

Mathematical Physics

Luis Anchordoqui

ORDINARY DIFFERENTIAL EQUATIONS III

 3.1 Setting the Stage ✔ 3.2 Initial Value Problem ✔ 3.3 Boundary Value Problem 3.4 Fourier Analysis Picard's existence and uniqueness theorem Systems of first-order linear differential equations Green matrix as a generalized function Self-adjointness of Sturm-Liouville operator Fourier transform Fourier series Green function of Sturm-Liouville operator Series solutions to homogeneous linear equations

BOUNDARY VALUE PROBLEM Self-adjointness of Sturm-Liouville operator So far we have seen differential equations with initial conditions from values of unknown function and its first derivative at $t=t_{\rm 0}$ We will begin to study problems of second order range of variation of variable is restricted to a certain range In these problems not by initial conditions \blacktriangleright but by boundary conditions we have seen that integration constants are determined For a linear equation of second order and integration constants are determined or its derivative in extreme points of interval in which constants of integration are determined from values of unknown function

Definition 3.3.1

General form of a second order linear equation reads d^2u $\frac{d}{dx^2} + A(x)$ *du* $\frac{d}{dx} + B(x)u = F(x)$ $A(x)$, $B(x)$ and $F(x)$ are continuous functions Preceding equation can be rewritten as $-\frac{d}{dx}$ $p(x)$ $\frac{du}{dx}\bigg]$ $+ q(x)u = f(x)$ $f(x) = -p(x)F(x)$, $q(x) = -p(x)B(x)$ and $p(x) = e$ $\int A(x)dx$ Note that $p'(x) = A(x)p(x)$ and $(pu^{\prime})^{\prime}=pu^{\prime\prime}+p^{\prime}u^{\prime}=p[u^{\prime\prime}+A(x)u^{\prime}]$ $(3.3.167)$ (3.3.168.) $(3.3.169.)$ Eq. (3.3.168.) is generally written as $L[u(x)] = f(x)$ (3.3.170.) (3.3.171.) so (3.3.168.) reduces to (3.3.167.) multiplied by $-p(x)$ where $L = -\frac{d}{dx} \left[p(x) \frac{d}{dx} \right]$ $+$ $q(x)$ \leftarrow is Sturm-Liouville (SL) operator

This operator acts on functions defined in a given real *u*(*x*) *a x b* values of unknown function interval and is only completely defined (*a, b*) These conditions are known as boundary conditions In this class ☛ we study the case in which *p*(*x*)is non-zero in [*a, b*] Next class we will study the case *p*(*x*) vanishes at one or both ends of the interval that leads to study of so-called special functions Throughout we let [*a, b*] be a bounded interval in R denotes the space of functions *n* -th order continuous up to endpoints and is subspace of functions that vanish near endpoints with derivatives of in which *^C*(*n*) ([*a, b*]) *^p*(*x*) ² *^C*¹([*a, b*]) *^q*(*x*) ² *^C*⁰([*a, b*]) *^L*²([*a, b*]) constitute domain of Sturm-Liouville operator and the functions that satisfy them or linear combinations of them at boundaries after specifying or its first derivative Monday, October 24, 16 5

Theorem 3.3.1. which can be formally self-adjoint $\langle v,L[u]\rangle = \langle L[v],u\rangle$ (3.3.172.) is most general second order real operator $\langle v, u \rangle$ denotes usual inner product $\langle \mathbf{v}, \mathbf{u} \rangle =$ Proof. Integration by parts leads to For *L* to be self-adjoint ☛ we need to impose conditions on *u, v* at the endpoints to make right hand side of (3.3.173.) vanish (3.3.173.) $\forall u, v \in \mathcal{L}^2([a, b]) \blacktriangleright L$ \int^b *a* $v^*(x)$ $u(x)$ dx $\langle v,L[u]\rangle-\langle L[v],u\rangle =$ \int^b *a* $[v(pu')' - u(pv')']dx$ = \int^b *a* $[(vpu')' - (upv')'] dx$ $= p [vu' - uv']_b^a$ *b*

Definition 3.3.2.

