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BOUNDARY VALUE PROBLEM 
Self-adjointness of Sturm-Liouville operator
So far we have seen differential equations with initial conditions

t = t0

We will begin to study problems of second order

is restricted to a certain range
In these problems

 not by initial conditions ☛

function and its first derivative at 

integration constants are determined 
For a linear equation of second order

and integration constants are determined 

or its derivative in extreme points of interval

we have seen that

from values of unknown 

but by boundary conditions

in which constants of integration are determined

range of variation of variable

from values of  unknown function
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Definition 3.3.1
General form of a second order linear equation reads

d

2
u

dx

2
+A(x)

du

dx

+B(x)u = F (x)

A(x), B(x) F (x)and are continuous functions
Preceding equation can be rewritten as

� d

dx


p(x)

du

dx

�
+ q(x)u = f(x)

f(x) = �p(x)F (x), q(x) = �p(x)B(x) and p(x) = e

R
A(x)dx

Note that p

0(x) = A(x)p(x)

and

(3.3.167.)

(3.3.168.)

(3.3.169.)

(3.3.170.)

(3.3.171.)

so (3.3.168.) reduces to (3.3.167.) multiplied by �p(x)

Eq. (3.3.168.) is generally written as

where

L[u(x)] = f(x)

L = � d

dx


p(x)

d

dx

�
+ q(x) ☛ is Sturm-Liouville (SL) operator

(pu0)0 = pu

00 + p

0
u

0 = p[u00 +A(x)u0]
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This operator acts on functions
defined in a given real 

u(x)
a  x  b

values of unknown function 

interval
and is only completely defined

(a, b)
These conditions are known as boundary conditions

In this class ☛ we study the case in which is non-zero inp(x) [a, b]
Next class we will study the case

p(x) vanishes at one or both ends of the interval
that leads to study of so-called special functions

Throughout we let [a, b]  be a bounded interval in R
denotes the space of functions

continuous up to endpoints-th ordern
and

is subspace of functions that vanish near endpoints

with derivatives of

in which

C(n)([a, b])

p(x) 2 C1([a, b])
q(x) 2 C0([a, b])

L2([a, b])

constitute domain of Sturm-Liouville operator
and the functions that satisfy them

or linear combinations of them at boundaries

after specifying or its first derivative
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Theorem 3.3.1.

which can be formally self-adjoint 

is most general second order real operator

hv, L[u]i = hL[v], ui

hv, ui denotes usual inner product

(3.3.172.)

Proof.
Integration by parts leads to

For to be self-adjoint ☛ we need to impose conditions on L u, v

at the endpoints to make right hand side of (3.3.173.) vanish

(3.3.173.)

8u, v 2 L2([a, b]) ☛ L

hv,ui =
Z b

a
v

⇤(x) u(x) dx

hv, L[u]i � hL[v], ui =
Z b

a
[v(pu0)0 � u(pv0)0]dx

=

Z b

a
[(vpu0)0 � (upv0)0] dx

= p [vu0 � uv

0]
a
b
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Definition 3.3.2.
A boundary condition is an expression of the formB

Bu = cau(a) + cbu(b) + dau
0(a) + dbu

0(b)

for real constants ☛

Definition 3.3.3.

Boundary conditions are self-adjoint forB1, B2 L

if satisfying B1u = B2u = B1v = B2v = 0

Z b

a
L[u] v dx =

Z b

a
u L[v] dx

 vanishing of Bju Bjvand

side of (3.3.173.) vanishesimplies right-hand

(3.3.174.)

(3.3.175.)

ca, cb, da, db

8u, v 2 C2([a, b])
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Definition 3.3.4.
Local boundary conditions are those establishing a relationship 
between unknown function and its derivative in each edge

We say that and
 if 

 are local or separated b.c

andB1 B2

B1u = 0 B2u = 0
are independently chosen

that right hand side of (3.3.173.) vanish

➤Dirichlet conditions 

➤Neumann conditions 

➤Robin-Cauchy conditions 

B1u = u(a) & B2u = u(b)

B2u = u0(b)B1u = u0(a) &

cau(a) + dau
0(a) = 0 cbu(b) + dbu

0(b) = 0&

These are separated boundary conditions

B1 B2a bis a condition at and is a condition at

Any pair of separated conditions is self-adjoint for general L

separately

to guarantee

8Monday, October 24, 16



Definition 3.3.5.

