[PHYSICS 307

AMATHERMATICAL PHYSICS

Luis Anchordo qui

Monday, October 17, 16




ORDINARY D FERENTIAL EQUATIONS |}
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SYSTEAN OF FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS

Picard's theorem can be generalized
to a system of first order ordinary differential equations

1 = i o RS 70,
— f({,43.2.71.)

fl (tv 11)

and f(ta U) = (3.2.72'>

fn(zl‘, u)

Proof is exactly same as proof of Picard's theorem

with substitution of I U bj f.u,v
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Proposition 3.2.1.
Any ordinary differential equation of order n

Jgr e e ]
can can be written as a system of n first-order d.e.s
bj defining a new afo\mi,tj of unknown functions

du ity
g i ey
wi % = LDk % — U3, .-, dditn i f(t7u17 S ) 7un> (3'2‘?7'>

that is fl(tau) =D fg(t,U) — Uz, ... 7f’n(t7 u) =) f(t,U)

In addition = if [ satisfies hypotheses of Picard's theorem
it is guaranteed existence and uniqueness of a solution to (3.2.75)

(3.2.76.)

Uy — b D

for nitial condition u(0) = ug ;
d

U d"= 1y

— 0 -— 3
ug (u( Ji " Sl t_o) (3.2.7%.)

t=0

Similarly m a system of M coupled differential equations of ordern
can be reduced to a system of 1 X M first order equations

Monday, October 17, 16




Definikion 3.2.2.
A system of first-order ordinary differential equations
of form (3.2.70.) is called Linear if it can be written as

Z—? = A(t) u+£(z) (3.2.79.)

&11(t) AN Cbln(t)

(3.2.%50.)

ani(t) ... ann(?) are matrix-valued functions
The initial condition is given by u(ty) = ug

More e.xptici&tj
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Theorem 3.2.3. [Superposition F?rmci,pte_]

The solutions of a linear homogeneous n -vector system

du
o A 3.2.92.
T e ¢ ’

form a linear space |/ of dimension n

(3.2.%2) can be rewritten as L[u] =0 with [ =d/dt — A(¢)

Prook.

I{ U1 and U2 are solutions m so is Linear combination ciuq + cous

(as can be verified directly by substitution)

This shows solutions form a vector space

We next demonskrate that
there exist exm‘:ﬁj ) Liv\e&rij Lmdepemdemf: solution vectors
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Since U hasn components
Pwe can find n Linearly Lhdepev\cieer\& vectors U’

i) (0 N
K b

u; (1)
u2; (1) |
u; (1) : = (3.2.54.)
tns () )
be solution of (3.2.82.) with initial condition ;(to) = u;
Invoking Picard's theorem we kiow there exists a unique solution

for |t —to] <71 (ie fort € Iy

Consider now a given solubtion u(t) with ie. u(ty) = ug

(3.2.3.)

For t =ty = the vectors u;(ty) = 119 form a basis

96l
and 50 we can write U.(t()) — Z C]uJ (t()) (3‘2‘2/5‘)
s
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However m we khow that for a given initial condition

the solubion must be unique therefore
n

u(t) = Z c;ju(t) (3.2.96.)
j=1
must hold Vi € [
This shows that dimension of space is 1

Finally we show m 1 solutions remain Linearly independent Vi € I

If the solutions were Linearly dependent
then there would exist a solution of form (3.2.%6.)
with C1,C2,...Chwnobk all zero that could be zero vector

e.q. = for [ =0 ll(tl) = Z CiU; (tl) — (3.2.3’7.)
j=1
since there Jbrivial solution u(t) = 0Vt € I

because O“f uhiqu&hess (3.2.57.)
must coincide with Erivial solution VE € I

w1 =C = =¢C, =0 un conbradiction with our assump&i,on
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Definiktion 3.2.3. [Fundamental makrix]
A square makrix whose columins are
linearly Lv\dapahciehﬁ solutions of homogeneous system (3.2.%2.)

