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Elements of Linear Algebra

 1.1 Linear Spaces

1.2 Matrices and Linear Transformations
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Definition 2.1.1.
A       is a set    together with two operations     and field F

for which all axioms below hold

·+

8 �, µ, ⌫ 2 F :
(i)� closure� �+ µ � · µsum and product again belong to F

(ii)� associative law � �+ (µ+ ⌫) = (�+ µ) + ⌫ & � · (µ · ⌫) = (� · µ) · ⌫
(iii)� commutative law � �+ ⌫ = ⌫ + � & � · µ = µ · �
(iv)� distributive laws � � · (µ+ ⌫) = � · µ+ � · ⌫

(�+ µ) · ⌫ = � · ⌫ + µ · ⌫and
(v)� existence of an additive identity�  there exists an element

0 2 F for which �+ 0 = �

(vi)� existence of a multiplicative identity�

1 2 F

there exists an element

1 6= 0with for which 1 · � = �
(vii)� existence of additive inverse� � 2 Fto every
an additive inverse

there corresponds
�� ��+ � = 0such that

(viii)� existence of multiplicative inverse� � 2 Fto every
there corresponds a multiplicative inverse ��1 such that ��1 · � = 1

 Linear Spaces
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Underlying every linear space Fis a field
examples are R Cand

A linear space    is a collection of objectsV

Such a vector space satisfies following axioms: 

Definition 2.1.2.

➢ commutative law of vector addition

➢ associative law of vector addition

➢ There exists a zero vector    such that0

x+ y = y + x, 8x,y 2 V

x+ (y +w) = (x+ y) +w, 8x,y,w 2 V

x+ 0 = x, 8x 2 V

which is closed under both operations
with a (vector) addition and scalar multiplication defined

Example 2.1.1.
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➢ To every element

there corresponds an inverse element �x

such that

 ➢ associative law of scalar multiplication

➢ distributive laws of scalar multiplication

➢

x 2 V

x+ (�x) = 0

(�µ)x = � (µx), 8x 2 V and �, µ 2 F

(�+ µ)x = �x+ µx, 8x 2 V and �, µ 2 F

� (x+ y) = �x+ �y, 8x,y 2 V and � 2 F

1 · x = x, 8x 2 V
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Example 2.1.2.

Cartesian space is prototypical exampleRn

-dimensional vector spacenof real

coordinates and a vector    with these components

be an ordered   tuple of real numbersLet n xi

x

x

 We define addition of vectors by component addition

and scalar multiplication by component multiplication

to which there corresponds a point with these Cartesian

(2.1.1.)

(2.1.2.)

x = (x1, . . . , xn)

x+ y = (x1 + y1, . . . , xn + yn)

�x = (�x1, . . . ,�xn)
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Definition 2.1.3.

Given a vector space V over a field F
 a subset of  subspace is calledVW

W V is vector space over F defined on under operations already

Corollary 2.1.1

A subset    of a vector space    is a subspace of W V V ,
(i)W is nonempty (ii) if

x,y 2 W x+ y 2 W☛ then
(iii) x 2 W � 2 F � · x 2 Wand ☛ then

After defining notions of vector spaces and subspaces 

next step is to identify functions that can be used

vector space to another

Functions should respect algebraic structure of vector spaces

and scalar multiplicationso we require they preserve addition

if

to relate one
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Definition 2.1.4.

Let    and     be vector spaces over fieldV W F

A linear transformation from V Wto is a function T : V ! W

such that T (�x+ µy) = �T (x) + µT (y) (1.1.3.)
for all vectors

x,y 2 V and all scalars �, µ 2 F

If a linear transformation is one-to-one and onto

it is called vector space isomorphism ☛ or simply isomorphism

Definition 2.1.5.
S = x1, · · · ,xnLet  be a set of vectors in vector space over fieldV F

Any vector of form 
y =

nX

i=1

�ixi for �i 2 F

combination of vectors in   is called linear S

Set    is said to span    if each element of    S

S

V V

   linear combination of vectors incan be expressed as 
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Definition 2.1.6.

Let be given vectors 
number of scalars

 We can form a linear combination or sum

m
�1, . . .�m an equal 

which is also an element of the vector space

Suppose there exist values �1 . . .�n

Then the vectors x1, . . . ,xm are said to be linearly dependent

Contrarily vectors x1, . . . ,xm are called linearly independent

demands scalars �k must all be zero

(2.1.4.)