Non-local boundary conditions establish a relationship between 
value of unknown function and its derivative in one and other edge

Most common examples of non-separated boundary conditions are

➤Periodic conditions 

➤Anti-Periodic conditions 

B1u = u(b)� u(a) & B2u = u0(b)� u0(a)

B1u = u(b) + u(a) B2u = u0(b) + u0(a)&

L p(b) = p(a)

Next ☛ we discuss whether homogeneous equation

with Dirichlet boundary conditions has non-trivial solutions
L[u] = 0

u(x) 6= 0

the non-existence of such solutions (a.k.a. zero modes) 
is a necessary and sufficient condition for inhomogeneous equation                       

These are self-adjoint for    if

to have a unique solution via Green's function

Later ☛ we will see that
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equation only has trivial solution

Example 3.3.1.

Example 3.3.2.

Consider case with andp(x) = 1
q(x) = 0

L = � d

2

dx

2

General solution of homogeneous equation is
u(x) = cx+ d

(3.3.177.)

(3.3.178.)
Therefore ☛ if u(a) = u(b) = 0 ) c = d = 0

 and homogeneous

For

general solution of homogeneous equation can be written as

u(x) = ce

ikx + de

�ikx

or equivalently

If u(a) = 0 ) d0 = 0
The condition u(b) = 0 leads to c0 sin[k(b� a)] = 0

a non-trivial solution  which has 
c0 = 0

(c0 6= 0) , k(b� a) = n⇡, n 2 Z
Otherwise ☛ and only solution is

u(x) = 0

(3.3.179.)

(3.3.180.)
u(x) = c

0
sin[k(x� a)] + d

0
cos[k(x� a)]

L = � d

2

dx

2
� k

2
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Definition 3.3.6.
Fix a positive weight function ⇢(x) 2 C2([a, b])

so that ⇢(x) � c > 0 for
x 2 [a, b]

 and consider the Sturm-Liouville eigenvalue problem
L u = � ⇢ u, with B1u = B2u = 0
�We say that is an eigenvalue of L

if there is a non-zero solution u 2 C2([a, b]) of (3.3.181.)
an eigenfunctionu

Lemma 3.3.1.
Let (L,B1, B2, ⇢) be a self-adjoint Sturm-Liouville system

(3.3.181.)

Eigenfunctions associated to different eigenvalues are orthogonal

hu, vi⇢ =

Z b

a
u

⇤(x) v(x) ⇢(x) dx

(i) eigenfunction is an eigenvector for operatoru ⇢�1L
i.e. ⇢�1Lu = �u

h⇢�1Lu, vi⇢ = hu, ⇢�1Lvi⇢
so that ⇢�1L is self-adjoint in domain C2([a, b])

product h , iwith respect to inner 

in the inner product ☛ (3.3.182.)

(ii) 

and we call
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Proof.

L[ui(x)] = �iui(x) L[uj(x)] = �juj(x)

0 = huj , L[ui]i⇢ � hL[uj ], uii⇢ = (�i � �j)

Z b

a
ui(x) uj(x) ⇢(x)dx

If and we have

and so
(3.3.184.)

Theorem 3.3.2.

(i) For any self-adjoint SL system (L,B1, B2, ⇢) there exists:

�1  �2  · · ·  �n  . . .

 with associated eigenfunctions u1(x), u2(x), . . . , un(x) . . .

L[un(x)] = �⇢(x)un(x)which satisfy

product (3.3.182.)and are orthogonal with respect to  inner 
For local boundary conditions ☛ �i < �j if i 6= j

a countable set of eigenvalues

because there cannot be two l.i. solutions of L[u] = �⇢u
 for same � satisfying (3.3.181.) 

(as the Wronskian would be null)

Z b

a
ui(x) uj(x) ⇢(x) dx = 0 if �i 6= �j
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(ii) Any function 
f(x) 2 C2([a, b])

can be written in terms of eigenfunctions 

that satisfies boundary conditions

un(x)

uniformly convergent series  as absolutely 

f(x) =
1X

n=1

cnun(x)

space of differentiable functions to second order 

Set of all eigenfunctions forms a basis

boundary conditions on interval [a, b]

In other words ☛ eigenfunctions of form a complete setL

(3.3.185.)

that satisfy 

of vector
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Proof.
Note that space L2

⇢([a, b])
consisting of eigenfunctions for Sturm-Liouville problem

on such that [a, b]u

kuk2L2
⇢
=

Z b

a
|u(x)|2 ⇢(x) dx < 1

Since

of functions as

⇢(x) is bounded from above and below 

L2([a, b])
 but norm and inner product are different

u ! p
⇢ u  is unitary map L⇢ L2 : kp⇢ ukL2 = kukL2

⇢
onto

In particular

{uj}1j=1 is an orthonormal basis for L2
⇢ , {p⇢ uj}1j=1

is an orthonormal basis for L2

Coefficients are given bycn

cn =

R b
a ⇢(x) un(x) f(x)dx
R b
a ⇢(x) u2

n(x)dx
=

hun, fi⇢
hun, uni⇢

(3.3.186.)

