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Definition 3.1.1.
SETTING THE STAGE

A differential equation is an equation for an unknown function           
of one (or several) variable(s) that expresses a relationship              
between the function itself and its derivatives of various orders
Example 3.1.1.
Law of radioactive decay dN(t)

dt
= �kN(t) (3.1.1.)

Newton's second law for a particle of constant mass
Example 3.1.2.

m
d2r

dt2
= F

✓
t, r,

dr

dt

◆

Note that because of the vector nature of unknown function
this is actually a system of three coupled equations

(3.1.2.)

Example 3.1.3.

(3.1.3.)

Laplace equation for electrostatic potential in absence of charges
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Definition 3.1.2.
An ordinary differential equation is a d.e. in which all derivatives 
are with respect to a single independent variable

Examples include equations (3.1.1.) and (3.1.2)

Definition 3.1.3.

A partial differential equation is a d.e. that involves                      
two or more independent variables                                      an        
an unknown function (dependent on those variables)                       
and partial derivatives of the unknown function                                  
with respect to the independent variables

Definition 3.1.4.

An example is given in equation (3.1.3)

The order of a differential equation                                    

is order of highest derivative involved
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A solution to a d.e. is a function that solves the equation                 
or turns it into an identity when substituted into the equation

Definition 3.1.5.

Example 3.1.4.

☛  is a solution of (3.1.1.)  N(t) = Ce�kt

(3.1.4.)

arbitrary constant can be determined 

some particular time

C

N is given at

N(0) = N0 (3.1.5.)

Then yielding ☛C = N0 N(t) = N0 e
�kt

Equation (3.1.1) together with initial condition (3.1.5.)                       

if the value of 

define an initial value problem

dN(t)

dt
= �C k e�kt = �k N(t)
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Definition 3.1.6.

Process of finding solutions of a d.e. is known as              
resolution or integration of the equation

Such a process can be simple ☛ as in example above   

one has to rely on approximate methods 

numerical integration

Sometimes we only want to understand certain solutions properties  

like system's behavior for small variation of initial 

or obtain a global idea fields & equipotential curves

Resolution of a d.e. of order requires integrations
and therefore integration constants must be determined

nn

This leads to following definition

but in general 

that end up with a 

conditions

of derivative 
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Definition 3.1.7.

A solution in which one or more integration constants 

solutions of the d.e. 

A solution is called general 

n are left undeterminedintegration constants

Any ordinary differential equation of order

in the general form:can be written

n

u

F

✓
t, u,

du

dt
, . . . ,

dnu

dtn

◆
= 0

where is the unknown function

particular value is called a particular solution of the d.e.

(3.1.6.)

Definition 3.1.8.

take a 

if it contains all particular 

that is ☛ 

☛
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Definition 3.1.9.

Example 3.1.5.

The degree of a d.e. is power of highest derivative term 

However ☛ not every differential equation has a degree

If derivatives occur within radicals or fractions 
d.e. may not have a degree

If equation can be rationalized and cleared of fractions with
with regard to all derivatives present

highest ordered derivative

can be rationalized by cubing both sides to obtain 

hence it is of degree two

(3.1.7.)

(3.1.8.)

then its degree is the degree of


d

2
f(x)

dx

2

�2/3
= 2 + 3

df(x)

dx


d

2
f(x)

dx

2

�2
=

✓
2 + 3

df(x)

dx

◆3

8Tuesday, January 27, 15



Definition 3.1.10.

(3.1.9.)

