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BOUNDARY VALUE PROBLEAM

Self-ad jointness of Sturm-Liouville operator

So far we have seen differential equations with initial conditions
For a linear equation of second order
we have seen that integration constants are determined

from values of unknown function and its first derivative ot ¢ = 1

We will begin to study problems of second order
in which constants of integration are determined
not by initial conditions m  but by boundary conditions

In these probtems

range of variation of variable is restricted to o certain range
and integration constants are determined

from values of yniknown function

or its derivative in extreme points of interval
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Definition 3.3.1
General form of a second order Linear equation reads
d*u
FRoL A(x) . iy — (T (3.3.167.)
A(x), B(z) and F(z) are continuous functions
Preceding equation can be rewritten as

d du

- P + = (3326

—p(z)B(z) and p(z)= e Al@)dz

Note that p/( ) = A(aj)p(aj)

AR (pu’)’ W pu” _I_p/u/ ik p[u" be A(x)u’] (3‘3‘1539‘)
so (3.3.16%.) reduces to (3.3.167.) multiplied by —p(7)

d d

where L =—— [p(x)— + q(x) w is Sturm-Licuville (SL) opera&or

(3.3.171)

dx dx

Eq. (3.3.16%.) is geheraiti written as Llu(z)] = f(x) (3.3.170.)
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This operator acts on functions u(x)
defined in a given real interval @ < & < b
and is only completely defined
after speci»fji,hg values of unlanown function or its firsk derivative

or Linear combinations of them ot boundaries (a,b)
These conditions are kihown as boundary conditions

and the functions that satisfy them
constitute domain of Sturm-Licuville operator

In this class » we s&u.o{v the case in which p(:E) ls non-zero i [a, b]
Next class we will study the case

th which p(:l?) vanishes at one or both ends of the inkerval
that leads to study of so-called special functions

Throughout we Let [a,b] be a bounded interval in R

i (la, b]) denotes the space of functions
with derivatives of 71 -th order continuous up ko ev\cipamﬁs
p(z) €C'([a,b]) and g(z) € C°([a, b))

L?([a,b]) is subspace of functions that vanish near endpoints
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Theorem 3.3.1.

Yu,v € EQ([CL, b)) = L is wmost general second order real operator

which can be formally self-adjoint s Lluh = (D}, u) (3.8172.)
b
(V,u4) denoctes usual taner product (v u) = / U (e d s

Prook.
Integration by parts leads to

b
(v, L)) — (L o) = / (oY — u(pv')dz

b
:/ [(vpu’)’ — (upv')'] dx (888.173.)

= p v’ — w'],
For L to be self-adjoint m we need to impose conditions on u, v
ot the endpoints to make right hand side of (3.3.173.) vanish
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Definition 3.3.2.

A boundary condition Bis an expression of the form
Bu = cqu(a) + cpu(b) + dyu'(a) + dpu' () (3.3.274-.)
for real comnstanks = c,, Cp, dy, dp

Definition 3.3.3.
Boundary conditions By, By are self-adjoint for L

i Yu,v € C*([a, b)) satisfying Biu = Byu = Biv = Byv = 0 )

b b
/ L[u] U0z :/ U L[?}] dx (3‘3‘175‘:)

b o

vanishing of B;u and B,v

implies right-hand side of (3.3.173.) vanishes
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Definition 3.3.4.
Local boundary conditions are those establishing a relationship

between unikenown function and its derivative in each edqge
separately

We say that Biu =0 and Byu =0 are local or sepma&ed be

4 B; and By are Lmo\epes«d@m&v chosen
to quarantee that right hand side of (3.3.173.) vanish

>Dirichlet conditions Biu = u(a) & Bou = u(b)
>Neumoahn conditions Biu = u/(a) & Bou = u'(D)

>Robin-Cauchy conditions cqu(a)+ dou'(a) = 0 & cpu(b) + dpu'(b) = 0

These are sepma&ed baundarj conditions

B is a condition ot a and By is a condition at b

Any pair of separated conditions is self-adjoint for general L
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Definition 3.3.8.