U111 U192 ) uln(t)
(U21 Uuga(t) .. uzn(t)\ (3.2.5%.)

is called fundamental makrix
Since dUJ/dt = A(t)Uj with uj (O) = Ujo
dU
— =A@UE), with U(to) =Uo (3.2.59.)
Up w makbrix containing n linearly independent ic. U_jo

In particular w for (32.83.) Uy =1

Since determinant of n linearly Lndependem& vectors is non-zero

det [U(to)] # 0
then w from Picard's theorem it follows that det [U(t)] # 0
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The general solution of (3.2.%2.) reads )
u(t) =U(t) c (3.290)
with C a cownstant vector
For C = U_l(t())u()

a Far&iaumr solubion wikth initial condition u(to) = U reads

u(t) = U)U 1 tgup (3201

For L.c. given tn (32.83) » U(ty) =1 and u(t) = U(t)ug

For t € Iy the general form of U(?) follows from Picard's theorem

t t t
/A(t’)dt’+/ A(t’)dt’/ A"dt" + ... | Ug

o e o

(3.2.92.)
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Definiktion 3.2.4. [Green makbrix]
1f U(f)is fundamental matrix of homogeneous system (3.2.82.)

we can write a particular solution of original system (3.2.79.) as
u(t) = Ut)relt) (3.297.)
From (3.2.99.) it follows that

du d[U dc dc
T TES Ud— = A(t)Uc + UE (3.29%.)

thus w the ithomogenecus system (3.2.79) can be rewritten as

du dc

T A(t)u = U(¢ )dt = f(¢) (2.299.)

from which we obtain the relation

dc >
— = U="(2) T(E) (3.2.100.)

and we have

cE / U-(t) £(8) dt (az.100)
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The general solution is of the form

u(t) = U(¢) [c T / U aF (1) dtw (3.2.102.)
Particular solution for u(tp) = Ug reads

u(t) s = U [U—l(to)uo i /t U= (Gt dt’]

to

t
Kt to)uo + | K(t,t) () df (3.2.202.)
to

with K(t,¢) = U) U-L(#)  (3:2.103)

It is important to stress that K(%,7') satisfies

dK (t, ')
dt

= A1) K(¢,t") (32104

(3.2.108.)

Monday, October 17, 16




(extension of superposition principle)
if Uy (t) and U2(t) are particular solutions for 11 (t) and o (t)

then u(t) = ciuq (1) + coug(t) is also a particular solution

*fOT‘ f(t) = lel (t) = Csz (t)

We can decompose force in several terms or components
and then add solutions for each of them
Consider solution with tnitial condiktion ug = 0

From (3.2.103.) it follows that
)= | ey ) dt (2.2.106.)

to
If mn addition f(1) = 0Vt < 0 and system is in equilibrium fort <0

(with u(t) =0Vt <0)
we cai rewrite (3.2.1086.) as ¢
Al / K(t, ) £() dt o

or equﬁv&tem&i.j o
/ Gt A RE(T s (38.2.10%.)

0
K(t,t)

i ©X©

with G(t,t/) == {
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The matrix G is called Green matrix of system
it allows one to express ot a given value of ¢

the effect from a source that acts in any ' < ¢

For problems of initial values the variable t is in general time

and so G(1,t) is commonly called causal Green makrix

Nobe Fhat G is discontinuous ak t =t because lim =Tandlim =0
bt t—t/

Example 3.2.3.
Let A in (3.2.79.) be independent of time w that isa;i(t) = a;; Vi,

The homogeneous 5Ys ke

d—u e Au (3‘2—-110.>
dt

Ls now tavariank under Eemporad. Eranslakions

Without Loss of generality we take =i U
indeed f u(f) is a solution of (3.2.82.) with u(0) = ug
= u(t —ty) is also a solution of (3.2.%2.) for u(ty) = ug
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From (3.2.92.) it follows that

t2
T — H+At+A2§+...]UO:

n=0
series converges for any given square matrix of finite dimension M
if Jai;| < KVi,j = |(a®)y] < mK?
and in general ‘(an)w’ < (mK)n/m so khat [(€7)ij] < €mK/m
Next m we verify that (3.2.111.) is a solution of (3.2.108.) V¢

@) o

d a¢ d A" Al At (3.2.112.)
et e SEs = A A} L \
dt" dtZ n! Z (n—1)! :

General solution of homogeneous equation is given by

u(t) = e c 22018
Particular solution with u(fy) = ug reads

u(t) = eAlttoly,

Solution of inhomogeneous equation with U_(tg) = Up is given bj

t
u(t) = eAlt—toly, +/ A (3.2.115.)

to
which aorresyom:&s to K(t,t’) Ut i (3.2.103)
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GREEN RMATRIX AS A GENERALIZED FUNCTION
Definition 3.2.8. [Dirac delta function as a Limit]

Consider inhomogeneous Linear differential equation

% —qu = f(#) (3.:2.116.)