A d.e. is called homogeneous of degree
if multiplying and all its derivatives by a parameter leads to

p
u(t) �

for arbitrary p

pFThat is ☛ is a homogeneous function of degree
variable and all its derivativeson the unknown

Definition 3.1.11.
A differential equation is said to be linear if
can be written as a linear combination of

with a constant term (all possibly depending on  )

F
u and its derivatives

t

Example 3.1.6.
The d.e. given in (3.1.1.) is linear
Example 3.1.7.
The system of coupled equations (3.1.2.) would be linear

is a linear function ofF r dr/dtand

together

if and only if

F

✓
t,�u,�

du

dt
. . .�

d(n)u

dtn

◆
= �pF

✓
t, u,

du

dt
. . .

d(n)u

dtn

◆
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Definition 3.1.12.
For a scalar function

 the most general form of linear ordinary differential equation is
u

an(t)
dnu

dtn
+ an�1(t)

dn�1u

dtn�1
+ · · ·+ a0(t)u = f(t) , an(t) 6= 0

Equation (3.1.10) can be rewritten as

L[u] = f(t) , L =
nX

m=o

a
m

(t)
dm

dtm

where is a differential linear operatorL

That is ☛ if c1, c2 are constants 

u1(t), u2(t) n times differentiable functionsare

L[c1u1(t) + c2u2(t)] = c1L[u1(t)] + c2L[u2(t)]

8c1, c2, u1(t), u2(t)

(3.1.10.)

(3.1.11.)

(3.1.12.)

and 
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Example 3.1.8.
Using our definition 3.1.10 ☛ (3.1.10) will be homogeneous

f(t) = 0if and only if
If this were case ☛ equation will be homogeneous of degree
If f(t) 6= 0 linear equation will be inhomogeneous

Definition 3.1.13. [superposition principle]
If u1 u2

L[u1] = L[u2] = 0
and are solutions of homogeneous equation 

(i.e. ) then
u(t) = c1u1(t) + c2u2(t)

is also a solution of homogeneous equation 8c1, c2
because of (3.1.12.)

(3.1.13.)

Solutions of the homogeneous d.e. comprise vector space over R
 (i) an ordinary linear d.e. has    particular solutions

(ii)

n

general solution of the homogeneous equation

combination of   particular solutionsn

n

which are linearly independent

is a linear
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Corollary 3.1.1.
General solution of linear inhomogeneous equation (3.1.10.)         
is given by sum of general solution of homogeneous equation         
and a particular solution to inhomogeneous equation

Using superposition principle
 Let be a particular solution of inhomogeneous equationup(t)

uh(t) =
nX

i=1

ciuh,i(t)

where uh,i are n  particular solutions of homogeneous equation

 Consider u(t) = up(t) + uh(t) ☛ recalling that L is linear

L[u(t)] = L[up(t) + uh(t)] = L[up(t)] + L[uh(t)]

= L[up(t)] +
nX

i=1

ciL[uh,i(t)] = f(t) + 0 = f(t)

is a solution of inhomogeneous equationTherefore ☛ u(t)
Since it has undetermined constant 

of inhomogeneous equation
n

Proof.

(3.1.14.)

(3.1.15.)

it is general solution 

general solution of homogeneous equation is given by
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Definition 3.1.14.
A first-order ordinary differential equation is of the form

du

dt
= f(t, u)

f(t, u)If does not depend on u ☛ then (3.1.16.) becomes
du

dt
= f(t)

(3.1.18.)

and the general solution reads 

u(t) =

Z
f(t0) dt0 + c

(3.1.17.)

where is the so-called integration constantc

Constant can be determined if we know the initial condition 

i.e. if 

c

u(t0) = u0

u(t) =

Z t

t0

f(t0) dt0 + u0

then

(3.1.19.)

(3.1.16.)
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Definition 3.1.15.
A first-order differential equation is called separable

f(t, u) = h(t)g(u) ☛ (3.1.16.) becomes

du

dt
= h(t)g(u) (3.1.20.)

If g(u) 6= 0 you can separate variables as

du

g(u)
= h(t)dt

and then integrate both sides to get Z
du

g(u)
=

Z
h(t)dt+ c

This equation (of form ) 

as an implicitly-defined functionu
�(t, u) = c

t

(3.1.21.)

(3.1.22.)

if

determines 
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The constant of integration is chosen from a particular solution

(3.1.23.)