(2.1.5.)

which are not all zero
such that above vector sum is the zero vector

x1, . . . ,xm

�1x1 + · · ·+ �kxk + · · ·+ �mxm

�1x1 + · · ·+ �kxk + · · ·+ �mxm = 0

and 

if
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Dimension of   
V

V
Definition 2.1.7

Definition 2.1.8.
Let    be an    dimensional vector space V n

a linearly independent spanning set for V

V    is called a basis of S

(2.1.6.)S = x1, . . . ,xn ⇢ V

☛ maximal number of linearly independent vectors of

and 

➪

Definition 2.1.9.

Let     be a nonempty subset of vector space S V

can be written uniquely as a linear combination of vectors in 

➪ S is a basis for V if and only if each vector in V

S
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Definition 2.1.10.
An inner product 

ordered pair

h , i : V ⇥ V ! F

(x,y)

is a function that takes each

of elements of    to a numberV hx,yi 2 F
and has following properties:

➢ conjugate symmetry or Hermiticity

➢ linearity in second argument

hx,yi = (hy,xi)⇤

hx,y +wi = hx,yi+ hx,wi hx,�yi = �hx,yiand

➢ definiteness
Corollary 2.1.2.
Conjugate symmetry and linearity in second variable gives

R
Remark 2.1.1.
In    inner product is symmetric 

whereas in    is a sesquilinear formC
(i.e. is linear in one argument and conjugate-linear in other)

h�x,yi = (hy,�xi)⇤ = �⇤(hy,xi)⇤ = �⇤(hx,yi)
hy +w,xi = (hx,y +wi)⇤ = (hx,yi)⇤ + (hx,wi)⇤ = hy,xi+ hw,xi

hx,xi = 0 , x = 0
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Definition 2.1.11.
An inner product h , i is said to be positive definite ,

non-zerofor all V, hx,xi � 0x in
A positive definite inner product is usually referred to as 

Definition 2.1.12.
An inner product space is a vector space   over field  V F

equipped with an inner product h , i : V ⇥ V ! F
Definition 2.1.13.
Vector space   on    endowed with a positive definite innerV F

product (a.k.a. scalar product) defines Euclidean space E
Example 2.1.3.
For

(2.1.7.)
hx,yi = x · y =

nX

k=1

xkyk

x, y 2 Rn

Example 2.1.4.
For x, y 2 Cn

hx,yi = x · y =
nX

k=1

x

⇤
kyk (2.1.8.)

genuine inner product
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Example 2.1.5.
C([a, b]Let denote set of continuous functions      

closed interval
x(t)

�1 < a  t  b < 1
This set is structured as vector space with respect to usual operations 
of sum of functions and product of functions by numbers

x(t), y(t) 2 C([a, b])For we can define scalar product:

hx,yi =
Z b

a
x

⇤(t) y(t) dt,

which satisfies all necessary axioms

hx,xi =
Z b

a
|x(t)|2dt � 0

hx,xi = 0

In particular

and if ☛ 0 =

Z b

a
|x(t)|2 dt �

Z b1

a1

|x(t)|2 dt � 0

8a  a1  b1  b
x(t) ⌘ 0

(2.1.9.)

(2.1.10.)

(2.1.11.)

C2([a, b]) of continuous functionsdenotes euclidean space 

[a, b] equipped with scalar product  (2.1.9)

defined on

whose neutral element is zero function

)

on interval
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Definition 2.1.14.
Axiom of positivity allows one to define a norm or length  
For each vector of an euclidean space

kxk = +
p
hx,xi

In particular kxk = 0 , x = 0

� 2 CFurther ☛ if k�xk =
p
|�|2hx,xi = |�|kxk

This allows a normalization for any non-zero length vector

Indeed ☛ if x 6= 0 kxk > 0then
Thus ☛ we can take � 2 Csuch that |�| = kxk�1

y = �xand
It follows that kyk = |�|kxk = 1

Length of a vector
Example 2.1.6.

(2.1.12.)

(2.1.13.)

x 2 Rn is

kxk =

 
nX

k=1

x

2
k

!1/2

(2.1.14.)

(2.1.15.)

Example 2.1.7.

|xk =

(Z b

a
|x(t)|2 dt

)1/2Length of a vector x 2 C2([a, b]) is

��

|
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Definition 2.1.15.

In a real Euclidean space  angle between vectors andx

y

coscxy =

|hx,yi|
kxkkyk (2.1.16.)

Definition 2.1.16.

