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| SETTING THE STAGE
Definition 3.1.1.

A differential equation is an equation for an unknown function
of one (or several) variable(s) thak expresses a relationship
between the function ikself and its derivatives of various orders

Exampt& 3.1.1.
Law of radiocactive de.aaj AN (t)

Example 3.1.2. I
Newton's second law for a particle of constank mass

— _EN() (3.1.1.)

: dr (3.1.2.)
7] 9 dt

Note that because of the vector nature of unknown function
this is actually a system of three coupled equations

Example 3.1.3.
Laplace equation for electrostatic potentiol in absence of charges
0% di 0 0209070 i

’ T OL0R 0RO
Vit it I ap e (3.1.3.)
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Definition 3.1.2.

An ordinary differentiol equation is a d.e. in which all derivatives
are with respect to a single independent variable

Examples include equations (3.1.1.) and (3.1.2)
Definibion 3.1.3.

A partial differential equation is a d.e. that involves
two or more independent variables

an unknown function (dependent on those variables)
and partial derivatives of the unkinown function
with respect to the independent variables

An example is given in equation (3.1.3)

Definition 3.1.4.
The order of a differential equation

is order of highest derivative involved
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Definition 3.1.8.

A solution to a d.e. is a function that solves the equation
or turis it nto an identity when substituted inko the equation

Example 3.1.4.
Nit)= Ce™ ™ w'is a solution of (3.1.1.)

d];f—t(t) ket — AT (3.1.4.)

arbi&rar:j constant (' can be debermined

if the value of N is given ot some particular time ;

N(0) = No = (3.1.5)

Then (' = N() 3L2Ldingm N(t) =110 €_kt
Equation (3.1.1) together with initial condition (3.1.8.)
define an tnitial value problem
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Definition 3.1.6.
Process of finding solutions of a d.e. is khnown as

resolution or integration of the equation

Such a process can be simple = as in example above

but i general one has to rely on approximate methods

that end up with a numerical integration
Sometimes we only want to understand certain solutions properties
like system's behavior for small variation of initial conditions

or obtain a global idea of derivative fields & equipotential curves

Resolution of a d.e. of order n requires 1 inkegrations

and therefore integration constants must be determined

This leads to following definition
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Definibion 3.1.7

A solution i which one or more integration constants
take a particular value is called a particular solution of the d.e.

A solution is called general

if it contains all particular solutions of the d.e.

that is = 7 integration constants are left undetermined

Definition 3.1.%.

Any ordinary differential equation of order n

can be written in the general form:

dn
u) =] (3.1.6.)

where ¢ w (s the unkinown function
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Definition 3.19.
The degree of a dee. is power of highest derivative term
However m ot every differential equation has a degree

1§ derivatives occur within radicals or fractions

d.e. may not have a degree
If equation can be rationalized and cleared of fractions with
with regard to all derivatives present

then its degree is the degree of highest ordered derivative

Exampi& 3.1.5,

d2f(x) 122 df(z)  (317)
[ dx? ] oo dx

can be rationalized by cubing both sides to obtain

[d2f(m)r_( df(:v))3 (3.1.5)

dz?
hence it is of degree two
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Definition 3.1.10,
A d.e. is called homogeneous of deqree P
if mulkiplying u(t) and all its derivatives by a parameter A leads to

du d™qy du d™y
(t, AU, A = A e ) A (t, U, 7 e ) (3.12.)

for o\rbiﬁro\rj p

That is = [ is a homogeneous function of deqree p

on the unkhowin variable and all iks derivatives
Definibion 3.1.11,
A differential equation is said to be Llinear if [
can be written as a linear combination of u and its derivatives
together with a constant term (all possibly depending ont)

Example 3.1.6.
The d.e. given in (3.1.1.) is Linear
Example 3.1.7.
The system of coupled equations (3.1.2.) would be Linear
U and only f F is a Linear function of r and dr/dt
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Definition 3.1.12.

For a scalar function U
the most general form of linear ordinary differential equation is

d™u d%e

0n(t) T+ ana(t) T+ a0t = F(),  an(t) £0
(3.1.10)

Equation (3.1.10) can be rewritten as

n dm
Il mzz:o am(t)dt—m (3.2.11.)

where L is a differential Linear operator
That is = if C1, C2 are constants

and U1 (t), us(t) are 1 kimes differentiable functions
Liciu1(t) + coua(t)] = c1Ljui(t)] + caLlua(t)] (3.1.22.)