(3.1.24.)

u(t0) = u0 g(u0) 6= 0with

Z u

u0

du0

g(u0)
=

Z t

t0

h(t0)dt0

If in addition there are roots ur g(ur) = 0such that

one should add to (3.1.22.) the constant solutions

u(t) = ur, with g(ur) = 0

which do not necessarily follow from (3.1.23) and (3.1.22)

but are undoubtedly solutions of (3.1.20.)
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N(t) 6= 0

Example 3.1.9.

If ☛ (3.1.1.) can be rewritten as dN(t)

N
= �kdt

 integration leads to
Z

dN

N
= ln |N | = �

Z
k dt+ c = �kt+ c

or equivalently N(t) = c0 e�kt

c0 = ±ec

N(t0) = N0 ) c0 = N0e
kt0If

with

(3.1.25.)

(3.1.26.)

(3.1.27.)

and therefore
N(t) = N0 e

�k(t�t0)

for

(3.1.28.)

 ☛ gives formula of radioactive decay
 for

k > 0
k < 0☛ formula for exponential growth of bacteria colonies

 Previous calculation is valid for N0 6= 0

 for N0 = 0  one recovers constant solution of (3.1.1.)

namely ☛ N(t) = 0 8t  which implies c0 = 0(c ! �1)
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Definition 3.1.16.
A first order linear differential equation has form of (3.1.16) 
with a linear function of f(t, u) u

du

dt
= a(t) + b(t)u

Note that (3.1.29) can be rewritten as L[u] = a(t)

where L =
d

dt
� b(t)

is a linear operator
a(t) = 0If

then (3.1.29.) is an homogeneous equation of separated variables
du

u
= b(t) dt

Integration of left-hand side leads to

ln |u(t)| =
Z

b(t)dt+ c0

u(t) = ce
R
b(t) dtor equivalently

(3.1.29.)

(3.1.30.)

(3.1.31.)

(3.1.32.)

(3.1.33.)
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(3.1.36.)

(3.1.35.)

(3.1.34.)

Setting we haveu(t0) = u0

u(t) = u0e
R t
t0

b(t0)dt0

If we can use method of variation of a 6= 0 parameters 

We envisage a solution of of form (3.1.33.) 
c ta function of

u(t) = uh(t) c(t)

where uh(t) = e
R
b(t)dt

Since L[uh(t)] = 0 it follows that

L[u] = L[uh(t)]c(t) + uh(t)
dc

dt
= uh(t)

dc

dt
= a(t)

c(t) =

Z
a(t)

uh(t)
dt+ c0

and so

(3.1.37.)

(a.k.a. variation of constants)

but with    being 
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(3.1.39.)

(3.1.38.)

Substituting in (3.1.35.)

u(t) = uh(t)


c0 +

Z
a(t)

uh(t)
dt

�

= e
R
b(t)dt


c0 +

Z
e�

R
b(t)dta(t)dt

�

General solution is then a solution of homogeneous equation  
plus particular solution of inhomogeneous equation

Particular solution for readsu(t0) = u0

u(t) = e
R t
t0

b(t0)dt0

u0 +

Z t

t0

e�
R t0
t0

b(t00)dt00a(t0)dt0
�

= K(t, t0) u0 +

Z t

t0

K(t, t0) a(t0) dt0

where K(t2, t1) = e
R t2
t1

b(t)dt = uh(t2)/uh(t1)

 Note that ☛ K(t, t) = 1
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(3.1.40.)

(3.1.41.)

Example 3.1.10.

Consider a series resistor-inductor circuit

The complete response to input voltage is described by 

a voltage source

(R� L)
V (t)

L
dI

dt
+ IR = V (t)

I

I(0) = I0 L R

I(t) = I0e
�Rt/L +

Z t

0
e�R(t�t0)/LV (t0)dt0

where is current

Solution for   with and constants is

driven by
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Initial Value Problem
3.2.1. Existence and uniqueness of solutions
Consider the first-order ordinary differential equation

du

dt
= f(t, u)

u(t0) = u0

with initial condition

(3.2.42.)