Non-local boundary conditions establish a relationship between
value of unknown function and ikts derivative in one and other edqge

Most common examples of non-separated boundary conditions are
>Periodic conditions Biu = u(b) —u(a) & Bou=u'(b) — u'(a)
> Anti-Periodic conditions Biu = u(b) + u(a) & Bou = u'(b) + u'(a)

These are self-adjoint for L if p(b) = p(a)

Next m we discuss whether homogeneous equation Llu| = 0

with Diritchlek boumdarj conditions has non-trivial solubkions u(gj) £ 0

Laker w we will see that

the non-existence of such solutions (ak.a. zero modes)
is a necessary and sufficient condition for inhomogeneous equation

to have a unique solution via Green's function
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Example 3.3.1.
Cownsider case with p(r) =1 and g(z) =0 D

2

d
L= 33,3277
= ( )

General solution of homogeneous equation is u(x) =cx+d

(3.3.17%)
Therefore m b u(a) =u(b) =0=c=d=0
and homogeneous equation only has trivial solution
Exam[ote 3.3.2, d2

B 2
For L——@—k‘

general solution of homogeneous equation can be written as
wlr) = ce' " i anie % (3.3.179.)
or equivalently
u(x) = ¢ sin[k(z — a)] + d' cos[k(x — a)] (3.3.1%0.)
¥ ula)=0=4d =0
The condition u(b) =0 Lleads ko ¢ sinfk(b—a)] =0
which has a non-trivial solution (¢’ #0) < k(b —a) =nm,n € Z

Obherwise = ¢ =0 and only solution is ) — 0
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Definition 3.3.6.
Fix a positive weight function p(x) € CQ([G,, b))
so that p(z) > ¢ >0 for x € |a,b]
and consider the Sturm-Licuville eigenvalue Prc:»bie.m
L-u=2Cpo, withe o =N, it (3.3.1%1)
We say that \ is an eigenvalue of L
if there is a hon-zero solution u € C*([a, b]) of (3.3.1%1.)

and we call U an eigenfunction
Lemama 3.3.1.

Let (L, B1, B2, p) be a self-adjoint Sturm-Liouville system

Eigenfunctions associated ko dif{e.rg.m& eigenvalues are orthogonal

in the nner product w (U, V), = / u*(x) v(z) p(x) der (3.3.1%2.)
a
(L) eigenfunction U is an eigenvector for operator ,0_1L

6 g} ¢ i L&, IO—lLu s )\u
(i) (o7 Lu,v), =G

so that p_l L is self-adjoint in domain CQ([CL, b)

wikh res[pe_t& ko ner F?rociu,{:& <,>
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Proof.
1 Llui(z)] = Mug(x) and  Liu;(z)] = Aju;(z)

b
0 = (g, Llual)y = (Llagly i)y = O = 43) [ ile) u(o) pla)do

b
“22 [u@) w0 pe) do=0it N AN (Ba1ad

Theorem 3.3.2.
(L) For any self-ad joint SL system (L, B1, B3, p) there exists:
a countable set of eigenvalues AN D e )\ S
with associated eigenfunctions U1 (CB), U2 (CE), o, Uy (ZL’) B
which satisty Llu, (z)] = Ap(@)un(z)

and are orthogonal with respac& o tnner prodw:& (3.3.1%2.)
For local boundary conditions w \; < \; i 7 #j
because there cannot be two L.i. solutions of L{u| = Apu

for same A\ so&is«ﬁjw\g (3.3.1%1.) )

(as the Wronskian would be null)
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(it) Any function f(z) € C*([a, b]) that satisfies boundary conditions
can be written in terms of eigenfunctions u, ()

as &bSOLM&?-Lj uhi{ormtv convergent series

f(x) = Z CnUn (T)

Set of all eigenfunctions forms a basis

of vector space of differentiable functions to second order

that S&Eisfj bou»\ciarj conditions on interval [a, )

In other words m cigenfunctions of L form a complete set
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Proof.
Note that space [:i([a, b))

consisting of eigev\afw\t&mms for Sturm-Liouville problem

is space of measurable u on [a,b] such that

fullZ _/ u(z)[? plz) do < oo (3.3.1%6.)

Since p(x) is bounded from above and below
this is the same space of functions as [ZQ([a, b)
but norm and inner product & ) are different
P U is uni&arj map of Ep onto L7 : H\/ﬁ UHL2 = HUHL’%
In particular

{uj }3 1 is an orthonormal basis for L/QO ~ {\/ﬁ U, };X;l

is an orthonormal basis for 5
L_oe{wfwceh&s Cp, are gwem bj

f p(x f( )dz ! (Un, f)p (2.3.1%7.)
fialg

n
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Indeed m if we multiply (3.3.1%5.) by p(2)un (%) and integrate

b o0 b
[ o) une) £@) dz= 3" e | p(@)um(@) un(a)

b
—co [ ple) (o) (3.3.1%%.)

where we have used orthogonality of eigenfunctions
For a given [ m coefficients of expansion are unique

if chun — = eF = 0Vn
Corollary 3.3.2.
Let p: [a,b] = R be an arbi&rarv function such that p(x) > ¢ > 0
The space w L%([a,b];@) — If :[a,b] = C such that \/pf € L%}
equipped with taner product

(£,9)p = (/PFs/Po)c2 = / o(z) f(z) g* (x)dz

is a Hilbert space w which we denocte bj (5120([&, b]; C), <, >p)
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GREEN FUNCTION OF STURM-LIOUVILLE OPERATOR
Definition 3.37

The Green function is defined as as solution of the equation

EylGla,x )| = dle— ') (3.3.191.)

which satisfies (in first variable) Robin-Cauchy boundary conditions

dG
Le coGla,x’) + da,_|(g;:a,,:c’) =0,
&

d

dG
CbG(b, ZC,> S db%’(x:b,x’) ==a(}

(3.3.192.)