(3.3.187.)

h , i⇢
this is the same space

of

is space of measurable
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Indeed ☛ if we multiply (3.3.185.) by

(3.3.188.)

⇢(x)un(x)  and integrate 

where we have used orthogonality of eigenfunctions
 For a given  ☛ coefficients of expansion are uniquef

1X

n=1

cnun(x) = 0 ) cn = 08nIf

Corollary 3.3.2.

Let ⇢ : [a, b] ! R be an arbitrary function such that ⇢(x) � c > 0

The space ☛

equipped with inner product

is a Hilbert space ☛ which we denote by

Z b

a
⇢(x) un(x) f(x) dx =

1X

m=1

cm

Z b

a
⇢(x)um(x) un(x)

= cn

Z b

a
⇢(x) u2

n(x)dx

L2
⇢([a, b];C) = {f : [a, b] ! C such that

p
⇢f 2 L2}

hf, gi⇢ = hp⇢f,

p
⇢giL2 =

Z b

a
⇢(x) f(x) g⇤(x)dx

(L2
⇢([a, b];C), h, i⇢)
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Green function of Sturm-Liouville operator
Definition 3.3.7.

The Green function is defined as as solution of the equation 

L

x

[G(x, x0)] = �(x� x

0) (3.3.191.)

which satisfies (in first variable) Robin-Cauchy boundary conditions

i.e
c

a

G(a, x0) + d

a

dG

dx

|(x=a,x

0) = 0 ,

c

b

G(b, x0) + d

b

dG

dx

|(x=b,x

0) = 0
(3.3.192.)

a < x

x

0
< b

with and

subscript in operator indicates that it acts 

on the first variable of the argument of the Green's function
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Theorem 3.3.3.

Solution of (3.3.191.) exists and is unique(i)

u(x) = 08x 2 [a, b]solution

is only solution of 
L[u(x)] = 0  subject to RC boundary condition

i.e. there are no zero modes

(ii) Solution of inhomogeneous equation with RC boundary conditions 

u(x) =

Z b

a
G(x, x0) f(x0) dx0 (3.3.193.)

Proof.

We first show that (ii) holds

 if 
G(x, x0) exists then (3.3.193.)  is a solution of (3.3.170.)

LNote that acts on first variable ☛ which is unaffected by integral

is given by ☛

if and only if trivial

L[u(x)] =

Z
b

a

L

x

[G(x, x0)] f(x0) dx =

Z
b

a

�(x� x

0) f(x0) dx0 = f(x)0
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and

c

a

u(a) + d

a

u

0(a) =

Z
b

a

"
c

a

G(a, x0) + d

a

dG

dx

����
(x=a,x

0)

#
f(x0)dx0 = 0

c

b

u(b) + d

b

u

0(b) =

Z
b

a

"
c

b

G(b, x0) + d

b

dG

dx

����
(x=b,x

0)

#
f(x0)dx0 = 0

To show (i) we now construct Green function

u1(x)Let u2(x)and  be two solutions of homogeneous equation

L[u(x)] = 0

each satisfying one of boundary conditions

cau1(a) + dau
0
1(a) = 0 and cbu2(b) + dbu

0
2(b) = 0 (3.3.194.)

For
x < x

0
L[G(x, x0)] = 0we have

G(x, x0) = c1(x
0)u1(x)with

satisfying boundary condition at x = a

in first variable which is unaffected by integral

In addition ☛ satisfies boundary condition 

because     satisfies this conditionG

u
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In an analogous manner ☛ if x > x

0
G(x, x0) = c2(x

0)u2(x)then

satisfying boundary condition at
x = b

Therefore ☛ G(x, x0) =

⇢
c1(x0)u1(x) x < x

0

c2(x0)u2(x) x > x

0 (3.3.195.)

Integration of (3.3.191.) over [x0 � ✏, x

0 + ✏] ✏ > 0(with )

leads to

(3.3.196.)