From an thkuikive poLv\E view w ik seems reasonable ko represen&
the tnhomogeneity [ as o sum of impulsive terms

concenkrated in very small kEime inkervals
and then obtain the solubion as sum 0{ individual solukiowns

for each of these terms
Formalization of this idea requires concept of distribution
(or generalized function) )

Consider function ge(z) = { e e /2 with € > (
; 05 2| > 2 (3.2.117.)

© @)

it follows thak / g = Ly > 0

T
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In addition w if [ is an arbitrary continuous function

/°° 3 2)— B </7)

ge(z) flz)de = e} (z) dz =
g =2 € (3.2.11%)

' = is primitive of f

Eor e — ' m de (513) s concentrated near the origin jéei.cif,hg

: £ . F(e/2) — F(—€/2)
lim 5 dr e - hm

Hgore= 7 (0)

We can define distribution §(x) as the Limit

é(ap= limseg.(z) (3.2.120.)

e—> ()

sa&is‘fjma /_ O;OE d(xz) f(x) = f(0) (3.2.121.)

Although Limit (3.2.120.) does not strictly exist
(itis O Fr#0 and 0o f z=10)
Limit of integral (3.2.119.)
IV continuous in an interval centered abt = = 0

Ehis is meaning of (3.2.120) and (3.2.121)
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Note that f a £ b and a < b

/ O(x) flz) dz = lim [ ge(z) f(2) da;:{ fg()) a<0<b

e0T o et < 0 ol &b

We will consider from now on test functions f
which are bounded and differentiable functions to any order

and which vanish outside o finite range |

Remember first and foremost that such functions exist:

I f(zr)=0 for <0 and r>1

and f(z) = e 1/ e7l/U=2) Fikor || <1

Function | has derivatives of any order at T = 0 and =1

In this case there are many other functions Je (x)

that converge to 0 () with derivatives of all orders
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A well-lenown axampi.a LS

(3.2.122.)

1 —332/262
T P e dee=— 1 Ve iy (2.2.123.)

o

e_x2/262f(x)dx = f(0) (3.2.124-.)

| N
£ —x” /2¢
9N e (2.2.125.)

is hormal (or Gaussian) distribution with area 1 and variance

o0
/ g.xidr =€ (3.2.126.)

©.@)
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When ¢ — 0T

Je (ZU) concentrates around ©r = 0

keeping its area constant

In general m» if Je () is defined Vo € RNe and € > 0 we have

lim g (2 )= O = g () f(zids (3.2.127.)

=) e—0+ | g

V test function f

For example w if g(z) = OV

e @

and /OO g(z) de—1 — himee . g(x/c) = 6(x)
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Indeed w if € > 0

1/00 ol o)t /OO g(u)du = 1

€ /D ol
and Sy 5

1 i 1 a < Qb
lim # — =
et / 9\ fe) OGS eli%l+ 43 e { O eib < Q. of < a <0

Therefore w if | f(z)| < M Vz and ab >0
1 1

e 0F 6 g6

b b
lim — / g(xz/e) f(x) de| < M lim —/ g(xz/e)dx =0

(3.2.129.)
It follows Eha& wif t>0and f is continuous and bounded

s — 11m+— / f(x) g(x/e) dox = hm —/ il m/e ) dx
I“’: mt<f()<Mt Miﬁh$6[—tt]:>mt<]f§Mt\V/t>O
and sitnce f is continuous lim M, = 11m Pl =—110)

t—0t —0+
we obtain [r = f(0)
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Other wi,cie.i.j used examptes are

1 1 i |
T e—0+ T + 1€ T e—0 12 + €2

and N,
() o i e G

e 2

(3.2.132)

with g(z) = 1/[r(1 4 2?)]and g(z) = sin®(z)/(ra?) respectively
Definition 3.2.6.
Convolution of §(2)with other functions

s defined in such a way that the integration rules still hold
o

d(x — xo) f(z)dx = / O(uw) flu+ xg)du = f(xo)

(3.2.133.)

For axampta /OO

709 OO

Similarly = if a # 0
| San)p@ds == [ 6w fuja)du = o 5(0) (32154

al J_o al

i
and so  j(ax) = ﬂc?(x) a LSRR A3E.)
in particular 0(—z) = 6(x) A
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Definition 3.2.7.
1 we want thak ik keeps on fulfilling integration bv parts
we must define the derivative

| d@ f@di=- [ ) flz) do= ~f/(0) 32236
recall that f = () outside a finite inkerval
In general 00

6 () f(z) de = (=1)"f™(0) (3.2.137.)

therefore 5

) = / B Sl B (aniss)

0 (x — z9) f(z) dr (3.2.139.)