A boundary condition *B* is an expression of the form $Bu = c_a u(a) + c_b u(b) + d_a u'(a) + d_b u'(b)$ (3.3.174.) for real constants \blacktriangleright $c_a,~c_b,~d_a,~d_b$ Definition 3.3.3. Boundary conditions B_1, B_2 are self-adjoint for L if $\forall u,v \in \mathcal{C}^2([a,b])$ satisfying $B_1u = B_2u = B_1v = B_2v = 0$ \int^b *a* $L[u]$ *v* $dx =$ \int^b *a u L*[*v*] *dx* vanishing of B_ju and B_jv implies right-hand side of (3.3.173.) vanishes (3.3.175.)

Definition 3.3.4.

Local boundary conditions are those establishing a relationship between unknown function and its derivative in each edge separately

We say that $\,B_1u=0$ and $B_2u=0$ are local or separated b.c if B_1 and B_2 are independently chosen to quarantee that right hand side of (3.3.173.) vanish \blacktriangleright Dirichlet conditions $B_1u = u(a)$ & $B_2u = u(b)$ \blacktriangleright Neumann conditions $B_1u = u'(a)$ & $B_2u = u'(b)$

 \blacktriangleright Robin-Cauchy conditions $c_au(a) + d_au'(a) = 0$ & $c_bu(b) + d_bu'(b) = 0$

These are separated boundary conditions

 B_1 is a condition at a and B_2 is a condition at b

Any pair of separated conditions is self-adjoint for general *L*

Definition 3.3.5.

Non-local boundary conditions establish a relationship between value of unknown function and its derivative in one and other edge Most common examples of non-separated boundary conditions are \blacktriangleright Periodic conditions $B_1u = u(b) - u(a)$ & $B_2u = u'(b) - u'(a)$ \blacktriangleright Anti-Periodic conditions $B_1u = u(b) + u(a)$ $\mathbf{\pmb{\mathfrak{e}}}\cdot B_2u = u'(b) + u'(a)$ These are self-adjoint for L if $p(b)=p(a)$

Next ☛ we discuss whether homogeneous equation *L*[*u*]=0 with Dirichlet boundary conditions has non-trivial solutions $u(x)\neq 0$

```
Later \blacksquare we will see that
```
the non-existence of such solutions (a.k.a. zero modes) is a necessary and sufficient condition for inhomogeneous equation to have a unique solution via Green's function

and homogeneous equation only has trivial solution Example 3.3.1. Example 3.3.2. Consider case with $p(x)=1$ and $q(x)=0$ $L = -\frac{d^2}{dx^2}$ dx^2 General solution of homogeneous equation is $u(x) = cx + d$ (3.3.177.) (3.3.178.) Therefore \blacktriangleright if $u(a) = u(b) = 0 \Rightarrow c = d = 0$ For general solution of homogeneous equation can be written as $u(x) = ce^{ikx} + de^{-ikx}$ or equivalently If $u(a)=0 \Rightarrow d'=0$ The condition $u(b)=0$ leads to $c' \sin[k(b-a)]=0$ which has a non-trivial solution $(c' \neq 0) \Leftrightarrow k(b-a) = n\pi, n \in \mathbb{Z}$ Otherwise $\blacktriangleright\hspace*{1.5mm} c'=0\hspace*{1.5mm}$ and only solution is $u(x)=0$ (3.3.179.) $u(x) = c' \sin[k(x - a)] + d' \cos[k(x - a)]$ (3.3.180.) $L = -\frac{d^2}{dx^2}$ $\frac{u}{dx^2} - k^2$

Definition 3.3.6.