Two vectors are orthogonal x ? y hx,yi = 0 if

Zero vector is orthogonal to every vector in E

Definition 2.1.17.
In a real Euclidean space 

⇡/2

i.e. coscxy = 0

non-zero vectors isangle between two orthogonal 
⤶
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Lemma 2.1.1.
If

Proof.

Corollary 2.1.3.

{x1,x2, · · · ,xk} is a set of mutually orthogonal non-zero vectors

then its elements are linearly independent

Assume that vectors are linearly dependent

Then ☛ there exists   numbers    (not all zero) such thatk �i

�1x1 + �2x2 + · · ·+ �kxk = 0

Further ☛ assume that        
(2.1.17.)

�1 6= 0
x1

xi ? xjSince i 6= jfor  ☛ we have

�1hx1,x1i = hx1,0i
or equivalently

which contradicts hypothesis
�1kx1k2 = 0 ) x1 = 0

If a sum of mutually orthogonal vectors is   

0

0

(2.1.18.)

(2.1.19.)

then each vector must be 

of the linear combination (2.1.17) with vector
and consider scalar product
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Definition 2.1.18.
A basis is called orthogonal

for all
Vx1, . . . ,xn of

i 6= j

☛ basis is called orthonormal   
unit length  

Example 2.1.8.

Simplest example of an orthonormal basis is standard basis

(2.1.20.)

hxi,xji = 0

kxik = 1, 8i = 1, . . . , n

e1 =

0

BBBBBBB@

1
0
0
...
0
0

1

CCCCCCCA

, e2 =

0

BBBBBBB@

0
1
0
...
0
0

1

CCCCCCCA

, . . . en =

0

BBBBBBB@

0
0
0
...
0
1

1

CCCCCCCA

 if

if in addition each vector has 
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Lemma 2.1.2.

Theorem 2.1.1. (Pythagorean theorem)

In any right triangle ☛ area of square whose side is hypotenuse 
(side opposite right angle) is equal to sum of areas of squares 
whose sides are two legs (two sides that meet at a right angle)

*
y,

kX

i=1

�ixi

+
=

kX

i=1

�ihy,xii (2.1.22.)

If set of vectors {x1,x2, · · · ,xk} y 2 Eis orthogonal to
linear combination of this set of vectors then

y

x ? y 2 EIf then

kx+ yk2 = hx+ y,x+ yi = kxk2 + kyk2 (2.1.23.)

every
is also orthogonal to 

Corollary 2.1.4.
 If set of vectors {x1,x2, · · · ,xk} are mutually orthogonal 

xi ? xj with i 6= j then
(2.1.24.)||x1 + · · ·+ xk||2 = ||x1||2 + · · ·+ ||xk||2
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Corollary 2.1.5. (Triangle inequality)

Proof.

(2.1.25.)

(2.1.26.)

(2.1.27.)

(2.1.28.)

Consider scalar product

therefore

x,y 2 E we haveFor
����kxk � kyk

����  kx+ yk  kxk+ kyk

Length of a side of a triangle                                                    
does not exceed sum of lengths of other two sides                      
nor is it less than absolute value of difference of other two sides

kx+ yk2 = hx+ y,x+ yi = kxk2 + 2<ehx,yi+ kyk2

according to Cauchy-Schwarz inequality

|<ehx,yi|  |hx,yi|  kxkkyk

(kxk � kyk)2  kx+ yk2  kxk2 + 2kxkkyk+ kyk2 = (kxk+ kyk)2
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Definition 2.1.19.

be an infinite sequence of real numbers Let

such that
1X

k=1

x

2
k converges

Sequence x defines a point of Hilbert coordinate space 
with -th coordinate k xk

It also defines a vector with -th component xkk

which as in we identify with point
Addition and scalar multiplication

Norm of Hilbert vector    is Pythagorean expression x

By hypothesis 

x

H = E1

R1

Rn

x = (x1, . . . , xk, . . . )

kxk =

 1X

k=1

x

2
k

!1/2

are defined analogously to (1.1.1) and (1.1.2)

this series converges if    is an element of Hilbert space 
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Linear Operators on Euclidean Spaces

Definition 2.2.1.

 is a linear operator
be anLet matrix and a vectorA n⇥ n x

the function T (x) = Ax

 A vector

Definition 2.2.2.

x 6= 0 is eigenvector of A 9�if satisfying Ax = �x

 in such a case (A� � I)x = 0

I is identity matrix

Eigenvalues � are given by relation det (A� � I) = 0

which has     different roots with m 1  m  n

is a polynomial of degreedet(A� � I) n
Eigenvectors associated with eigenvalue     

solving (singular) linear system
�

(A� � I)x = 0

 are obtained by

➪

☛

➪

Definition 2.2.0
An operator A on E is a vector function A : E ! E
Operator is called linear if 
A(↵x+ �y) = ↵Ax+ �Ay, 8x,y 2 E and 8↵,� 2 C (orR)
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Remark 2.2.1.

