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ELERMENTS OF LINEAR ALGEBRA

1.1 Linear Spate.s

1.2 Matrices and Linear Transformations

WANNA MULTIPLY? | = YOU'RE TOO | &=
SMALL FOR ME.
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LINEAR SPACES

Definition 2.1.1.
A field is o seb [7 together with two operaﬁov\s + and -

for which all axioms below hold V A\, u, v € F :
(1) — closure— sum A\ + 1 and product A b again belong to F
(i1) — associative law — A+ (u+v)=A+ ) +v &X-(u-v)=0A-p) v
(#9i) — commutative law — XN+v=v+ X & A ="\
(iv) — distributive laws — X (u+v) =X+ A-v

and A+pu)-v=A-v+pu-v
(v) — existence of an additive identity— there exists an element

0€F for which A\ +0= )\
(vi) — existence of a multiplicative identity— there exisks an elemenk

1€ F with 1£0 for which 1- )= )\

(vii) — existence of additive inverse—to every \ € [ there Correspov\ds
an additive ihverse —A such bhat — )\ 4+ )\ =0

(viti) — existence of multiplicative inverse— to every AVC P

there torrespouds a mut&ipuaaﬁve averse A\ ! such that M1 A =1
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Exam[oie 2.1

Underlying every linear space is a fleld £

exam[ates are R and C

Definition 2.1.2.

A Linear space V/ is a collection of objects
with a (vector) addition and scalar mulkiplication defined
which is closed under both operations

Such a vector space satisfies following axioms:

> commutative law of vector addition
XYy g VX W € s
> assoctative law of vector addition

x+ (y+wl—ix 9w vavaw e 1/

> There exists a zero vector 0 such that x +0=x,Vx € V

Monday, September 19, 16




> To every element x € V

there corresyomds an verse element —X

such that X + (—x) =0

> associative law of scalar mulkiplication

Ap)x=A(ux), VxeV and \,u € F

> distributive laws of scalar mulkiplication
A+pu)x=Ax+pux, VxXeVand \,u e F

Ax+y) =Ax+ Ay, Vx,yeVand A e F

> 1-x=x, Vx &'l
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Ex&mFLe. 2 128

Cartestan space R" s pro&o&vpia‘:ai e.xampi.e.

of real n-dimensional vector space

Let X = (Z1,...,%p) be an ordered n tuple of real numbers z;

to which there carrespomds a poim& X with Ehese Cartesian
coordinakes and a vector x with these tom[pmmev\&s
We define addition of vectors bv compohent addition

Xx+y=(r1+y1, .., Tn + Yn) (2.2.1.)

and scalar mu.t&i,puf:a&iom bj companem& mut&iptica&iom

XX =H0T e AT (2.1.2.)
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Definition 2.1.3.

Given a vector space V over a field F
a subset W of V is called subspace

if TV is vector space over I' under operations already defined on |/

Corollary 2.1.1
A subset Wof a vector space V is a subspace of V & )

()W is nonempty (7) if X,y € Wwthen x+yecW
(7i1) x €W and AEF wthen \-xeW

After defining notions of vector spaces and subsyo\tes
next step is to identify functions that can be used

to relakte one vector space to ancther

Functions should respect algebraic structure of vector spaces

so we require Ehav preserve addition and scalar mu&ipti«ca&iom
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Definition 2.1.4.
Let V and W be vector spaces over field F

A Linear transformation from V bto TV is a function T:V — W

such that T (Ax + py) = AT'(x) + uT'(y) (1.1.3.)
for all vectors x,y € V and all scalars \, 1 € F

1f o Linear transformation is one-to-one and onto )

ik s called vector space Lsomorfokism ~ OT simpi.j Lsomorfokism

Definikion 2.1.8.

Let S = X1, - ,Xn be a set of vectors in vector space Vover field F

Any vector of form y = Z \ix; for M EF
i=1
s called Linear combination oﬂf vectors in O

Sek S is said to span V' if each element of V

can be expressed as Llinear combination of vectors in S
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Definition 2.1.6.

Le& }(17 4
and )\1, .