Wik ey and x <b

subscrip& in operator tndicakes thak ik acks

on the first variable of the arqument of the Green's function
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Theorem 3.3.3,

(1) Solution of (3.3.191.) exists and is unique
if and only if trivial solution u(x) = 0Vx € |a, b]

is only solution of Llu(x)] =0 subject to RC boundary condition

Le. there are no zero modes

(i) Solution of inhomogeneous equation with RC boundary conditions

b
s glven bj - u(a:') = / G(:E, :E‘/) f(x’) dz’ (3.3.193.)

Prook.
We first show that (it) holds
f G(x,7") exists then (3.3.193.) is a solution of (3.3.170.)

b

b
/ L. [G(a e da:’:/ 6(x —2') f(z') dx’

a

Note that L acts on first variable m which is unaffected by tntegral
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In addition m U satisfies boundary condition

because (G satisfies this condition
in first variable which is unaffected by integral

b
cou(a) + dau'(a) = / coG(a,z") +d, CCZZ—G flamde =0
1

a be=a, ).

OLV\d b o

cpu(b) + dpu' (D) = / cyG (b, x') + dp —Z—;—; S ()

a (z=b,x")
To show (1) we now construct Green function

Let Uy (CU) and U2 (513) be two solutions of homogeneous equation

Elu(z) —10

each so&i,s%vivxg one of baumd&rj conditions

cour(a) +dgui(a) =0 and cpuz(b) + dpus(b) =0 (3.3.194.)

For £ < 2’ we have L[G(x,ib/)] = (0 with G(:)j,x/) =i (:c’)ul (:U)

satisfying boundary condition at T = a
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In an analogous manner m if T > T’ then Glawa') = co(z' Juz(x)
saELsﬁ,LMS boumd&rj condition ak r = )

cr{cHuiln)

Coldt JUSNFP & §9i0lon)

Therefore m G(.CI?,:C/) = {

Integration of (3.3.191.) over [2' — €, 2 + €] (with € > 0 )
:1:’—{—6 d :13’—{—6

[ LG+ [ g@)Gla,al)ds
x'—e L x/—e

leads to

-Gz, o)t e

T=x'<¢

Due to continuily of P and ¢ Ehis equation can only be satisfied if:
G(:C, a:') ts continuous
its derivative has a discontinuily of magnitude —1/p(z’) ot z = 2’
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Indeed s
' q(z) G(z,2") dz — 0

r=HS

because ¢ and (G are continuous functions

nd th p(a:’) { s L }
a ws = — _— Fiy < el S
dx Ao

H i

or equiv&tev\&v

LA summarj

—p(2)G'(2,2") must be of the form
O(z — z') + ¢(x)

. /
with @ a continuous function ab T =2

so that (—pG/)/ contains a 5(513 = 33/) term
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We impose G requirements on (3.3.198.) to obtain

c1(xur(z') — co(x)ua(z)
c1(z Jujla’) — Colz Jusias
which debermines
c1(x!) = =uslw Bk and” (g
where

C p(z")[u1 (z)us(a") — ua(a)uy (2)]
[pW(Uh Uz)]:pzx/

s U2
Wu,uz) = / / | (3.3.203)
Uy Uy
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The solution exists only ¢f C'# 0
that is = only if Wronskian W (u1,us) is non-zero
Note that this is satisfied f U1 (Z) and us(x)
are kwo LLMeartj Lmdepehdenf: solutions of L[ ] — 0

In such a case » (' is a constant
p(uruy —uguy)l” = p'(urug — uguy) + p(uruy — usuy)
= uy(pus)’ — ua(pu)’

— g us S o (3.3.204.)
Therefore m if (C # 0 we have

wr L GBI o R e T
G(:c,.cr;)—{ —uy(xus(x)/C x> 2

1 C =0 Green function does not exist

(3.3.208)

In bhis case solutions Ul and Us are Lémeartj dependen&
Le. U2 (:z:) = CUq (m)rul(x) satisfies bou,nciarj conditions at both ends

This implies that ¥ C =0 w there is a non-trivial solution u; # 0
satisfying Ljui| = 0 and RC boundary conditions
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Green function exists < the only solution of homogeneous equation
Llu] =0
that satisfies RC conditions is u = 0