Fix a positive weight function $\rho(x) \in \mathcal{C}^2([a,b])$ so that $\rho(x) \ge c > 0$ for $x \in [a, b]$ and consider the Sturm-Liouville eigenvalue problem $L u = \lambda \rho u$, with $B_1 u = B_2 u = 0$ We say that λ is an eigenvalue of L if there is a non-zero solution $u\in \mathcal{C}^2([a,b])$ of (3.3.181.) and we call u an eigenfunction Lemma 3.3.1. Let (L, B_1, B_2, ρ) be a self-adjoint sturm-Liouville system $(3.3.181.)$ Eigenfunctions associated to different eigenvalues are orthogonal $\langle u, v \rangle_{\rho} =$ \int^b *a* in the inner product $\blacktriangleright \langle u,v \rangle_\rho = \int \; \; u^*(x) \; v(x) \; \rho(x) \; dx$ (3.3.182.) (i) eigenfunction u is an eigenvector for operator $\rho^{-1}L$ i.e. $\rho^{-1}Lu = \lambda u$ $\langle \rho^{-1}Lu, v \rangle_{\rho} = \langle u, \rho^{-1}Lv \rangle_{\rho}$ so that $\rho^{-1}L$ is self-adjoint in domain $\mathcal{C}^2([a,b])$ with respect to inner product \langle , \rangle (ii)

Proof. If $L[u_i(x)] = \lambda_i u_i(x)$ and $L[u_j(x)] = \lambda_j u_j(x)$ we have $0 = \langle u_j, L[u_i] \rangle_\rho - \langle L[u_j], u_i \rangle_\rho = (\lambda_i - \lambda_j)$ \int^b *a* $u_i(x)$ $u_j(x)$ $\rho(x)dx$ and so $\int^{\sigma} u_i(x) \ u_i(x) \ \rho(x) \ dx = 0$ if $\lambda_i \neq \lambda_j$ (3.3.184.) Theorem 3.3.2. (i) For any self-adjoint SL system (L, B_1, B_2, ρ) there exists: a countable set of eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \ldots$ with associated eigenfunctions $u_1(x), u_2(x), \ldots, u_n(x) \ldots$ which satisfy $L[u_n(x)] = \lambda \rho(x)u_n(x)$ and are orthogonal with respect to inner product (3.3.182.) For local boundary conditions $\blacktriangleright i < \lambda_i$ if $i \neq j$ because there cannot be two L.i. solutions of $L[u] = \lambda \rho u$ for same λ satisfying (3.3.181.) \int^b *a* $u_i(x) u_j(x) \rho(x) dx = 0$ if $\lambda_i \neq \lambda_j$

(as the Wronskian would be null)

(ii) Any function $f(x)\in \mathcal{C}^2([a,b])$ that satisfies boundary conditions can be written in terms of eigenfunctions $\;u_{n}(x)\;$ as absolutely uniformly convergent series

$$
f(x) = \sum_{n=1}^{\infty} c_n u_n(x)
$$
 (3.3.185.)

of vector space of differentiable functions to second order Set of all eigenfunctions forms a basis $\textsf{that satisfy}\ \textsf{boundary conditions on interval}\ \ [a,b]$

In other words ☛ eigenfunctions of *L* form a complete set

Proof. Note that space $\mathcal{L}_\rho^2([a,b])$ consisting of eigenfunctions for Sturm-Liouville problem is space of measurable u on $[a,b]$ such that $\|u\|_{\mathcal{L}^2_\rho}^2$ = \int^b *a* $|u(x)|^2$ $\rho(x) dx < \infty$ Since $\rho(x)$ is bounded from above and below this is the same space of functions as $\mathcal{L}^2([a,b])$ but norm and inner product $\langle \, , \rangle_\rho$ are different $u \to \sqrt{\rho} \; u$ is unitary map of \mathcal{L}_{ρ} onto $\mathcal{L}^2 : \|\sqrt{\rho} \; u\|_{\mathcal{L}^2} = \|u\|_{\mathcal{L}^2_{\rho}}$ ot \mathcal{L}_{ρ} onto In particular $\{u_j\}_{j=1}^\infty$ is an orthonormal basis for $\mathcal{L}^2_\rho \Leftrightarrow \{\sqrt{\rho} \ u_j\}_{j=1}^\infty$ is an orthonormal basis for *^L*² Coefficients *cⁿ* are given by $c_n =$ $\int_a^b \rho(x) \left[u_n(x) \ f(x) \right] dx$ $\int_a^b \rho(x) u_n^2(x) dx$ = $\langle u_n, f \rangle_\rho$ $\langle u_n, u_n \rangle_\rho$ $(3.3.186.)$ (3.3.187.)

