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Picard's theorem can be generalized                                     

dui

dt
= fi(t, u1, . . . , un), i = 1, . . . , n

System of first-order linear differential equations

du

dt
= f(t,u)

u(t) =

0

B@
u1(t)
...

un(t)

1

CA and f(t,u) =

0

B@
f1(t,u)

...
fn(t,u)

1

CA

f, u, v bywith substitution of

Proof is exactly same as proof of Picard's theorem 

f ,u,v

(3.2.70.)

(3.2.71.)

(3.2.72.)

to a system of first order ordinary differential equations
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Proposition 3.2.1.
Any ordinary differential equation of order n

d(n)u

dtn
= f

✓
t, u,

du

dt
, . . . ,

d(n�1)u

dtn�1

◆

by defining a new family of unknown functions
can can be written as a system of n first-order d.e.’s

u1 = u, u2 =
du

dt
, . . . , un =

d(n�1)u

dtn�1

du1

dt
= u2,

du2

dt
= u3, . . . ,

dun

dt
= f(t, u1, . . . , un)

with

that is f1(t,u) = u2, f2(t,u) = u3, . . . , fn(t,u) = f(t,u)

In addition ☛ if f satisfies hypotheses of Picard's theorem
it is guaranteed existence and uniqueness of a solution to (3.2.75)
 for initial condition u(0) = u0

u0 =

✓
u(0),

du

dt

����
t=0

, . . . ,
d(n�1)u

dtn�1

����
t=0

◆

Similarly ☛ a system of m coupled differential equations nof order 
can be reduced to a system of n⇥m first order equations

(3.2.75.)

(3.2.76.)

(3.2.77.)

(3.2.78.)
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Definition 3.2.2.

du

dt
= A(t) u+ f(t)

(3.2.70.) is called linear if it can be written as
A system of first-order ordinary differential equations 

where
0

B@
a11(t) . . . a1n(t)

... . . .
...

an1(t) . . . ann(t)

1

CA

are matrix-valued functions

The initial condition is given by u(t0) = u0

More explicitly

dui(t)

dt
=

nX

j=1

aij(t)uj(t) + fi(t) i = 1, . . . n

with initial values ui(t0) i = 1, . . . nfor

(3.2.79.)

(3.2.80.)

(3.2.81.)

of form 
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Theorem 3.2.3. [Superposition principle]

The solutions of a linear homogeneous -vector systemn

(3.2.82.)

L ⌘ d/dt� A(t)with

 form a linear space of dimension V n

Proof.

u1If u2and are solutions ☛ so is linear combination c1u1 + c2u2

(as can be verified directly by substitution)

 This shows solutions form a vector space

independent solution vectors
We next demonstrate that 

du

dt
= Au

L[u] = 0(3.2.82) can be rewritten as 

nthere exist exactly    linearly 
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e.g.

Let uj(t) =

0

BBB@

u1j(t)
u2j(t)

...
unj(t)

1

CCCA
j = 1, . . . n

be solution of  (3.2.82.) with initial condition uj(t0) = u0
j

Invoking Picard's theorem we know there exists a unique solution
 for |t� t0|  r  (i.e. for t 2 I0)

Consider now a given solution

u(t0) =
nX

j=1

cjuj(t0)

u(t) with i.c. u(t0) = u0

t = t0For ☛ the vectors uj(t0) = u0
j  form a basis

(3.2.83.)

(3.2.84.)

(3.2.85.)

Since u hasn components
 we can find n linearly independent vectors u0

j

and so we can write ☛ 

u1
0 =

0

BBB@

1
0
...
0

1

CCCA
,u2

0 =

0

BBB@

0
1
...
0

1

CCCA
, . . . ,un

0 =

0

BBB@

0
0
...
1

1

CCCA
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However ☛ we know that for a given initial condition 

u(t) =
nX

j=1

cjuj(t)

must hold 8t 2 I0
This shows that dimension of space is n

n solutions remain linearly independent 8t 2 I0

If the solutions were linearly dependent

c1, c2, . . . cn that could be zero vector

t = t1 u(t1) =
nX

j=1

cjuj(t1) = 0

since there   trivial solutionu(t) = 08t 2 I0
uniqueness 

8t 2 I0
c1 = c2 = · · · = cn = 0☛  in contradiction with our assumption

(3.2.86.)