(3.2.43.)
Except for some special cases

We then have to resort on approximate methods                              

We must first be sure that for given f(t, u) and initial condition

The following theorem shows that a solution exists                  

The theorem also provides an approximate solution of (3.2.42.)           

there is indeed a solution of (3.2.42.) 

that can be used to solve (3.2.42.) numerically

it is not usually possible to obtain analytical solution of (3.2.42)

and is unique for a very wide class of functions

which turns out to be useful both formally and numerically
21Tuesday, January 27, 15



Theorem 3.2.1. [Picard's theorem]

be a continuous function in the rectangle Let f(t, u)

R = {t, u/|t� t0|  a, |u� u0|  b}

Let's further assume that   satisfies Lipschitz condition inf

|f(t, u2)� f(t, u1)|  N |u2 � u1|
R

(3.2.44.)

I.2 PROBLEMAS DE CONDICIONES INICIALES

I.2. Problemas de condiciones iniciales

I.2.1. Teorema de existencia y unicidad de Picard para problemas de
valores iniciales

Consideremos la ecuación diferencial ordinaria de 1er orden
du

dt
= f(t, u) , (44)

con la condición inicial u(t0) = u0. Salvo casos especiales, como los vistos en la clase
anterior, no es posible en general resolver esta ecuación en forma analı́tica. Es necesario,
entonces, recurrir a métodos aproximados, que permiten resolver (44) en forma numérica.
Para ello, se necesita primero estar seguro de que efectivamente existe una solución de
(44) para una determinada f y condición inicial. El siguiente teorema demuestra que
dicha solución existe y es única para una clase muy amplia de funciones. A la vez, el
teorema proporciona un método de resolución aproximado de (44) (método de Picard),
que resulta útil tanto formal como numéricamente.

Teorema I.2.1 Si f(t, u) es continua en un rectánguloR dado por |t−t0| ≤ a, |u−u0| ≤
b, y satisface en R la condición de Lipschitz

|f(t, u2) − f(t, u1)| ≤ N |u2 − u1| (45)

con N constante, entonces en el intervalo

|t − t0| ≤ r, r = Min[a, b/M ] (46)

con M el valor máximo de |f | en R, existe una única solución u(t) de (44) que satisface
u(t0) = u0.

La condición |t − t0| ≤ r asegura que la solución no se salga de R. En efecto (ver
figura 2), dado que |f | ≤ M en R, si |t − t0| ≤ r, integrando (44) y tomando valor
absoluto, se obtiene

|u(t) − u0| = |
∫ t

t0

f(t′, u(t′))dt′| ≤ |
∫ t

t0

|f(t′, u(t′))|dt′| ≤ M |t − t0| ≤ Mr = b

Observar que, para que se cumpla la condicin de Lipschitz (45), es suficiente que
fu = ∂f

∂u exista y esté acotada en R dado que, por el teorema del valor medio, si |fu| ≤ N
en R,

|f(t, u2) − f(t, u1)| = |fu(t, ξ)(u2 − u1)| ≤ N |u2 − u1|

con ξ ∈ [u1, u2].

t

u

t0 t0!at0"a

u0"b

u0!b

u0
Figura 1: El rectángulo R

21

Sufficient condition for Lipschitz inequality (3.2.44.) to hold        
is that fu = @f/@u exists and is bounded in R

Indeed ☛ if 

|f(t, u2)� f(t, u1)| = |fu(t, ⇠)(u2 � u1)|  N |u2 � u1|
with ⇠ 2 [u1, u2]

(3.2.47.)
|fu|  N it follows thatin R
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Then ☛ in the interval

|t� t0|  r, r = min[a, b/M ]
there exits a unique solution satisfying d.e. (3.2.42.)u(t)

is maximum value of    inM f R
Condition entails solution will remain in|t� t0|  r R
Indeed  ☛ if |t� t0|  r |f |  M Rthen in

(3.2.42.) and take absolute value to obtainand so we can integrate

|u(t)� u0| =

����
Z t

t0

f(t0, u(t0) dt0
���� 

����
Z t

t0

|f(t0, u(t0)| dt0
����

 M |t� t0|  Mr = b

(3.2.45.)