If and are eigenvectors with eigenvalue and

is an eigenvector with eigenvalue because
x1 x2 � a, b constants

�

It is straightforward to show that: 
 to a given eigenvalue

(ii) two eigenvectors corresponding to different eigenvalues

Definition 2.2.3.

A matrix

A

if the eigenvectors form a base
v

is said to be diagonable (or  diagonalizable)

as a linear combination

A matrix    is said to be diagonable

A

n
x1, . . . ,xn

that are  linearly independent

ax1 + bx2

A(ax1 + bx2) = aAx1 + bAx2 = a�x1 + b�x2 = �(ax1 + bx2)

➪

(i) eigenvectors associated
form a vector space

 are lineraly independent

 i.e. if any vector    can be written
of eigenvectors

if there exists   eigenvectors
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 such that  -th column of    is   -th eigenvector
we can form with   eigenvectors ann n⇥ n U

U kk

n Axk = �xk

AU = UA0 A0 n⇥ n
A0

ij = �i�ij

U�1 A U = A0, or equivalently A = U A0 U�1,

U

matrix 

In this way 
can be written in a matrix form 

is a diagonal matrix such that 

The latter can also be written as

which bind diagonal matrix with original matrix 

Transformation (2.2.11.) represents a change of base
Definition 2.2.4.

(2.2.11.)

Note that eigenvalues (and therefore matrix   ) A0

B = W�1AW n⇥ n with W an arbitrary (invertible) matrix
det (B� � I) = det (W�1 A W� �W�1 W) = det (A� � I)

such that it has same eigenvalues
(2.2.12.)

In such a case
☛

relations☛
☛

(   is invertible because eigenvectors are linearly independent)

if
➪

are independent of change of base
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Definition 2.2.5.
 If real function      has a Taylor expansion 

f(x)

f(x) =
1X

n=0

f

(n)(0)

n!
x

n (2.2.13.)

 matrix function is defined by substituting argument byx A
powers become matrix powers, additions become matrix sums

 and multiplications become scaling operations

If real series converges for         |x| < r

A
kAk < r k · kif  for some matrix norm which satisfies 

kABk  kAk · kBk . (2.2.14.)

It is possible to evaluate an arbitrary matrix function 
applying power series definition to decomposition (2.2.11.)

F (A)

F (A) = UF (A0)U�1We find that

F (A0)with given by matrix [F (A0)]ij = F (�i)�ij

corresponding matrix series converges for matrix argument
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 Note that

An = (UDU�1)n = (UDU�1)(UDU�1) · · · (UDU�1)

= UD(U�1U)D(U�1U)D · · · (U�1U)DU�1

= UDnU�1
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Definition 2.2.6.
A complex square matrix A is Hermitian if A = A†

A† = (A⇤)T is conjugate transpose of a complex matrixwhere
Remark 2.2.2.
It is easily seen that if    is Hermitian then: A
(i) its eigenvalues are real

Definition 2.2.7.

A partially defined linear operator    on a Hilbert space 
is called symmetric if 

A H
Ain domain ofhAx,yi = hx, Ayi, 8x and y

A symmetric everywhere defined operator is called

 on this Hilbert space we have ☛

H Cn

A
hx,Ayi = hAx,yi, 8x,y 2 Cn

(iii) it has a complete set of orthogonal eigenvectors
which makes it diagonalizable

(ii) eigenvectors associated to different eingenvalues 
are orthogonal

self-adjoint or Hermitian
Note that if we take as    Hilbert space

with standard dot product
    and interpret a Hermitian square matrix    as a linear operator
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A convenient basis for traceless Hermitian  
are Pauli matrices:

2⇥ 2 matrices

Example 2.2.1

(2.1.36.)

They obey following relations: 

☛          a cyclic permutation of (1,2,3)

(iii) �i�j = i�k

(i, j, k)

These three relations can be summarized as

�i�j = I�ij + i✏ijk�k (2.1.37.)

is Levi-Civita symbol✏ijk☛

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, �3 =

✓
1 0
0 �1

◆

(i) �2
i = I

(ii) �i�j = ��j�i
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