Vcl, ok ul(t), UQ(t)
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Example 3.1.%.
Using our definition 3.1.10 w (3.1.10) will be homogeneous
f and only ¢ f(t) =0

If this were case m equation will be homogeneous of degree 7
if f(t) # 0 Linear equation will be inhomogeneous
Definition 3.1.13. [superposition principle]
If U1 and Uy are solutions of homogeneous equation
(ie. Llut] = Liug] = 0 ) then

u(t) = cruq(t) + couo(t) (3.1.13.)
is also a solution of homogeneous equation Veq, co

because of (3.1.12.)

Solutions of the homogeneous d.e. comprise vector space over R

(L) an ordinary Llinear dee. has n particular solutions
which are linearly E,Mdepemdem&
(it) general solution of the homogeneous equation

is a linear combination of n particular solutions
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Carottarv 3.1.1.

General solution of Linear inhomogeneous equation (3.1.10.)
is given by sum of general solution of homogeneous equation
and a particular solution to inthomogeneous equation

Proof.

Lek up(t) be a par&i,«cu,tar solukion cwf thomogeneous equa&éem
Using superposition principle

general solution O{P hmngmgeheous equation is given bfj

up(t) = Z citp,;(t) (3.1.14.)

i=1
where Up i are 1 particular solutions of homogeneous equation

Cownsider U(t) = up(t) il (t) w recalling that [, is Linear )
= Llup(t) + un(t)] = Llup(t)] + Llun(t)]

2 Liuns®)] = £() +0 = (1) (3.8
i=1
Therefore mw  U(t) is a solution of inhomogeneous equation

Since ik has N undetermined constant
it is general solution of inhomogeneous equation
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Definition 3.1.14.
A first-order ordinary differential equation is of the form
du
= f(t,u) ia0 16

1f f(t,u) does not ciepe&\ci on U w then (3.1.16.) becomes

du L (t)
gy (3.1.17)

and the general solubtion reads

— / # ) ik e Na.1te)

where C is the so-called integration constant

Constant C can be determined if we kiow the initial condition

e, f u(tg) = Uy then

/ f ) dt’ + ug (3.1.19)
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Definition 3.1.18.

A first-order differential equation is called separable

S f(t,u) =h(t)g(u) w (3.1.16.) becomes

du
— = h(t)g(u) (3.1.20.)

14 g(u) #0 you can separate variables as

du
—— = h(t)dt (3.1.21.)

g(u)
and then integrate both sides to qet

du
/m :/h(t)dt—l—c (3‘1‘22‘)

This equation (of form oltpuF=—re)
determines U as an implicitly-defined function ¢
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The constant of integration is chosen from a particular solution

u(to) = ug with g(ug) # 0

(7} / {2
/ du . / h(t/)dt/ (3.1.23.)

. g(u') to

If in addition there are rooks U, such that g(u,) =0

one should add ko (3.1.22.) the constant solutions

u(t) =@,.; &l gl e Ueatsy 2.

which do wnot hecessarily follow from (3.1.23) and (3.1.22)

but are uncioub&edi.j solutions of (3.1.20.)
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Exampi&. 32.19,

if N(t) # 0w (3.1.1.) can be rewritten as dNT(t) — = kdbiz ¥3.¥.28.)

integration leads to

AN
=iV = = [hdt o=kt +c (B326)

or equiv&ieh&v N (t) — e M (3.1.27.)

with ¢ = te€

If N(tg) NI e Noe 22, ok therefore
N(t) = Noe*7%) (31 2%)

for k > 0 = gives formula of radicactive decay
for k < 0= formula for exponential growth of bacteria colonies

Previous caleulation is valid for Ny # 0

for Ng = 0 ome recovers constant solution of (3.1.1.)
namely m N(t) =0Vt which implies ¢ =0(c— —0)
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Definition 3.1.16.
A first order Linear differential equation has form of (3.1.16)
with f(t7 u) a Linear function of 1

du

= altTe=OE s (3.2129.)

Note that (3.1.29) can be rewritten as [[u| = a(t)

d
where [ — p g b(t) (3.1.30.)

s a Linear c:-pe.ra&mr

4 a(t) =0

then (3.1.29.) is an homogeneous equation of separated variables

d
k' b(t) dt (3.1.31.)