(3.2.87.)

because of

the solution must be unique ☛ therefore 

(3.2.87.) 

e.g. ☛ for

with                not all zero
then there would exist a solution of form (3.2.86.)

Finally we show ☛

9

must coincide with trivial solution 
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Definition 3.2.3. [Fundamental matrix]
A square matrix whose columns are

U(t) =

0

BBB@

u11(t) u12(t) . . . u1n(t)
u21(t) u22(t) . . . u2n(t)

...
... . . .

...
un1(t) un2(t) . . . unn(t)

1

CCCA

is called fundamental matrix

(3.2.88.)

Since duj/dt = A(t)uj uj(0) = uj
0with

dU
dt

= A(t)U(t), with U(t0) = U0

☛ matrix containing nU0 linearly independent i.c. uj
0

In particular ☛ for (3.2.83.)

(3.2.89.)

U0 = I
Since determinant of linearly independent vectors is non-zeron

det [U(t0)] 6= 0
then ☛ from Picard's theorem it follows that det [U(t)] 6= 0

 linearly independent solutions of homogeneous system (3.2.82.)
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(3.2.90.)

(3.2.91.)

The general solution of (3.2.82.) reads

u(t) = U(t) c
cwith    a constant vector

For c = U�1(t0)u0

 a particular solution with initial condition u(t0) = u0 reads

u(t) = U(t)U�1(t0)u0

For i.c. given in (3.2.83.) ☛ U(t0) = I and u(t) = U(t)u0

For the general form of t 2 I0 U(t) follows from Picard's theorem

U(t) =
"
I+

Z t

t0

A(t0)dt0 +
Z t

t0

A(t0)dt0
Z t0

t0

A(t00)dt00 + . . .

#
U0

(3.2.92.)
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Definition 3.2.4. [Green matrix]

If is fundamental matrix of homogeneous system (3.2.82.) U(t)
we can write a particular solution of original system (3.2.79.) as

u(t) = U(t) c(t) (3.2.97.)
From (3.2.89.) it follows that

du

dt
=

dU
dt

c+ Udc

dt
= A(t)Uc+ Udc

dt
(3.2.98.)

(3.2.99.)

thus ☛ the inhomogeneous system (3.2.79) can be rewritten as

from which we obtain the relation
dc

dt
= U�1(t) f(t)

and we have

(3.2.100.)

c =

Z
U�1(t) f(t) dt (3.2.101.)

du

dt
� A(t)u = U(t)dc

dt
= f(t)
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The general solution is of the form

u(t) = U(t)

c+

Z
U�1(t) f(t) dt

�

Particular solution for u(t0) = u0 reads

u(t) = U(t)

U�1(t0)u0 +

Z t

t0

U�1(t0) f(t0) dt0
�

= K(t, t0)u0 +

Z t

t0

K(t, t0) f(t0) dt0

K(t, t0) = U(t) U�1(t0)
with

It is important to stress that satisfiesK(t, t0)

dK(t, t0)

dt
= A(t) K(t, t0)

K(t0, t0) = I
with

(3.2.102.)

(3.2.102.)

(3.2.103.)

(3.2.104.)

(3.2.105.)
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Consider solution with initial condition u0 = 0
 From (3.2.103.) it follows that

u(t) =

Z t

t0

K(t, t0) f(t0) dt0

If in addition f(t) = 0 8t < 0 and system is in equilibrium for t < 0

      (with                   )    u(t) = 0 8t < 0
 we can rewrite (3.2.106.) as

u(t) =

Z t

�1
K(t, t0) f(t0) dt0

u(t) =

Z 1

�1
G(t, t0) f(t0) dt0

or equivalently

with (3.2.109.)

(3.2.106.)

(3.2.108.)

(3.2.107.)

If are particular solutions for        andu1(t) and u2(t) f1(t) f2(t)

then u(t) = c1u1(t) + c2u2(t)  is also a particular solution

f(t) = c1f1(t) + c2f2(t)for

(extension of superposition principle)

G(t, t0) =

⇢
0 0  t  t0

K(t, t0) 0  t0  t

We can decompose force in several terms or components 
and then add solutions for each of them
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The matrix is called Green matrix of systemG

the effect from a source that acts in any

 it allows one to express at a given value of t

For problems of initial values the variable

t0 < t

is in general time t

and so G(t, t0) is commonly called causal Green matrix

Note that G is discontinuous at t = t0 lim
t!t0+

= Ibecause lim
t!t0�

= 0and
Example 3.2.3.