(3.2.46.)

where

I.2 PROBLEMAS DE CONDICIONES INICIALES

t

u

Α Π#Αtg Α$M

t0 t0%at0#a

u0#b

u0%b

u 0

t0%rt0#r

Figura 2: Definición de r

Demostración:

Demostraremos primero la existencia de la solución. La ec. (44) es equivalente a la
ec. integral

u(t) = u0 +

∫ t

t0

f(t′, u(t′))dt′ (47)

Podemos plantear ahora una secuencia de aproximaciones sucesivas u0, u1(t), . . . , un(t)
definidas por

un(t) = u0 +

∫ t

t0

f(t′, un−1(t
′))dt′, n ≥ 1 (48)

con u0(t) = u0 (método de Picard). La restricción (46) asegura que un(t) no sale de R
para ningún n (o sea, |un(t) − u0| ≤ b si |t − t0| ≤ r). En efecto, para n = 0 esto
se cumple trivialmente. Asumiendo que se cumple para un−1(t), obtenemos, dado que
|f | ≤ M en R,

|un(t)−u0| ≤
∫ t

t0

|f(t′, un−1(t
′))|dt′ ≤ M |t−t0| ≤ b (49)

para |t− t0| ≤ r.
Probaremos ahora que la sucesión (48) converge. Si n ≥ 1 y |t− t0| ≤ r,

|un+1(t)−un(t)| = |
∫ t

t0

[f(t′, un(t
′))−f(t′, un−1(t

′))]dt′|

≤ |
∫ t

t0

|f(t′, un(t
′))− f(t′, un−1(t

′))|dt′|

≤ N |
∫ t

t0

|un(t
′)−un−1(t

′)|dt′| (50)

Para n = 1, (126) implica que

|u1(t)− u0| ≤ M |t− t0|

22
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(3.2.48.)

Proof.

(3.2.49.)

First we note that solution will satisfy the integral equationu(t)

u(t) = u0 +

Z t

t0

f (t0, u(t0)) dt0

Conversely ☛ any solution of integral equation
d.e. and the initial condition

For example ☛ if we set t = t0 in (3.2.48) we find that i.c. holds

A sequence of successive approximations

and

u0, u1(t), . . . un(t), . . .

is now defined with u0(t) = u0

un(t) = u0 +

Z t

t0

f (t0, un�1(t
0)) dt0 , n � 1

must satisfy both the
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Restriction (3.2.45) ensures that un(t) R n

|un(t)� u0|  b |t� t0|  r

belongs to for all

that is ☛ if

Indeed ☛ for n = 0  the condition is trivially satisfied

 Assuming that condition holds for
since in we obtainR

un�1

|f |  M

|un(t)� u0| 
Z t

t0

|f (t0, un�1(t
0)) | dt0  M |t� t0|  b

8|t� t0|  r (3.2.50.)

To establish convergence of the sequence

n � 1 |t� t0|  rand

|un+1(t)� un(t)| =

����
Z t

t0

[f (t0, un(t
0))� f (t0, un�1(t

0))] dt0
����


����
Z t

t0

|[f (t0, un(t
0))� f (t0, un�1(t

0))]| dt0
����

 N

����
Z t

t0

|un(t
0)� un�1(t

0)| dt0
���� (3.2.51.)

and find  for

we calculate difference of two successive members of it
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n = 1For  (3.2.50.) implies |u1(t)� u0|  M |t� t0|
so (3.2.51.) leads to

(3.2.52.)
|u2(t)� u1(t)|  NM

����
Z t

t0

|t0 � t0| dt
���� = MN

|t� t0|2

2

For a general we haven

|un(t)� un�1(t)| 
MNn�1|t� t0|n

n!
(3.2.53.)

Now assuming (3.2.53.) holds we get

|un+1(t)� un(t)|  MNn

����
Z t

t0

|t0 � t0|n

n!
dt0

���� = MNn |t� t0|n+1

(n+ 1)!