Indeed **•** if we multiply (3.3.186.) by
$$
\rho(x)u_n(x)
$$
 and integrate
\n
$$
\int_a^b \rho(x) u_n(x) f(x) dx = \sum_{m=1}^{\infty} c_m \int_a^b \rho(x) u_m(x) u_n(x)
$$
\n
$$
= c_n \int_a^b \rho(x) u_n^2(x) dx
$$
\n(3.3.188.)
\nwhere we have used orthogonality of eigenfunctions
\nFor a given f **•** coefficients of expansion are unique
\nIf $\sum_{n=1}^{\infty} c_n u_n(x) = 0 \Rightarrow c_n = 0 \forall n$
\nCorollary 3.3.2.
\nLet $\rho : [a, b] \rightarrow \mathbb{R}$ be an arbitrary function such that $\rho(x) \ge c > 0$
\nThe space **•** $\mathcal{L}_\rho^2([a, b]; \mathbb{C}) = \{f : [a, b] \rightarrow \mathbb{C} \text{ such that } \sqrt{\rho} f \in \mathcal{L}^2\}$
\nequipped with inner product
\n $\langle f, g \rangle_\rho = \langle \sqrt{\rho} f, \sqrt{\rho} g \rangle_{\mathcal{L}^2} = \int_a^b \rho(x) f(x) g^*(x) dx$
\nis a Hilbert space **•** which we denote by $(\mathcal{L}_\rho^2([a, b]; \mathbb{C}), \langle, \rangle_\rho)$
\n \int_a^b

Green function of Sturm-Liouville operator Definition 3.3.7. The Green function is defined as as solution of the equation $L_x[G(x, x')] = \delta(x - x')$ $(3.3.191.)$ which satisfies (in first variable) Robin-Cauchy boundary conditions i.e $c_a G(a, x') + d_a$ *dG* $\frac{d}{dx}|_{(x=a,x')}=0,$ $c_b G(b, x') + d_b$ *dG* $\frac{d}{dx}$ ^{$\big|_{(x=b,x')}=0$} (3.3.192.) with $a < x$ and $x' < b$

subscript in operator indicates that it acts

on the first variable of the argument of the Green's function

Theorem 3.3.3.

(i) Solution of (3.3.191.) exists and is unique if and only if trivial solution $u(x)=0 \forall x \in [a,b]$ is only solution of $L[u(x)] = 0$ subject to RC boundary condition i.e. there are no zero modes (ii) Solution of inhomogeneous equation with RC boundary conditions $u(x) = \int^b$ *a G*(*x, x*⁰) *f*(*x*⁰ is given by ☛) *dx*⁰ (3.3.193.) Proof. We first show that (ii) holds if $G(x,x')$ exists then (3.3.193.) is a solution of (3.3.170.) Note that L acts on first variable \blacktriangleright which is unaffected by integral $L[u(x)] = \int^b$ *a* $L_x[G(x, x')] f(x') dx' =$ \int^b *a* $\int f(x) \, dx' = f(x)$

and $c_a u(a) + d_a u'(a) = \int^b$ *a* $\overline{}$ $c_a G(a, x') + d_a$ *dG dx* $(x=a,x')$ $\overline{1}$ $f(x')dx' = 0$ $c_bu(b)+d_bu'(b)=\int^b$ *a* $\overline{}$ $c_b G(b, x') + d_b$ *dG dx* **Controller** $(x=0,x')$ 1 $f(x')dx' = 0$ To show (i) we now construct Green function Let $u_1(x)$ and $u_2(x)$ be two solutions of homogeneous equation $L[u(x)] = 0$ each satisfying one of boundary conditions $c_a u_1(a) + d_a u'_1(a) = 0$ and $c_b u_2(b) + d_b u'_2(b) = 0$ (3.3.194.) in first variable which is unaffected by integral In addition ☛ satisfies boundary condition *u* because G satisfies this condition