LetA in (3.2.79.) be independent of time ☛ that is aij(t) = aij 8i, j
The homogeneous system 

du

dt
= Au

is now invariant under temporal translations 

Without loss of generality we take t0 = 0

 indeed if u(t) is a solution of (3.2.82.) with

 is also a solution of (3.2.82.) for  u(t0) = u0

(3.2.110.)

u(0) = u0

) u(t� t0)
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From (3.2.92.) it follows that

U(t) =

I+ At+ A2 t

2

2!
+ . . .

�
U0 =

" 1X

n=0

An tn

n!

#
U0 = eAtU0

series converges for any given square matrix of finite dimension 

 if

m
|aij |  K8i, j ) |(a2)ij |  mK2

and in general so that |(ea)ij |  emK/m

Next ☛ we verify that (3.2.111.) is a solution of (3.2.105.) 8t
d

dt
eAt =

d

dt

1X

n=0

Antn

n!
=

1X

n=1

Antn�1

(n� 1)!
= AeAt (3.2.112.)

(3.2.111.)

General solution of homogeneous equation is given by 
u(t) = eAtc (3.2.113.)

(3.2.114.)

(3.2.115.)

Particular solution with u(t0) = u0 reads

u(t) = eA(t�t0)u0

Solution of inhomogeneous equation with is given byu(t0) = u0

u(t) = eA(t�t0)u0 +

Z t

t0

eA(t�t0) f(t0) dt0

which corresponds to K(t, t0) = eA(t�t0) in (3.2.103)

|(an)ij |  (mK)n/m

15Monday, October 17, 16



Green matrix as a generalized function
Definition 3.2.5. [Dirac delta function as a limit]

Consider inhomogeneous linear differential equation 
du

dt
� au = f(t)

From an intuitive point view ☛ it seems reasonable to represent
the inhomogeneity f as a sum of impulsive terms

in very small time intervals
of individual solutions

Formalization of this idea requires  concept of distribution

Consider function ✏ > 0with

it follows that

Z 1

�1
g✏(x)dx = 1 8✏ > 0

(3.2.116.)

(3.2.117.)

and then obtain the solution as sum
concentrated

for each of these terms

(or  generalized function)

g✏(x) =

⇢
1/✏ |x|  ✏/2
0 |x| > ✏/2

16Monday, October 17, 16



In addition ☛ if f is an arbitrary continuous function
Z 1

�1
g✏(x) f(x)dx = ✏

�1

Z ✏/2

�✏/2
f(x) dx =

F (✏/2)� F (�✏/2)

✏

☛ is primitive ofF f
For is concentrated near the origin yielding

lim
✏!0+

Z 1

�1
g✏(x)f(x) dx = lim

✏!0+

F (✏/2)� F (�✏/2)

✏

= F

0(0) = f(0)

We can define distribution as the limit
�(x)

�(x) = lim
✏!0+

g✏(x)

satisfying

Although limit (3.2.120.) does not strictly exist 
x 6= 0 1and if         )

x = 0
limit of integral (3.2.119.) 

9 8f continuous in an interval centered at x = 0
 this is meaning of (3.2.120) and (3.2.121)

(3.2.118.)

(3.2.119.)

(3.2.120.)

(3.2.121.)

✏ ! 0+ g✏(x)☛

(it is    if 0

Z 1

�1
�(x) f(x) = f(0)

dx
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Note that if a 6= b a < band
Z b

a
�(x) f(x) dx = lim

✏!0+

Z b

a
g✏(x) f(x) dx =

⇢
f(0) a < 0 < b

0 a < b < 0 or 0 < a < b

We will consider from now on test functions

bounded and differentiable functions to any order

f
which are

vanish outside a finite range I
Remember first and foremost that such functions exist: 

f(x) = 0If for
x  0 and

x � 1

and
f(x) = e

�1/x2

e

�1/(1�x)2 for |x| < 1

Function has derivatives of any order atf
x = 0

x = 1and

In this case there are many other functions g✏(x)

 that converge to �(x) with derivatives of all orders

and which 
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(3.2.123.)