U
Inteqgration of left-hand side leads to

In u()e / G R

or equivalently ult) = cel b(t) dt (2.1.33.)
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Setting U(to) = g we have

= uoeftto bt )t s

1f 0 # 0 we can use method of variation of parameters
(oo, variation of constants)

We envisage a solution of of form (3.1.33.)
but with C being a function of ¢

u(t) = un(t) c(t) (3.1.35.)

where up(t) = el )4
Since Llup(t)] =0 it follows that

dc (t) de
a8 e e T
T i

c(t) = / i 2

= Llun(t)]c(t) + un(t) —
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Substituting in (3.1.35.)

u(t) {c’+ / ol dt]

uh(t)
W [c’ -+ /e_fb(t)dta(t)dt] (3.1.3%.)

General solution is then a solution of homogeneous equation
plus particular solution of inhomogeneous equation

Particular solution for U(to) — UQ reads

t 7 / t t/ !/ il
u(t) L byt [uO 4 / o Jig B dt,]

to

'’
K(t,tg) up + / Ky lait ) al (3.1.39.)
to

where K(t27t1) oL €ft12 b(t)dt e Uh(tQ)/uh(t1>
Note that w K (t,1) =1
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Exampt& 3.1.10,

Consider a series resistor-inductor (R — L) circulk

driven by a voltage source V(t)

The complete response to input volltage is described bv

dl
L% +IR=V(t) (3.140)

where [ is current

Solution for I1(0) = Iy with L and R constants is

t
1(t) = [ye B +/ O 0 3.4
0
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INITIAL VALUE PROBLEAN
3.2.1. Existence and uniqueness of solutions
Consider the first-order ordinary differential equation

with tnitial condikion
U(t()) = 0 (3.2.43.)

Except for some special cases

it is ot usually possible to obtain analytical solution of (3.2.42)

We then have to resort on approximate mebthods
that can be used ko solve (3.2.42.) numerically

We must first be sure that for given f(f,u) and initial condition

there is indeed a solution of (3.2.42.)

The following theorem shows that a solution exisks
and is unique for a very wide class of functions

The theorem also provides an approximate solution of (3.2.42.)

which turns out to be useful both formally and numerically
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Theorem 3.2.1. [Picard's theorem]

Lekt f(t, u) be a continuous function in the rectangle

R ={t,u/|t — to| < a, |u — ug| < b}

Leb's further assume that f satisfies Lipschitz condition in I?
f(tu2) = f(Eu1)| < Nlug —w|  (32.44.)
Sufficient condition for Lipschitz inequality (3.2.44.) to hold
is that f, = 0f/0u exists and is bounded in R
Indeed wif |f, | < N tn R it follows thak

£t u2) = £(t,un)] = |fult,©)(uz —wr)| < Nlup —uy| (32:47)
with & € [u1, ug]
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Then w U the nterval
t—tg| <r, r=minla,b/M] (3245)
there exits a unique solution u(t) satisfying dee. (3.2.42.)
where )] is moaxinum value of [ in IR
Condition |t — ty| < 7 entails solution will remain in R
Indeed w if |t —to| < 7rthen |[f| < Min R

and so we can im&egr&?:e (3.2.42.) and take absolute value to obkain

lu(t) — ug| = /ft u(t') dt’ /\ft u(t))| dt’

< Mlt—to| < Mr=5 (82.46.)
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Proof.
Firsk we note that solution U(t) will satisfy the integral equation

i
u(t) = uo + / fthu(t)) dt' (32.4%.)
to

Conversely m any solution of integral equation
must saELsAfj both the d.e. and the initial condition

For example m if we set L = {j in (32.4%) we find that ic. holds

A sequence U, U1 (), ... Un(l),... of successive approximations
s how defined with Ug (t) sy
and )

t
il — +/ Fltdan, 10V hdt o0 e el (3.2.49.)

to
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Resbriction (3.2.48) ensures that 1, (t) belongs to R for all 1
that is m  |u,(t) —ug| <b ¥ |[t—tg <7
Indeed w for 1 = 0 the condition is trivially satisfied

Assunming that condition holds for Un—1

S since |f| < M in R we obtain

un(t) —uo| < | [f (¢, una(t'))|dt’ < M|t —to| < b
to
V[t —to| < r (3.2.50.)