This concludes proof of (i)
Additionally w (3.3.205.) gives explicit expression for Green function

Linear operc&or G[u(:lf)] min: / G(g;jg;’) u(x’) dx’ (3'3'20‘3'>

a
is Fhen inverse of L operator and ik is somelbimes denoted also as [,
P

Let us note thak:
(i) inverse of differential Linear operator L is integral linear operator
(G(z,7") is nown as kernel of the integral operator)

(i) G depends not only on coefficients p(7) and q(z)of L
but also own the bou.mdmr'j condition
(L) symmetry of (3.3.208.) yields

Glzsw® = Glzhz) . o (S@R07)
and it allows to state theorem that follows
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Theorem 3.3.4. [Reciprocity of Green function]

/
Response of system in T to a point source in &

i : : /
s identical to response of system in T to a point source in T

even if P and ¢ depend on T

This is due to self-adjointness of L
(LaGlz, ), Gz, 2")) = (G(2,2'), L.G(z,3")) (8.3.208)

Using differential equation that sotisfies Green function

and definition of dirac distribution we have
b

b
/ 6(r —2') G(x,2") dx :/ G(z,z') 6(x — 2"") dz  (3.3.209.)

a
which leads to  G(z/,2") = G(2”, 2') (3.3.210.)

Inverse operator GG is also self-ad joint

CREINE / / VTGl e drds —" ¢ v, 1)

(3.3.211)
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Note that Grreen's function (3.3.208.)

is not tnvariant under space translations (due to boundary conditions)

Translakional invariance is broken w even f P and 4 are constanks

Therefore mw  G(xz,2') # G(x — ')

Solubion (3.3.193.) can be rewritten as

b

(o) | ) S6) o’ + ) [

X

gy flr) dx’]

and one can explicitly ve'rixfj that Llu] = f

It is always Fossibte to write solution in form or u(z) = u,(z) + u

Up w particular solution of inhomogeneous equation (L[up]
Up, w solution of homogeneous equation (L{up] = 0)

subject to boundary condition
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Exo\mpi.@. 3.3.3,

Consider case p(z) = 1 and glz) =8 2

Loey el — ) (3.3.212.)

Let us set a =0,b0> 0 and u(0) =u(b) =0
It follows that u1(x) =2 and us(z) =2 —bwith C =2 — (z —b) = b
Then we obkain

r(b—x') /b m<a

Glid S { LD ) DR

(3.3.213)

Solution of inhomogeneous equation

() MW =0 (3.3.214.)

u(®)
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1 f(2) = 2%we have

UL = %x(b?’ —

that consists of particular solution = /12

and solution of homogeneous equation b /12

| such Ehak U(O) = u(b) ==l
E:xam[ate 3.3.4,

with a =0,0 >0

In this case w for u(a)
we have g () = sin(wz) and wus(x) = sin (w(z — b)) (3.3.217.)
which lead to

C' = w[sin(wx) cos (w(x — b)) — cos(wz) sin (w(x — b))] = w sin(wb)
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Green function exists only f sin(wb) # 0 that is w # nm/b

i such a case we have with n € Z

Gz, 2o , {3.328%.)

1 { sin(wx) sin (w(b — ")) x= <z’

sin(wx’) sin (w(b—x)) =« >z

w sin(wb)
Note that for w — 0 we recover (3.3.213.)

I w=1ikwithk € R w Green function exists VEk # 0
G(z,x') follows from (3.3.21%.) with substitutionw — k & sin — sinh

Exampt& 3.3.8. d

Let us consider again [, = ——— operator
dx?

wikh boumd&rj condition ul(a) — U,(b) =
CGrreen function does not exist because
U1 () = ¢y AR S ==
yielding C =0
This is due to constant solution u(:z:) — e

non-zero solution of L[u] — () and satisfies U/(CL) — U/(b)
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In this case m solution of inhomogeneous problem
if ik exists  is not unique

For a given a solution one can always add up an arbitrary constant
which satisfies homogeneous equation and the boundary condition

Exampte 3.3.6, 2
Finally m comnsider L = ——— — w2 operator
, i P

wikh bou.mdar'j condition u’(a) = u’(b) =20
It follows that

w1 (z) = cos(wx) and wus(x) = cos(w(z — b)) (3.3.220.)

with C' = —wsin(wb)
Green function exists only if sin(wb) # 0 that is w # nw/b
In such a case we have with n € Z
o /
| 1 COS((,UQZ‘/) cos (w(b—=z")) =z < T (3.3.220)
wsin(wd) | cos(wz’)cos(wb—1x)) z>x

Gl&, 7

I w—0w|Gx,z")| — o0
On other hand = if W = ik with k € R, G(x,2") exists Vk # 0
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TOBE
FNNTINNED. ...
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