(3.2.124.)

indeed 1p
2⇡✏

Z 1

�1
e

�x

2
/2✏2

dx = 1 8✏ > 0

and

(3.2.126.)

(3.2.125.)

Here

is normal (or Gaussian) distribution  with area 1 and variance
Z 1

�1
g✏ x

2
dx = ✏

2

A well-known example is

�(x) = lim
✏!0+

e

�x

2
/2✏2

p
2⇡✏

(3.2.122.)

lim
✏!0+

1p
2⇡✏

Z 1

�1
e

�x

2
/2✏2

f(x)dx = f(0)

g

✏

(x) =
1p
2⇡ ✏

e

�x

2
/2✏2
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concentrates around

When

x = 0

keeping its area constant ☛

Figure 6.1. Delta Function as Limit.

with the unit impulse delta function concentrated at x = 0. As sketched in Figure 6.1, as n
gets larger and larger, each successive function gn(x) forms a more and more concentrated
spike, while maintaining a unit total area under its graph. Thus, the limiting delta function
can be thought of as an infinitely tall spike of zero width, entirely concentrated at the origin.

Remark : There are many other possible choices for the limiting functions gn(x). See
Exercise for another important example.

Remark : This construction of the delta function highlights the perils of interchanging
limits and integrals without rigorous justification. In any standard theory of integration
(Riemann, Lebesgue, etc.), the limit of the functions gn would be indistinguishable from
the zero function, so the limit of their integrals (6.12) would not equal the integral of their
limit:

1 = lim
n⇥⇤

⇤ ⇤

�⇤
gn(x) dx ⇧=

⇤ ⇤

�⇤
lim

n⇥⇤
gn(x) dx = 0.

The delta function is, in a sense, a means of sidestepping this analytic inconvenience. The
full ramifications and theoretical constructions underlying such limits must, however, be
deferred to a rigorous course in real analysis, [41, 122].

Once we have defined the basic delta function �(x) = �0(x) concentrated at the ori-
gin, we can obtain the delta function concentrated at any other position ⇥ by a simple
translation:

��(x) = �(x� ⇥). (6.14)

Thus, ��(x) can be realized as the limit, as n ⇤ ⌅, of the translated functions

⌅gn(x) = gn(x� ⇥) =
n

⇤
�
1 + n2(x� ⇥)2

⇥ . (6.15)

8/19/12 181 c⇥ 2012 Peter J. Olver

Figure 3.2: The delta function as a limit (in the sense of distributions).

When ⇥ ⌅ 0+, g�(x) concentrates around x = 0, keeping its area constant,
see Fig. 3.2.

In general, if g�(x) is defined �x ⌥  e and ⇥ > 0 it follows that

lim
�⇥0+

g�(x) = �(x)⌃ lim
�⇥0+

⇤ ⇤

�⇤
g�(x)f(x)dx = f(0) (3.2.127)

� test function f . For example, if g(x) ⇤ 0�x and
⇤ ⇤

�⇤
g�(x) dx = 1⇧ lim

�⇥0+
⇥�1g(x/⇥) = �(x) . (3.2.128)

Indeed, if ⇥ > 0
1

⇥

⇤ ⇤

�⇤
g(x/⇥)dx =

⇤ ⇤

�⇤
g(u)du = 1

and

lim
�⇥0+

1

⇥

⇤ b

a

g(x/⇥)dx = lim
�⇥0+

⇤ b/�

a/�

g(u)du =

⇥
1 a < 0 < b

0 a < b < 0 or 0 < a < b
.

Therefore, if |f(x)| ⇥M �x and ab > 0

lim
�⇥0+

1

⇥

����
⇤ b

a

g(x/⇥) f(x) dx

���� ⇥M lim
�⇥0+

1

⇥

⇤ b

a

g(x/⇥)dx = 0 . (3.2.129)

It follows that, if t > 0 and f is continuous and bounded

If � lim
�⇥0+

⇤ ⇤

�⇤
g(x/⇥)dx =

⇤ t

�t

g(x/⇥)dx . (3.2.130)

90

In general ☛ if g✏(x) is defined 8x 2 <e ✏ > 0and  we have 

lim
✏!0+

g✏(x) = �(x) , lim
✏!0+

Z 1

�1
g✏(x)f(x)dx = f(0)

8 test function f

For example ☛ if g(x) � 08x

and

Z 1

�1
g✏(x) dx = 1 ) lim

✏!0+
✏

�1
g(x/✏) = �(x)

(3.2.127.)