..»Xm be m given vectors

A o equal number of scalars

We can form a linear combination or sum

MX1+ o+ AeXk + o F A Xm (214

which is also an element of the vector space

Suppose there exist values A1 ...\, which are not all zero

such that above vector sum is bhe zero vector

Then the vectors Xi1,...,Xm are said to be LLV\earij depemdem&

COM&T&TF«L:; vectors Xi,...,Xm are called Lineo\rbj émdepemdam&

U Axy+ Xkt F AnXm =0 (2.1.8)

demands scalars Ar must all be zero
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Definition 2.1.7

Dimension of V
= maximal number of Linearly independent vectors of V/
Definition 2.1.%.
Let 1V be an . dimensional vector space
el S v TR (2.6,

a linearly independent spanning set for V
2 S is called a basis of v

Definikion 2.19.

Let S be a nonemply subset of vector space V

> S is a basis for y/ U and only f each vector in V

cain be written uniquely as a linear combination of vectors in g
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Definition 2.1.10,
An tner product (,):V XV — Fis a function that takes each

ordered pair (X,y) of elements of V to a humber (X,y) € F
and has following properties:

> comjuga&e s:jmmaﬁrv or Hermi&éci,&v <X, Y> e (<Y7 X>)*

> linearity in second argument
(X, y+w) =(x,y)+ (X, w) and (x,\y) = A(x,y)
> definiteness (x,x)=0&x=0

Corollary 2.1.2.
Conjugate symmetry and Linearity in second variable gives

Ax,y) = (¥, A%))" = A ({y,x))" = A" ((x,¥))
y+w,x)=(xy+w) =(xy) +(xw) =y x +(Wx)

Kemark 2.1.1.

In R tnner product is symmetric
whereas in C is a sesquilinear form

(Le. is Linear in ohe arqument and conjugate-linear in other)
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Definition 2.1.11.
A Uner product (,)is said to be positive definite < )

for all non-zero X in V, (x,x) > 0
A positive definite nner product is usually referred to as
genuine inner product

Definition 2.1.12.
An tnner product space is a vector space V over field I

equipped with an thner product (,): V XV = F
Definition 2.1.13,

Vector space V on F' endowed with a positive definite tner
product (ale.a. scalar product) defines Euclidean space £

Exampte 2.1.3,
For x,y € R"

n
X,y e N
(%, ) y ;; oS

Eixo\mpi.e 2.1.4.

n
For z,y € C"
) (%, ¥) — xS U
K—1
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Exampte 2.1.5.

Let C([a, b]) denocte set of continuous functions T &)
defined onclosed interval —oco < a <t < b < oo

This set is skructured as vector space wikh respe{:& ko usual OPQI‘O&EOV\S

of sum of functions and product of functions by numbers
whose neutral element is zero function

For x(t),y(t) € C(|a,b]) we can define scalar produ,c&:

b
Lok / 2*(8) y(t) df, (2.9

which satisfies all necessary axioms

b

b by
and if (X,%X) =0 o 0:/ ]a:(t)\2dt2/ R 0 (2.1.11.)

1

Va<a; <b <b z(t) =0

C*([a,b]) denotes euclidean space of continuous functions

on interval [a,b] equipped with scalar product (2.19)
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Definition 2.1.14.
Axiom of positivity allows one to define a norm or length

For each vector of an euclidean space
HXH i _|_ <X7 X> (2111121)
In particular X0 —0

Further m if ) € IAx[| = VAP (x, %) = [Al[[x]] (2.23)

This allows a normalization for any non-zero length vector
Indeed m if X # 0 then [|x|| >0
Thus m we can take A € such bthat |\ = [|z||7' and v = Mx

It follows that ||y]| = [A|[x]| =1
Example 2.1.6.
Length of a vector x € R" is

Exo\vaLe 2.1.7.
Length o»f a vector X € CQ([CM b)) is
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Definition 2.1.18.

In a real Euclidean space angle bebween vectors X and Y

(%, ¥)]
IxIl]y|

COSHRY — (2.1.26.)