To establish convergence of the sequence
we colculate difference of two successive members of it

and find for n>1 and |t —ty| <7

[tn11(t) —un(t)] = /t [f @ un(t) = f (' up—a(t'))] dt’

< | lFE unlt) = £ & unaa(E)]] dt

i
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Forn = 1 (3.2.60.) implies |u1(t) — uo| < M|t — 1o
so (3.2.81.) leads to
|t — to|?
2 (3252)

t
RO < / o dt| _ MN
to

For a general NI we have
MN"Lt — to|™
n!

2y (£) — 1 (£)] < (3.2.63)

Now assuming (3.2.563.) holds we get

G o n—+1
ey i ¢
‘un—l—l(t)_un(t)‘ SMN” / ‘ Ol dt’ :MNTL‘ 0’
to n! (n A 1)'

(3.2.54.)

Th ~  lim fup41(t) — un(t)] =0
erefore nl_H)lo [ Unt1(t) — wn(?)] (3.2.85.)
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In SMMMO\T:’ - SiCe
un(t) = uo + (u1(t) = uo) + -+ + (Un(E) — un—1(?)) + ... (3256
the Limit 4
u(t) = lm un(t)=wo + )  (Unlt) —~un—1(t))  (32.67)
=ik

n—00

exisks because bhe series

() D AT - M
3 in®) = sl < M Y S .

@ fommcn | |

(3.2.8%)
is &bsaia&eij convergent

The Limit of integral in (3.2.49.) is equal to integral of Limit
and therefore u(t) is a solution of (3.2.42.)
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To study the question of uhiqueness
we assume 0(t)is another solution of (3.2.42.) sa&Ls{viv\S v(tg) = ug
Then m if [t — tg| < r

subtraction of one such equation from the other yields

u(t) —o(t)] < : f @) - f @, 0(E)] dt

t
N | |u(t) —o(@)]dt
to
e KRN (3.2.60.)
where K is moximum of |[u(t) —ov(t)| for |t —to| <7
using (3.2.60) for lu(t") — v(t")]
t 2
i
lu(t) — v(t)] < KN2/ it — to|dt’ = KN2| o
to

2

it — to|™
n!

Replicating the [oro«r:aciu,re n times |u(t) —v(t)| < KN"
[t — to|™ 4

n— 00 n!

0

it follows that w |u(t) —v(t)| < lim KN"
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Example 3.2.1.
Consider again linear equation

du

— T e,

dt B
wikhh t() — () and u(t()) = U

We invole Picard's theorem to obtain

t
Sis uo—)\/ qut/:Uo[l—)\t]
0

t
Uy — A/ ught )V dtt— gl — X6 )\t (9]
0

In generalm u, =ug » (—1)"(At)"/m! S

m=0

u(t) = T o G

1 —700
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Series converqes Vi w but condition (3.2.48.)

provides overly comservative estimate of interval of convergence

For Ug > O, s ’)\‘(b+UQ) and )
g Y 3.2.66,
1 1 o | (3266
¥ a> A7 then r < AT because b/(ug +b) < 1 Vb > 0
In general condition (3.2.46.) is very restrictive

and Picard's expansion converges i a larger ihterval
Definition 3.2.1.

Points (to, u()) i which there is either no solution of (3.2.42.)
or solution is ot unique w are called singular points
Hypotheses of Picard's theorem are sufficient
for existence of a solution w but not necessar
Indeed w if f is continuous inside a ball centered at (tg, ug)
there is always a solution of (3.2.42.)

but this may not be unique if Lipschitz condition is not met
The curve formed by singular points is called singular curve
A solution made up entirely of singular points is called

stingular solution
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Exampte 322,

Consider first-order arjinarv differential equation
u U

(3.2.67.)
with ¢ > 0

Function f(f,u) has a discontinuity ot t = ()
A Pussibi.e_ solution is u(t) ==}
1f u(t) # 0 w integration of (3.2.67.) leads to
In|u| = ¢qln|t| + ¢ (3.2.6%)

that is mw if t >0 Ethen y(t) = ct? (3.2.69.)
I“f?f():() and ug = 0
(3.2.69.) is solution of (3.2.67.) for any value of C (including c = 0

There is not a unique solution m bub a family of solutions

On other hand w f tg =0 and Uy # 0 there is no solution
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