✏ ! 0+

g✏(x)
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Indeed ☛ if ✏ > 0

(3.2.129.)

(3.2.130.)

and

1

✏

Z 1

�1
g(x/✏)dx =

Z 1

�1
g(u)du = 1

lim

✏!0+

1

✏

Z b

a
g(x/✏)dx = lim

✏!0+

Z b/✏

a/✏
g(u)du =

⇢
1 a < 0 < b

0 a < b < 0 or 0 < a < b

|f(x)|  M 8xTherefore ☛ if ab > 0and

lim
✏!0+

1

✏

�����

Z b

a
g(x/✏) f(x) dx

�����  M lim
✏!0+

1

✏

Z b

a
g(x/✏)dx = 0

It follows that ☛ if and is continuous and boundedft > 0

If with x 2 [�t, t] ) mt  If  Mt 8t > 0
and since f is continuous lim

t!0+
Mt = lim

t!0+
mt = f(0)

If = f(0)we obtain

mt  f(x)  Mt

If ⌘ lim
✏!0+

1

✏

Z 1

�1
f(x) g(x/✏) dx = lim

✏!0+

1

✏

Z t

�t
f(x) g(x/✏) dx
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Other widely used examples are

�(x) = � 1

⇡

lim
✏!0+

=m


1

x+ i✏

�
=

1

⇡

lim
✏!0

✏

x

2 + ✏

2

�(x) =
1

⇡

lim
✏!0+

✏

sin2(x/✏)

x

2

and

g(x) = 1/[⇡(1 + x

2)]with and
g(x) = sin2(x)/(⇡x2) respectively

(3.2.131.)

(3.2.132.)

Definition 3.2.6.

that the integration rules still hold
Convolution of

�(x)with other functions

For exampleZ 1

�1
�(x� x0)f(x)dx =

Z 1

�1
�(u) f(u+ x0)du = f(x0)

(3.2.133.)
a 6= 0Similarly ☛ ifZ 1

�1
�(ax)f(x)dx =

1

|a|

Z 1

�1
�(u) f(u/a)du =

1

|a|f(0) (3.2.134.)

and so

in particular �(�x) = �(x)

(3.2.135.)
�(ax) =

1

|a|�(x) a 6= 0

is defined in such a way
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Definition 3.2.7.

(3.2.136.)

(3.2.137.)

(3.2.138.)

(3.2.139.)

(3.2.140.)

If we want that it keeps on fulfilling integration by parts
we must define the derivativeZ 1

�1
�

0(x) f(x) dx = �
Z 1

�1
�(x) f 0(x) dx = �f

0(0)

recall that f = 0 outside a finite interval
In general Z 1

�1
�

(n)(x) f(x) dx = (�1)nf (n)(0)

f

0(x0) = �
Z 1

�1
�

0(x� x0) f(x)dx

therefore

f

(n)(x0) = (�1)n
Z 1

�1
�

(n)(x� x0) f(x) dx

Note that ☛ if

In particular  ☛

a 6= 0

�

(n)(ax) =
1

a

n|a|�
(n)(x)

�

(n)(�x) = (�1)n�(n)(x)
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Corollary 3.2.2. [Heaveside function]

Step (Heaveside) function

⇥(x) =

⇢
1 x � 0
0 x < 0

is primitive (at least in symbolic form) of
�(x)

Equivalently ⇥0(x)  have symbolic limit �(x)

(3.2.141.)

Proof.

For any given test function  ☛ integration by parts leads to
f(x)

Z 1

�1
⇥0(x) f(x) = �

Z 1

�1
⇥(x)f 0(x) dx = �

Z 1

0
f

0(x) dx = f(0)

⇥0(x) = �(x)therefore

(3.2.142.)

dx
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Proposition 3.2.2.

Using⇥(x) function we write any integral over a finite interval [a, b]
as an integral where domain of integration is unbounded

Z b

�1
f(x) dx =

Z 1

�1
⇥(b� x) f(x) dx

Z b

a
f(x) dx =

Z 1

�1
[⇥(b� x)�⇥(a� x)]f(x) dx

so that at most integrand is non-zero when 

(3.2.143.)