Definition 2.1.16.
Two vectors are orthogonal X oy E,f <X, y) =0
Zero vector is orthogonal to every vector in E

Definition 2.1.17

In a real Euclidean space

angle between two orthogonal non-zero vectors is /2
J

e costy = 0
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Levwainma 2.1.1.

I‘f {x1,%X2, - , Xk} is a set of mu&uau.j orthogonal non-zero vectors

thewn iks elements are L&neartj &nciepehciem&
Proof.

Assume bhabt vectors are Léheartj ciepehcieh&
Then m there exists k numbers \; (ot all zere) such that

A1 X g Ao Xo- ) A — 0. (g 307

Further m assume bhat M1 7 0 and consider scalar Prodm:?:
of the Linear combinakion (2.1.17) with vector X1

Since X; | Xj for i # j m we have
A R e ey O (R 1 %)
or equivaiemﬂv
A X0 xp0 2(2.1.19,)
which contradicts hypothesis
Corottarv 2.1.3,
If o sum of mutually orthogonal vectors is 0

then each vector must be 0
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Definition 2.1.1%.
A basis X1,---,Xn of V is called orthogonal
3 <Xi,Xj> =l torall 1 -9
w basis is called orthonormal
if in addition each vector has unit length

al=1,Vi=1i.. n

Examryt& Bl r

Simplest example of an orthonormal basis is standard basis

(o 4

0 0
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Levama 2.1.2.
1f set of vectors { X7 X80 5 e orthogonal bo y € &

then every Llinear combination of this set of vectors
is also orthogonal te Y

(2.1.22.)

Theorem 2.1.1. (?’3%&301‘@.&&»\ theorem)
I x1ly€ef then

Ix+yll°=&x+y,x+y)=|Ix]|]*+ |yl (2.1.23.)

In any right triangle = area of square whose side is hypotenuse

(side opposite right angle) is equal to sum of areas of squares
whose sides are two legs (kwo sides that weet at a right angle)

Coroltarv R.1.4.
1f set of vectors {X1,X2, - ,Xk| are mutually orthogonal
Xi L Xj with 7 #£ 7 then
1 + -+ x| [* = [l |® + -+ [ [ (2.2.24.)
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Corollary 2.1.8. (Triangle Lmaqu&ti&:})

For X, Y € £ we have

Il - ||y||\ Lyl <l T

Length of a side of a triangle
does not exceed sum of lengths of other two sides
nor is ik less thain absolute value of difference of other two sides

Proof.
Consider scalar pradu«c&

Ix+ ¥l = x+y,x+y) =[x + 2Re(x,y) + [¥]®  (2.2.26)
according to Cauchy-Schwarz tnequality

Re(x, y)| < |(x,¥)] < x|yl (2.1.27.)
therefore

2 2
(= lyID™ < lIx+yl* < llzl® + 2lzlllyll + lyl® = U=l + Iy)” (2.2.2%.)
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Definition 2.1.19.

Let X = (21,..., %k, ... ) be an infinite sequence of real numbers

©.@)
such that Z :Ei converqes
ko=l
Sequence X defines a point of Hilbert coordinate space R™
with £ -th coordinate Tk

It also defines a vector with k-th COMPOMEV\& Tk

which as ih R" we identify with point
Addition and scalar mulkiplication
are defined analogously to (1.1.1) and (1.1.2)

Norm of Hilbert vector X is Pythagorean expression
b 1/2
x| = <Z 5’3%)
k=1

this series converges if x is an element of Hilbert space H =E™

Bj kjpo&hesis
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LINEAR OPERATORS ON EUCLIDEAN SPACES
Definition 2.2.0

An operator Aon & is a vector function A:E — &
Operator is called linear 3

Alax + fy) = aAx + Ay, Vx,y € £ and Va, 8 € C (or R)
Definition 2.2.1.

Lek A be an 1 X . wmakrix and x a vector

> the function T(X) = Ax is a Linear opem&or
Definition 2.2.2.

A vector X # 0 is eigenvector of A ¥ I\ so&i,s»fvav\g) Ax =)x
i such a case (A — )\H) x=2) = JF s ici'\ehﬂf:j makbrix

Eigenvalues A are given bj relation det (A — A1) =0
which has m different rooks with 1 < m < n

> det(A — All) is a polynomial of degree n
Eigenvectors associated with eigenvalue )

are obtained bj solving (singular) Llinear system (A — AI)x =0
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Remark 2.2.1.