For $x < x'$ we have $L[G(x,x')] = 0$ with $G(x,x') = c_1(x')u_1(x)$ satisfying boundary condition at $x = a$ Monday, October 24, 16 18

In an analogous manner \blacktriangleright if $x>x'$ then $\; G(x,x') = c_2(x') u_2(x)$ satisfying boundary condition at $x = b$ Therefore \blacksquare $G(x, x') = \begin{cases} c_1(x') u_1(x) & x < x' \\ a(x') u_1(x) & x > x' \end{cases}$ $c_2(x')u_2(x)$ *x* > *x'* (3.3.195.) Integration of (3.3.191.) over $[x'-\epsilon,x'+\epsilon]$ (with $\epsilon>0$) leads to $\int [p\ G'(x,x')]_{x=x'-\epsilon}^{x=x'+\epsilon} + \int [q(x)G(x,x')]dx = 1$ (3.3.196.) Due to continuity of *p* and *q* this equation can only be satisfied if: $G(x,x')$ is continuous its derivative has a discontinuity of magnitude $-1/p(x')$ at $x=x'$ $\int x^{\prime} + \epsilon$ $x' - \epsilon$ *d* $\frac{d}{dx}[p G'(x,x')] dx +$ $\int x^{\prime} + \epsilon$ $x' - \epsilon$ $q(x) G(x, x') dx =$ $\int x^{\prime} + \epsilon$ $x' - \epsilon$ $\delta(x-x') dx$ $\int x^{\prime} + \epsilon$ $x' - \epsilon$ $q(x) G(x, x') dx = 1$

Indeed

$$
\lim_{\epsilon \to 0} \int_{x' - \epsilon}^{x' + \epsilon} q(x) G(x, x') dx \to 0
$$
 (3.3.197.)

because *q* and *G* are continuous functions

and thus
$$
\mathbf{r} - p(x') \left\{ \left. \frac{dG}{dx} \right|_{x' + \epsilon} - \left. \frac{dG}{dx} \right|_{x' - \epsilon} \right\} = 1
$$
 (3.3.198.)
or equivalently
$$
\left. \frac{dG}{dx} \right|_{x \to x'^+} - \left. \frac{dG}{dx} \right|_{x \to x'^-} = -\frac{1}{p(x')}
$$
 (3.3.199.)

in summary

$$
-p(x)G'(x, x')
$$
 must be of the form
\n
$$
\Theta(x - x') + \phi(x)
$$
\nwith ϕ a continuous function at $x = x'$
\nso that $(-pG')'$ contains a $\delta(x - x')$ term

We impose *G* requirements on (3.3.195.) to obtain

$$
c_1(x')u_1(x') - c_2(x')u_2(x') = 0
$$
\n
$$
c_1(x')u'_1(x') - c_2(x')u'_2(x') = \frac{1}{p(x')}
$$
\n(3.3.200.)

which determines

$$
c_1(x') = -u_2(x')/C
$$
 and $c_2(x') = -u_1(x')/C$ (3.3.201.)

where

$$
C = p(x')[u_1(x')u'_2(x') - u_2(x')u'_1(x')]
$$

= $[pW(u_1, u_2)]_{x=x'}$ (3.3.202.)

with

$$
W(u_1, u_2) = \begin{vmatrix} u_1 & u_2 \\ u'_1 & u'_2 \end{vmatrix}
$$
 (3.3.203.)

