T(n + v + 1)

where in last Line we have use properties of Gamma function

The recursive relation is satisfied if
. s

221 | F(n i 1) (3.3.272)
For ¢ = 277 m we obtain Bessel function of first kind of order ;,

T O oy
TN Z) T(n+ DI(n+v+1) (5)

T==

A2y — (—1)

ERRYED
which is one of solutions of (3.3.267.)

By applying ratic test m series converqges Y e Rlorz € C)

Thursday, April 2, 15



f v ¢ 7 w other linear independent solution of (3.3.267.) is ;

= iy, g 21— U
J-v(2) =) n!F(7(1 —)u P (§> (3.3274..)

=

i n>0¢cZ, o dpr=""Tim Jolyr ="

Thus = we take particular linear combination of J,(z) and J_, (7)
Y, (2] & cos(vm)d,(x) — J_,(x) (3.3.275.)

SeZs
kihowh as Bessel function of second kind

For y ¢ 7 = Y, (%) satisfies Bessel equation

for it is Linear combination of khown solutions J, (:17) ol ()

However m for U € /Z (3.3.275.) becomes indeterminate

In fack m Y, () for integer N is defined as

¥ ()= S v ) (3.3.277.)

Pe=>r
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It is easily seen thot explicit form of Y, for v € Z s

) O (7]

T\—Y s (v —n — 1)! ::2 2
- gigesu Sl i
¢(m) =T"(m +1)/T'(m) and last sum is only present if U =4

Asymptotic forms are : ( v 1)
r—|v+ =

T
] (3.3.279)

i) 2

and

k I\
_x— V+§ 5| (38.32%0)

Note that for k £ 0 = J,(kx) and Y, (kz) are solutions of )

v
) = (3.3.2%1.)
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Properties of various Bessel functions

Bessel functions of second kind are irregular at © = 0
but with tncreasing = become oscillatory
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Theorem 3.3.%.
Last class we saw that for p() > 0 and ¢(2) continuous in [a, b

Sturm-Liouville eigenvalue problem (3.3.1%1.) can be written as
u' + A(z)u' + B(x)u =0 (3.3.2%%.)
p'(z) Ap(x) — q(z)
ik Al snd ") — (3.3.2%9.)
"t e T

Consider the case in which p(x) has a zero of order one ot T = @

plz)=cfz=N) He(r taE T g L0 (33290

and is [oc;-sif:ive and continuous in rest of inkerval [Cl, 4 ]

In such a case A(7) has a single pole with residue A_; =1

There is ohly one L. bounded solution of (3.3.2¢%.) for z — a’

Then m bou,ncio\r‘j condition to be meosed )

eigenfunction remains bounded for 1 — ¢
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Proof.
it q(ilj) ls continuous in [a, b] then )

B(Z) was ot most a simple pole at T = a and so B_5 = ()

roots of indicial equation ot T = @ are:
s=0 and Szl—A_lz()
one of solutions of (3.3.2%%.) is a power series
(which is bounded in = = a)
whereas other solution has a logarithmic divergence at T = a
Note that Sturm-Liouville operator remains self-adjoint if

lim p(z)u(z) =0 dnd lim p(riu'(e) =0 (3.3.221.)

z—aT TEsaT
I u(z) and U () are bounded for z — at

then (3.3.291.) conditions are satisfied as p(a) =0 b'j hypothesis

The above reasoning extends easily
to the case tn which ¢(2) has a simple pole at = = a
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Coroumj 3.3.3.
(L) Legendre polynomial series
Legendre equation (3.3.23%.)
coan be rewritten as a Sturm-Liouville eigenvalue problem
—[(1 - :I:Q)u’}/ = Xu e 1 1 1] (3.3.292.)
2

p(z) =10

Boumd&rj condition to be imyoseci ts Ehak U(:Ij) remains bounded

= (14+2)(1 —2) has a zero of order one ot 1 = +1

This condition determines eigenvalues A =[(l+1) with [ =0,1,...
P(r) polynomials form a complete set in [—1,1]
= orthogonal basis of vector space of differentiable f(z) to 2nd order

Any function f(r) € C*([-1,1]) can be expanded as

© @)

f(z) =) aPfz)

=0
21 —|— 1
=2/(2l 4+ 1) we have m ¢ = / JERF («
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(iil) Bessel series
(3.3.2%1.) also defines a Sturm-Lioville eigenvalue Probt&m

V2

—(zu") + —u = Azu (3.3.29%.)
where p(z) = z,q(x) = V/mxm,\d OFEI= 2 withe) = ke
As an illustration = we consider here x € |0, a
Since p(a:) has a simple pole ot & = 0
we impose the bcuv\darv condition |U(O)‘ < OO
At T = a4 we set a Dirichlet bouhdarfj condition: u(a) =4

General solution of (3.3.29%.) is

u(z) = A J,(Vz) + B Y, (VAz) (3.3.299.)
Boundary condition [u(0)] < 00 sets B =10
whereas u(a) =0 leads to J, (v Aa) =0

that is Ve =kY, =il 2 T Wit A =0 (3.3.300.)

k, are roots of J, (x) that form a countable set in R
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Eigenfunctions associated with eigenvalues C)L\ )

are orthogonal in tnner product (u,v); = | u(z) v(z) z dx

Eigenfunction set {J,(k z/a), n=1,2,.. } is complete on 0, a
because L is self-ad joint with present boumdarcj conditions

We can then expand a function f(z) € |0,a as
@)

f(z) = Z Jy(kn,z/a) (3.2.30%.)

N s / fa) Jo(Kz/a) x de  (3.3.309)

Note that sumwmakion i (3.3.30%.) is over N and not over v
First zeros of Jy(x) are

kY ~ 2.405 = 0.765m: kstew 052 0T Rl GE— 0 (5

Asymptotic form w ]{?2 = (n — i)ﬂ'
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