(3.2.144.)

a < x < b

We can now return to our definition of Green matrix

and rewrite (3.2.109.) as a distribution

G(t, t0) = K(t, t0)⇥(t� t0) (3.2.159.)

with K(t, t0) as given in (3.2.104)

Definition 3.2.9.
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The system of first-order differential equations (3.2.79.)

L[u(t)] = f(t)

with

can be rewritten as

L = I d
dt

� A(t)

u fand n -dimensional vectors 

A n⇥ n matrix

Since is a solution of homogeneous equation 

G(t, t0) satisfies L[G(t, t0)] = I �(t� t0)

with

(3.2.161.)

(where is identity matrix)

G(t, t0) = 0 for t ! t0
�

I n⇥ n

 ☛

 ☛

K(t, t0)
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u(t0) = 0For and t0 ! �1  the solution of (3.2.79)

u(t) =

Z 1

�1
G(t, t0) f(t0) dt0 (3.2.162.)

f(t) = f0 �(t� t0)In particular ☛ if then u(t) = G(t, t0)f0

or equivalently ui(t) =
X

j

Gij(t, t
0) f0,j (3.2.163.)

f0with  a constant

Matrix elementGij(t, t
0) represents effect at time it in component

of a point source acting at time in component oft0 j

lim
t!t+

G(t, t0) = ISince for t > t0

column j of G(t, t0) of homogeneous systemis solution

ui(t
0) = �ij

This relation can be used to obtain G(t, t0)

can be written as ☛ 

with initial condition
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 Example 3.2.4.

A(t) = A
U(t) = eAt U0

If constant ☛ then

and

(3.2.164.)

(3.2.165.)

(3.2.166.)

K(t, t0) = eA(t�t0)

G(t, t0) = eA(t�t0)⇥(t� t0) = G(t� t0)

In this case Green matrix is a function of 

invariance of the homogeneous equation

t� t0

because of

⌘

with respect to temporal translations
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Exists unique vector such thatl L(u) = hl,ui 8u 2 V

hl,uiwhere denotes inner product of two vectors

uExpanding in orthonormal basis 
vi, i = 1, . . . , n such that hvi,vji = �ij )

u =
nX

i=1

civi and L(u) =
X

i

ci L(vi) =
X

i

cili = hl,ui

where and

Any linear form

l =
X

i

l⇤i vili = L(vi)

L
 can be identified with a vector

on a finite-dimensional inner product space
l 2 V

we obtain

(

Definition 3.2.8. [Theory of distributions]

be finite-dimensional vector space ☛ such as 

 We can define linear functional (or linear form) 

which assigns to each vector u 2 V a real number

and satisfies ☛ L(c1u1 + c2u2) = c1L(u1) + c2L(u2)

L : V ! R
Let V Rn
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We can define inner product hg, fi =
Z 1

�1
g(x) f(x) dx

where

Consider now linear functional
which assigns to each function a real number

L
f(x)

L[c1f1 + c2f2] = c1L[f1] + c2L[f2]

c1 c2and are constants

8g(x) 2 D

 we can associate linear functional Lg

Lg[f ] =

Z 1

�1
g(x) f(x) dx

Even though /9g 2 D

(3.2.150.)

 such that

Z 1

�1
g(x) f(x) dx = f(0)

8f 2 D  we now define functional �  such that �[f ] = f(0)

Space of linear forms is greater than space of real functions f

and satisfies ☛

Consider space of test functions D made up of real functions f(x)
which have derivatives of any order

and cancel out beyond the bounds of a finite interval
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We introduce symbol such that
�(x)

�[f ] =

Z 1

�1
�(x) f(x) dx = f(0)

To continue to fulfill integration by parts

L as L0[f ] = �L[f 0]

(3.2.153.)

(3.2.154.)
it follows that

Lg0 [f ] =

Z 1

�1
g

0(x) f(x) dx = �
Z 1

�1
g(x) f 0(x) dx = L

0
g[f ] (3.2.155.)

In particular
�0[f ] = ��[f 0] = �f 0(0)

Heaveside functional is defined by

⇥[f ] =

Z 1

0
f(x) dx

or equivalently g(x) = ⇥(x) with

⇥0[f ] = �⇥[f 0] = �
Z 1

0
f

0(x) dx = f(0)

⇥0 = �Therefore ☛

(3.2.156.)

(3.2.157.)

(3.2.158.)

we define derivative of 
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