Note that w if a 7= 0 |
6 (az) = 5 (z)  (3.2.140.)
a"|al

In particular w 5(n)(—x) — (—1)”5(n> (2]
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Corottarj 3.2.2. [Heaveside function]

Step (Heaveside) function

% > )
Ol = { 0 z<0 (32141)

is primitive (ot least in symbolic form) of 0(7)
Equivalently ©'(z) have symbolic Limit 0(2)

Prook.

For any given test function f(z) = integration by parts leads to

[ize'@) f@) = [ @@ do=- [ f(a) dx = f0)

©. @) = O

(3.2.142.)

therefore O'(x)

Monday, October 17, 16




‘Pro[pos&wm 3.2.2.

Using O(z) function we write any integral over a finite interval a, b
as an integral where domain of integration is unbounded

b 00
/ f(z) dz :/ eyl v) dr (3.2.143.)

= (OO

b o0
/ F(x) do = / D0 2)—8E—-Df() & (32144

so that abt most integrand is non-zero when a < T < b

Definition 3.29.
We can now returi to our definition of Green makbrix

and rewrite (3.2.109.) as a distribution
G(t,t") = K(t,t)O(t —t') (3.2.159.)
with K(,1") as given in (3.2.104)
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The system of firsk-order differential equations (3.2.79)

con be rewribben as

Llu(t)] = £(2)

wikh
d
L=1— — A(t

u and fe n -dimensional vectors
A w XN wakrix

Since K(t, t/) is a solution of homogeneous equa&ion

G(t,1) satisfies LG(t,t")] =T o(t —t') (32.161)

with G(¢,t") =0fort — '

(where [ s T XN i,ciev\&iﬁ'j makrix)

Monday, October 17, 16




For U(to) = 0 and tg — —00 the solution of (3.2.79)

e be i / B0 0 R & am e

O

In particular w if f(t) =1 6(t—1t) then u(t) =Gt

or equivalently u;(t) = Z Gij (, t,) fo.j (3.2.163)
7

with fj o constant
Matrix element G;(t, t') represents effect ok time { in component |
of a poivx& source acting at time R COW\F‘OV\QME of j

Since lim G(t,t') =1 for t > ¢/

t—tt
column j of G(t,1") is solution of homogeneous system
with initial condition u;(t') = &;;
This relation can be used to obtain G(t,t/)
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Example 3.2.4.
it A(t) = A = constant = then
IBfEAY — - diu PR

I o (3.2.165.)

G, t) =0t —t) =Gt =) (3.2.166.)

In this case Grreen makbrix is a function of ¢ — ¢t/

because of uavariance of the homogeneous equation

wikh respea& ko Eemparat Eranslations
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Definition 3.2.%. [Theory of distributions]
Let 1V be finite-dimensional vector space m such as RE
We can define Linear functional (or Linear form) L :V — R
which assigns to each vector U € V' a real number
and satisfies w L(Clul i C2112) = ClL(U—l) T C2L(u2)
Exists unique vector | such that L(u) = (Lu) YueV

where (1, 1) denoctes tnner product of two vectors

Expaho&ihg u in orthonormal basis
(vi,2=1,....,n such that <Vi,Vj> = 51']’ )

we obtain = "cvi and L(u) =Y ¢ L(vi) =Y cili = (Lu)
el i 7

where [; = L(Vi) and 1= Zlfvi

Any linear form L on a finite-dimensional inner product sPaée
can be identified with a vector 1€V
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Cownsider space owf test {ume&iahs D wade up 94: real fumc&iov\s f(:lj)

which have derivatives o OME order

and cancel oul beyond the bounds of a finite interval

We can define tnner product (g, f) = / g f (1) de

i ©.C)

Consider now Linear functional L
which assigns to each function f(x) & real number

and satisfies m Licy f1 + cafa] = c1 L[ f1] + ca L[ f2]
where C1 and Co are conskanks
Vg(x) € D we can associate Linear functional L,

Lin= | (R 5P

OO
@)

Even though ﬂg c [ such that /

IO

Vi €D we now define functional § such thak 5[f]

Space of Linear forms is greater than space of real functions i
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We introduce symbol § (x) such that
o(z) f(z) dz = f(0) (3.2.153.)

To continue to fulfill ntegration by parts

we define derivative of L as L'[f] = —L[f'] (3.2.154.)
it follows that

Lg’ [f ] 3
In Fm&icu.tar

0 [f] = A GE 1)

Heaveside functional is defined by

or equivalently g ()
o[f] =

Therefore w O =4
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