Therefore  ☛ lim
n!1

|un+1(t)� un(t)| = 0

(3.2.54.)

(3.2.55.)
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In summary ☛ since

un(t) = u0 + (u1(t)� u0) + · · ·+ (un(t)� un�1(t)) + . . .

u(t) ⌘ lim
n!1

un(t) = u0 +
1X

n=1

(un(t)� un�1(t))

the limit

exists because the series
1X

n=1

|un(t)� un�1(t)|  M
1X

n=1

Nn�1|t� t0|n

n!
= M

eN |t�t0| � 1

N

is absolutely convergent

(3.2.56.)

(3.2.57.)

(3.2.58.)

The limit of integral in (3.2.49.) is equal to integral of limit 

and therefore       is a solution of (3.2.42.)u(t)
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To study the question of uniqueness 
v(t) is another solution of (3.2.42.) satisfying v(t0) = u0

Then ☛ if |t� t0|  r
subtraction of one such equation from the other yields

|u(t)� v(t)| 
Z t

t0

|f (t0, u(t0))� f (t0, v(t0))| dt0

 N

Z t

t0

|u(t0)� v(t0)| dt0

 KN |t� t0| (3.2.60.)

where is maximum of K |u(t)� v(t)| |t� t0| < rfor

we assume

|u(t)� v(t)|  KN2

Z t

t0

|t0 � t0|dt0 = KN2 |t� t0|2

2

using (3.2.60) for |u(t0)� v(t0)|

Replicating the procedure    timesn |u(t)� v(t)|  KNn |t� t0|n

n!

it follows that ☛ |u(t)� v(t)|  lim
n!1

KNn |t� t0|n

n!
= 0
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Example 3.2.1.
Consider again linear equation

with andt0 = 0

We invoke Picard's theorem to obtain

u1 = u0 � �

Z t

0
u0 dt

0 = u0[1� �t]

u2 = u0 � �

Z t

0
u1(t

0) dt0 = u0[1� �t+ �2t2/2]

un = u0

nX

m=0

(�1)m(�t)m/m!In general ☛

u(t) = lim
n!1

un(t) =
1X

n=0

(�1)n
(�t)n

n!
= u0e

��t

(3.2.64.)

(3.2.65.)

du

dt
= ��u

u(t0) = u0
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Series converges  ☛ but condition (3.2.45.)8t
conservative estimate of interval of convergence

For andu0 > 0, M = |�|(b+ u0)
r = min


a,

b

|�|(u0 + b)

�

a > |�|�1If r  |�|�1then  because 
In general condition (3.2.45.) is very restrictive                        
and Picard's expansion converges in a larger interval
Definition 3.2.1.
Points in which there is either no solution of (3.2.42.) 
or solution is not unique ☛ are called singular points

(t0, u0)

Hypotheses of Picard's theorem are sufficient                          

Indeed  ☛ if centered at f is continuous inside a ball (t0, u0)

but this may not be unique if Lipschitz condition is not met
there is always a solution of (3.2.42.)

The curve formed by singular points is called singular curve
A solution made up entirely of singular points is called 

 singular solution

(3.2.66.)

provides overly

for existence of a solution ☛ but not necessary

b/(u0 + b) < 1 8b > 0
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Example 3.2.2.
Consider first-order ordinary differential equation

du

dt
= q

u

t
with

Function has a discontinuity atf(t, u)

q > 0

t = 0

A possible solution is u(t) = 0

u(t) 6= 0If ☛ integration of (3.2.67.) leads to

ln |u| = q ln |t|+ c0

that is ☛ if t > 0 then u(t) = ctq

 (3.2.69.) is solution of (3.2.67.) for any

If t0 = 0 u0 = 0and

value of c  (including )c = 0

(3.2.67.)

(3.2.68.)

(3.2.69.)

There is not a unique solution ☛  but a family of solutions

On other hand ☛ if       t0 = 0 and u0 6= 0  there is no solution
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