and $u'(x) = du/dx$

The solution exists only if $C\neq 0$ that is \blacktriangleright only if Wronskian $W(u_1,u_2)$ is non-zero Note that this is satisfied if $u_1(x)$ and $u_2(x)$ are two linearly independent solutions of $\ L[u]=0$ In such a case ☛ *C* is a constant $[p(u_1u_2' - u_2u_1')]$ = $p'(u_1u_2' - u_2u_1') + p(u_1u_2'' - u_2u_1'')$ $= u_1(pu'_2)' - u_2(pu'_1)'$ $= q(u_1u_2 - u_2u_1) = 0$ (3.3.204.) Therefore \blacksquare if $C \neq 0$ we have $G(x, x') = \begin{cases} -u_1(x)u_2(x')/C & x \leq x' \\ u_1(x)u_2(x')/C & x > x' \end{cases}$ $-u_1(x')u_2(x)/C$ $x \ge x'$ (3.3.205.) If *C* = 0 Green function does not exist In this case solutions *u*¹ and *u*² are linearly dependent i.e. $u_2(x) = cu_1(x) \bullet u_1(x)$ satisfies boundary conditions at both ends This implies that if $C=0$ $\;\;\blacktriangleright\;$ there is a non-trivial solution $u_1\neq 0$ satisfying $L[u_1]=0$ and RC boundary conditions

Green function exists \Leftrightarrow the only solution of homogeneous equation $L[u]=0$ that satisfies RC conditions is $u=0$ This concludes proof of (i) Additionally \leftarrow (3.3.205.) gives explicit expression for Green function Linear operator $G[u(x)] = \int^b \overline{G(x,x')} \; u(x') \; dx'$ *a* is then inverse of L operator and it is sometimes denoted also as L^{-1} (i) inverse of differential linear operator L is integral linear operator $\left(G(x,x')\right)$ is known as kernel of the integral operator) (ii) *G* depends not only on coefficients *p*(*x*) and *q*(*x*) of *L* Let us note that: but also on the boundary condition (iii) symmetry of (3.3.205.) yields $G(x,x') = G(x',x)$ (3.3.207.) and it allows to state theorem that follows (3.3.206.)

Theorem 3.3.4. [Reciprocity of Green function]
\nResponse of system in *x* to a point source in *x'*
\nis identical to response of system in *x'* to a point source in *x*
\nwith *x* is equal to *x*
\nwith *x* is the set of subscripts of *L*
\nThis is due to self-adjointness of *L*
\n
$$
\langle L_x G(x, x'), G(x, x'') \rangle = \langle G(x, x'), L_x G(x, x'') \rangle
$$
 (3.3.208.)
\nUsing differential equation that satisfies Green function
\nand definition of Dirac distribution we have
\n
$$
\int_a^b \delta(x - x') G(x, x'') dx = \int_a^b G(x, x') \delta(x - x'') dx
$$
 (3.3.209.)
\nwhich leads to $G(x', x'') = G(x'', x')$ (3.3.210.)
\nInverse operator *G* is also self-adjoint
\n
$$
\langle v, G[u] \rangle = \int_a^b \int_a^b v(x) G(x, x') u(x') dx dx' = \langle G[v], u \rangle
$$
 (3.3.211.)

Note that Green's function (3.3.205.) Translational invariance is broken \blacktriangleright even if p and q are constants is not invariant under space translations (due to boundary conditions)

Therefore \leftarrow $G(x, x') \neq G(x - x')$

Solution (3.3.193.) can be rewritten as

$$
u(x) = -\frac{1}{C} \left[u_2(x) \int_a^x u_1(x') f(x') dx' + u_1(x) \int_x^b u_2(x') f(x') dx' \right]
$$

and one can explicitly verify that $L[u] = f$

It is always possible to write solution in form or $u(x) = u_p(x) + u_h(x)$ u_p \blacktriangleright particular solution of inhomogeneous equation $(L[u_p]=f)$ u_h \blacktriangleright solution of homogeneous equation $(L[u_h] = 0)$ subject to boundary condition

Example 3.3.3.
\nConsider case
$$
p(x) = 1
$$
 and $q(x) = 0$
\ni.e. $-L = -\frac{d}{dx^2}$ (3.3.212.)
\nLet us set $a = 0, b > 0$ and $u(0) = u(b) = 0$
\nIt follows that $u_1(x) = x$ and $u_2(x) = x - b$ with $C = x - (x - b) = b$
\nThen we obtain
\n
$$
G(x, x') = \begin{cases} x(b - x')/b & x \leq x' \\ x'(b - x)/b & x \geq x' \end{cases}
$$
 (3.3.213.)
\nSolution of inhomogeneous equation
\n
$$
-\frac{d^2u}{dx^2} = f(x) \quad (0 \leq x \leq b)
$$
 (3.3.214.)
\nwith $u(a) = u(b) = 0$ is then
\n
$$
u(x) = \int_a^b G(x, x') f(x') dx
$$