Due to continuity of p and  this equation can only be satisfied if:q

G(x, x0) is continuous

of magnitude its derivative has a discontinuity �1/p(x0) at
x = x

0

�
Z

x

0+✏

x

0�✏

d

dx

[pG0(x, x0)]dx+

Z
x

0+✏

x

0�✏

q(x)G(x, x0)dx =

Z
x

0+✏

x

0�✏

�(x� x

0) dx

�[pG0(x, x0)]x=x

0+✏

x=x

0�✏

+

Z
x

0+✏

x

0�✏

q(x)G(x, x0)dx = 1
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in summary

�p(x)G0(x, x0)

⇥(x� x

0) + �(x)

with

must be of the form 

� a continuous function at x = x

0

 so that (�pG0)0 contains a �(x� x

0) term

Indeed

because are continuous functionsq and G

�p(x0)

(
dG

dx

����
x

0+✏

� dG

dx

����
x

0�✏

)
= 1

(3.3.197.)

(3.3.198.)

or equivalently
(3.3.199.)

dG

dx

����
x!x

0+
� dG

dx

����
x!x

0�
= � 1

p(x0)

and thus ☛

lim
✏!0

Z
x

0+✏

x

0�✏

q(x)G(x, x0) dx ! 0
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We impose requirements on (3.3.195.) to obtainG

c1(x
0)u1(x

0)� c2(x
0)u2(x

0) = 0

c1(x
0)u0

1(x
0)� c2(x

0)u0
2(x

0) =
1

p(x0)

c1(x
0) = �u2(x

0)/C and c2(x
0) = �u1(x

0)/C

which determines

where

(3.3.200.)

(3.3.201.)

C = p(x0)[u1(x
0)u0

2(x
0)� u2(x

0)u0
1(x

0)]

= [pW (u1, u2)]x=x

0
(3.3.202.)

with

W (u1, u2) =

����
u1 u2

u0
1 u0

2

���� (3.3.203.)

and u

0(x) = du/dx
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The solution exists only if

 that is ☛ only if Wronskian W (u1, u2)

C 6= 0

is non-zero

Note that this is satisfied if and

independent solutions of 

u1(x) u2(x)

L[u] = 0are two linearly 

In such a case ☛ is a constantC

[p(u1u
0
2 � u2u

0
1)]

0 = p0(u1u
0
2 � u2u

0
1) + p(u1u

00
2 � u2u

00
1)

= u1(pu
0
2)

0 � u2(pu
0
1)

0

= q(u1u2 � u2u1) = 0 (3.3.204.)
Therefore ☛ if we haveC 6= 0

G(x, x0) =

⇢
�u1(x)u2(x0)/C x  x

0

�u1(x0)u2(x)/C x � x

0 (3.3.205.)

If Green function does not existC = 0

In this case solutions and are linearly dependentu1 u2

i.e.
u2(x) = cu1(x)☛

u1(x) satisfies boundary conditions at both ends
This implies that if        C = 0

satisfying              and RC boundary conditions 
 ☛ there is a non-trivial solution u1 6= 0
L[u1] = 0
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Green function exists , the only solution of homogeneous equation 

L[u] = 0

that satisfies RC conditions is u = 0

This concludes proof of (i)
explicit expression for Green function

Linear operator G[u(x)] =

Z b

a
G(x, x0) u(x0) dx0

is then inverse of operator and it is sometimes denoted also as L L�1

(i) inverse of differential linear operator L
           (          is known as kernel of the integral operator)

G(x, x0)

(ii)

Let us note that: 
is integral linear operator

depends not only on coefficientsG p(x)
q(x)and of L

on the  boundary condition but also
(iii) symmetry of (3.3.205.) yields

G(x, x0) = G(x0
, x)

and it allows to state theorem that follows

(3.3.206.)

(3.3.207.)

Additionally ☛ (3.3.205.) gives 
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Theorem 3.3.4. [Reciprocity of Green function]
Response of system in to a point source in 

to response of system in

x

x

0

is identical
x

0
to a point source in

 even if and depend on 
x

p q
x

This is due to self-adjointness of L

hL
x

G(x, x0), G(x, x00)i = hG(x, x0), L
x

G(x, x00)i (3.3.208.)

and definition of Dirac distribution we have 

Using differential equation that satisfies Green function

Z b

a
�(x� x

0) G(x, x00) dx =

Z b

a
G(x, x0) �(x� x

00) dx (3.3.209.)

which leads to
G(x0

, x

00) = G(x00
, x

0) (3.3.210.)