If X1 and X2 are eigenvectors with eigenvalue A and a, b constants

& X1+ bXo is an etgenvector with eigenvalue A because

A(axy 4 bxg) = aAxy + bAxs = adxy + bAxe = A(axy + sz)

It is straightforward to show that:

() eigenvectors associated to a given eigenvalue
form a vector space

(il) two eigenvectors corresponding to different eigenvalues

are lineraly &Mdepev\de.n&
Definikion 2.2.3.

A malrix A is said to be diagonable (or diagonalizable)
i the eigenvectors form a base
Le. if any vector V can be written as a linear combination
of eigenvectors

A makrix A is said ko be di&sovmbie
f there exists n eigenvectors Xq,...,Xn

that are Llinearly independent
Monday, September 19, 16




In such a case
w we caln form with N eigenvectors an 1 X 1 makrix U

such that k-th column of U is k-th eigenvector
In this way

w1 relobions AXy = AX, can be written in a mabrix form
AU=TA" =ik o e 1 < diagonal makbrix such thak

The Laktter can also be wriktten as

U 'AU=A' orequivalently A=UA' U (2.2.11.)
which bind diagonal matrix with original makrix
(U is invertible because eigenvectors are Linearly independent)

Definition 2.2.4.
Transformation (2.2.11.) represents a change of base

Note that eigenvalues (and therefore makbrix A’
are independent of change of base

Y B=W 'AW with W an arbitrary (invertible) n x n matrix
>det (B—AI) =det (W' AW - AW W) =det (A I (2.2.12.)

such that it has same eigenvalues
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Definition 2.2.8.

1f real function f(x)has a Taylor expansion
©.@)

flz) = Z ki b (2.2.13.)

n!

=1t
makrix function is defined by substituting argument T by A
powers become makrix powers, additions become makrix sums
and mulkiplications become scaling operations

1f real series cohverqges for B

corresponding malrix series converges for matbrix arqument A

f [[A]| <7 for some matrix horm || || which satisfies
|ABJ <Al - B (224
It is possible to evaluate an arbitrary matrix function F(A)
applying power series definition to decomposition (2.2.11.)
We find that F(A) = UF(A)U !
wikh F(A’) glven bj makrix [F(Al)]ij = F()\i)5ij
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Note Ehat

A" = (UDUs)" = (U DU A e (LD )
— UD(Uz SEB(U " Ui (U7 1) DU =
— U D
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Definition 2.2.6.

A t:omPi.ex square makbrix A is Hermition if A — Al
where AT = (A*)T
Remark 2.2.2.

It is easily seen that f A is Hermition then:
(L) iks eigenvalues are real

is conjugate transpose of a complex makrix

(i) eigenvectors associated to different eingenvalues
are orthogonal
(Lit) ik has a complete set of orthogonal eigenvectors

Definition 2.2.7 which malkes it diagonalizable

A partially defined Linear operator A on a Hilbert space H

is called symmekric Y(Ax,y) = (x,Ay), Vx and y in domain of A
A symmekric everywhere defined operator is called

self-ad joint or Hermitian
Note that if we take as H Hilbert space C"

with skandard dok produ,t&
and im&erpre_& a Hermikian square makbrix A as a Linear cpero&or

on this Hilbert space we have » (x Ay) = (Ax,y),Vx,y € C"
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Exam[om 2.2.1

A convenient basis for traceless Hermitian 2 X 2 makrices
are Paull makrices:

0 1 0 —i it 0
01:<1 0)’ 02:(7; OZ), 03:(0 _1)(2.1.,%.)

They c»bej following relations:
(1) o =l
(ZZ) O'z'O'j = —O'jO'Z'

(4i7) ‘o, O

w (1,5,k) a cyclic permutation of (1,2,3)

These bthree relakions can be summarized as
0;0; = 1045 +1€k0%  (2.2.372)

w €k is Levi-Civika svmbot
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