\n
$$
= \frac{1}{b} \left[\int_0^x x'(b - x) f(x') dx' + \int_x^b x (b - x') f(x') dx' \right]
$$

If
$$
f(x) = x^2
$$
 we have

\n
$$
u(x) = \frac{1}{12}x(b^3 - x^3) = -\frac{x^4}{12} + \frac{x b^3}{12}
$$
\nthat consists of particular solution

\n
$$
-x^4/12
$$
\nand solution of homogeneous equation

\n
$$
x b^3/12
$$
\nexample 3.3.4.

\nLet

\n
$$
L = -\frac{d^2}{dx^2} - \omega^2
$$
\n(3.3.216.)

\nwith $a = 0, b > 0$

\nIn this case \leftarrow for $u(a) = u(b) = 0$

\nwe have $\leftarrow u_1(x) = \sin(\omega x)$ and $u_2(x) = \sin(\omega(x - b))$ (3.3.217.)

\nwhich lead to

\n
$$
C = \omega \left[\sin(\omega x) \cos(\omega(x - b)) - \cos(\omega x) \sin(\omega(x - b)) \right] = \omega \sin(\omega b)
$$

Green function exists only if $\sin(\omega b) \neq 0$ that is $\omega \neq n\pi/b$
in such a case we have in such a case we have $G(x,x') = \frac{1}{\cdot}$ $\omega \sin(\omega b)$ $\int \sin(\omega x) \sin(\omega (b - x')) \quad x \leq x'$ $\sin(\omega x')\sin(\omega(b-x'))$ $x \ge x'$ (3.3.218.) Note that for $\omega \rightarrow 0$ we recover (3.3.213.) If $\omega = i k$ with $k \in \mathbb{R}$ \blacktriangleright Green function exists $\forall k \neq 0$ $G(x,x')$ follows from (3.3.218.) with substitution $\omega \to k$ & $\sin \to \sinh$ Example 3.3.5. Let us consider again $L=-\frac{1}{100}$ operator with boundary condition $u'(a)=u'(b)=0$ Green function does not exist because $u_1(x) = c_1$ and $u_2(x) = c_2$ y ielding $C=0$ This is due to constant solution $u(x) = c \neq 0$ non-zero solution of $L[u]=0$ and satisfies $u'(a)=u'(b)=0$ $(3.3.219.)$ $L = - \frac{d}{dr}$ dx^2 Monday, October 24, 16 28

Example 3.3.6. In this case \blacktriangleright solution of inhomogeneous problem For a given a solution one can always add up an arbitrary constant which satisfies homogeneous equation and the boundary condition Finally \blacktriangleright consider $L=-\frac{\pi}{1-2}-\omega^2$ operator It follows that $\qquad \qquad$ with boundary condition $u'(a)=u'(b)=0$ $u_1(x) = \cos(\omega x)$ and $u_2(x) = \cos(\omega(x - b))$ (3.3.220.) with $C = -\omega \sin(\omega b)$ Green function exists only if $\sin(\omega b) \neq 0$ that is $\omega \neq n\pi/b$
with $n \in \mathbb{Z}$ In such a case we have $G(x,x') = \frac{1}{\cdot}$ $\omega \sin(\omega b)$ $\int \cos(\omega x) \cos(\omega (b - x')) \quad x \leq x'$ $\cos(\omega x')\cos(\omega(b-x))$ $x \geq x'$ \mathbf{E} $\mathbf{\omega} \to 0$ $\mathbf{F} |G(x, x')| \to \infty$ On other hand \blacktriangleright if $\omega = ik$ with $k \in \mathbb{R}, G(x, x')$ exists $\forall k \neq 0$ (3.3.221.) if it exists \blacksquare is not unique $L = -\frac{d^2}{dx^2}$ $\frac{a}{dx^2} - \omega^2$