 Inverse operator G is also self-adjoint

(3.3.211.)

hv,G[u]i =
Z b

a

Z b

a
v(x) G(x, x0) u(x0) dx dx

0 = hG[v], ui
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Note that Green's function (3.3.205.) 

Translational invariance is broken ☛ even if    and    are constants

translations (due to boundary conditions)

p q

Therefore ☛
G(x, x0) 6= G(x� x

0)

Solution (3.3.193.) can be rewritten as

u(x) = � 1

C

"
u2(x)

Z
x

a

u1(x
0) f(x0) dx0 + u1(x)

Z
b

x

u2(x
0) f(x0) dx0

#

L[u] = fand one can explicitly verify that 

It is always possible to write solution in form or u(x) = up(x) + uh(x)

     ☛ particular solution of inhomogeneous equation up (L[up] = f)
uh  ☛  solution of homogeneous equation (L[uh] = 0)

subject to boundary condition

is not invariant under space 
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Example 3.3.3.
Consider case and

p(x) = 1 q(x) = 0

i.e. ☛ L = � d

dx

2

a = 0, b > 0 u(0) = u(b) = 0Let us set and
It follows that

u1(x) = x u2(x) = x� b

C = x� (x� b) = band with
Then we obtain

G(x, x0) =

⇢
x(b� x

0)/b x  x

0

x

0(b� x)/b x � x

0

(3.3.212.)

(3.3.213.)

(3.3.214.)

Solution of inhomogeneous equation

�d

2
u

dx

2
= f(x) (0  x  b)

u(a) = u(b) = 0with is then

u(x) =

Z
b

a

G(x, x0) f(x0) dx

=
1

b

"Z
x

0
x

0(b� x) f(x0) dx0 +

Z
b

x

x (b� x

0) f(x0) dx0

#
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we haveIff(x) = x

2

u(x) =
1

12
x(b3 � x

3) = �x

4

12
+

x b

3

12

that consists of particular solution

of homogeneous equation
  such that 

(3.3.215.)

and solution
xb

3
/12

u(0) = u(b) = 0
Example 3.3.4.

Let
L = � d

2

dx

2
� !

2 (3.3.216.)

a = 0, b > 0with
In this case ☛ for u(a) = u(b) = 0

 we have ☛
u1(x) = sin(!x) and u2(x) = sin (!(x� b))

which lead to

(3.3.217.)

C = ! [sin(!x) cos (!(x� b))� cos(!x) sin (!(x� b))] = ! sin(!b)

�x

4
/12
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 Green function exists only if sin(!b) 6= 0 that is ! 6= n⇡/b
with n 2 Zin such a case we have

G(x, x0) =
1

! sin(!b)

⇢
sin(!x) sin (!(b� x

0)) x  x

0

sin(!x0) sin (!(b� x)) x � x

0 (3.3.218.)

Note that for ! ! 0
! = ikIf

we recover (3.3.213.)

k 2 Rwith ☛ Green function exists 8k 6= 0
       follows from (3.3.218.) with substitution! ! k & sin ! sinh

Example 3.3.5.
Let us consider again                operator 

u0(a) = u0(b) = 0

 Green function does not exist because

u1(x) = c1 and u2(x) = c2

yielding C = 0

This is due to constant solution 
u(x) = c 6= 0

solution of  non-zero L[u] = 0 and satisfies u0(a) = u0(b) = 0

(3.3.219.)

G(x, x0)

with boundary condition

L = � d

dx

2
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Example 3.3.6.

 In this case ☛ solution of inhomogeneous problem

For a given a solution one can always add up an arbitrary constant 
which satisfies homogeneous equation and the boundary condition

Finally ☛ consider                       operator

u0(a) = u0(b) = 0
It follows that

u1(x) = cos(!x) and u2(x) = cos (!(x� b))

C = �! sin(!b)with

(3.3.220.)

Green function exists only if sin(!b) 6= 0 that is ! 6= n⇡/b
with n 2 ZIn such a case we have 

G(x, x

0
) =

1

! sin(!b)

⇢
cos(!x) cos (!(b� x

0
)) x  x

0

cos(!x

0
) cos (!(b� x)) x � x

0

! ! 0If |G(x, x0)| ! 1☛

 On other hand ☛ if ! = ik with
k 2 R, G(x, x0) 8k 6= 0exists

(3.3.221.)

if it exists    is not unique

with boundary condition

L = � d

2

dx

2
� !

2
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