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Isolated Singularities and Residues
Definition 1.4.1.

Given a function [ a zero of fis a point 2o such that Flah—0
The zero set is then Z;{z € C: f(z) =0}

there is some similarity between Z of a polynomial
and that of an analytic function

)

Any polynomial of degree n has ot most 1 ~zeros >

we can conskruct a ball arcund a zero where no other zero exisks

that is zeros are isolated

An analytic function can have infinitely many zeros

e9. f (Z) = sin Az buk Ehej are skill isolated
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Theorem 1.4.1
Suppose that [is analytic on D ={z € C: |z — z| <7} & f(20) =0
Then either (i) f(z) =0Vz € D
(it) de > 0 such that Vz € B(20) but {20}, f(2) #0
Consequently w d Jd{z,} C D such that:
() 2n 7 20 for infinitely many n (i) f(z,) = 0Vn (i) 2, — 20
then w f(2) =0Vz € D
Prook. e
Let f(2) = Zan(z —2)", 2€ D
=

1 ap =0 VN  then w (i) holds
1f In such that @, # 0w get smallest n (sayno) such that an —Ju

Then f(2)= ) an(z—20)" >

f(2) = (2 — 20)™(@ny + Gno+1(2 — 20) + Gnot2(z — 20)° + -+ )=
where g is &maLjELt: on D and g(zo) =il # 0

As g is conbinuos Je > () such that
g(z) # 0¥z € Bc(20) = f(2) #0Vz € B.(zp), but {20}
4
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Theorem 1.4.2. [Laurent's theorem]

Let f: D — C be analytic on annulus
A =Lz eC.r< |2 =y < FESEONIE TR L e
Then on Af = f(z) can be expressed bj

© Q)

f(2) =) aj(z—2) + ) b

1=0 ="

(1.4-92)

1
(= — 207

For any choice of simple closed contour C' C Aﬁ (20)

the coefficients a; and b, are given by

I
. 27’(’2 C (C 3 ZQ)
1 f(C)

Y ol (5 Zo)‘j+1dC e (1.4.94)

——d¢, forj>0 (1.4.93)
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Prook.

Without loss of generality we consider 2p = 0 and fix 2 € A7¥(0)
Choose circle U] and (5 in Af (0) such thak bokh are cenbered ak ()
with radit R and 2 sa&isfjaug e B oy < R

choose a third circle O

cenbered at 2 and having radius 13

\ with 173 small enough that Cg is contained
i Af (0) and does not inkersect C1 or O

then

2
L (P i g (O
Ca

2T ot 2 271 ( —=z

where we have used Cauchy's formula to obtain Last Line
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Solving for f(z)9tves

R f(¢) L f(©)
/(2) i O s 463 i CQC—zd

i v el 1 f (<)

d d
i fo (=20 T 2w Jo, O (@498)

G

We will show that first integral on right-hand side of (1.49¢)

leads to analytic part of Laurent series expansion for Ji (Z)

while second integral on right-hand side leads to singular part

Analysis of first integral proceeds as in proof of Taylor's theorem

3
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In this case however we can no longer expect that

awiler
2mi f, G T ]

because f is not necessarily differentiable inside 5y

Therefore m we define a; by

i (<)

=
ki % s
for whatever value this inteqral takes
This yields

1O N (z)N“
278 Jo, G - e N8

and letting N — 00 as in proof of Taylor's theorem

dg

gives the analytic part w 1

27Ti @ C
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To obtain singular part we apply a similar technique

Cownsider that for ¢ € (s

=8 -

So Ehak

N+1

1 L e
27 CQZ—CdC_; (
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In this case m define

1
bj_

Do)

1
C] FLCHEC
and kalke Limik as N — ocoto obkain

1 e — b,

o d( = e (1.4.103)
) . )
), 2 =
These two series are combined into one series of form
o

FiZ) Z c;(z —2)’ (1.4.104)

foc

£

i d¢, for n € Z
(1.4.108)
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Examyte 1.4.1.

To find Laurent series that represents the function

1
f(z)— 2t sin — in the domain 0 < |z| < oo
g

Note Fhal (1.4.106.)

. oy = (_1)n 2n-+1
sin w0 = Dope
ngd (1.4.107.)

for |w| < o0

Substituting o for w it follows Ehat

S —4n—-2 __ — (_1)n 1
ki _Z(2n+1)! el

==

for 0 < |z| < 00 (1.4.10%)
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Definition 1.4.2
A point z; is called an isolated singular point of a function f

if ffails to be analytic ok 20 but is analytic on Be but {20}
(for some ¢ > ()
For such a 203 & unique Laurent expansion of | such that

© @)

f2) =D ealz—2)" (1.4.109)

n=—odo
Point 2 is called a pole of orderm fc_pm # 0 & ¢, = 0Vn < —m

¥ m =1 then 20 is called a simple pole
Theorem 1.4 .3.
20 is a pole of orderm of f < Jh such that

f(z) = 22

(z — z9)™
with A analytic ab 20 and h(zo) =0
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Prook.
If 20 is a pole of orderm for f m using Laurent expansion of f

C—m C_m+1
Tz (Z_ZO)m+(Z_ZO)m_1+---+co+c1(z—z0)+...

1
(z — 2z9)™
h(z
(2 _<Zz)m (1.4.111)

lc_m + Coma1(z —20) + .. .]

S h(20) = e 0 and hiis analytic at 2o

because it has a convergent Taylor series at 20

Definition 1.4.3.
The complex number C_1

which is coefficient of (2 — ZO)_1 in Laurent expansion of f

is called residue of fak 20 and is denoted bjj Resf (Z) ’z:zo
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DeFINITION: W U C C 1S AN OPEN SUBSET OF THE CORPLEX PLANE

20 € U K POINT OF U

anp [ U sur {20} — C 1< AN ANALYTIC FUNCTION

THEN 20 1S CALLED A RERMOVABLE SINGULARITY FOR [

W THERE EXISTS AN ANALYTIC fUNCTION ¢ : U — C

WHICH COINCIDES wiTH f ON [J BUT {20}

WE SAY [ 1S ANALYTICALLY EXTENDABLE OVER [J IF SUCH A g EXISTS

Monday, September 19, 16




Theorem 1.4-.4.
If f has a simple pole ot 2z = zp ™ then

Resf(z)|,_, = Im(z=20) f(2z) (1.4.112)

2 A

Prook.
Sice 2 = zpis a simpm Fote

Laurent expansion of f about thak point has form

f(Z)= i e (2 e el )

Z — 20 (1.4.113)

By mu&ipijihg bobh sides bv .20

and then taking Limit as 2 — 29 we obtain

li_)rn il — li_>m lc_1+co(z—20) +e1(z—20)° +...] =cq1 = 2|,

(z — 2p)

Monday, September 19, 16




Theorem 1.4.5.
1f / has a Poi.e of ordern at z = 29 Ehen
dn—l

Resf(2)]

Prook.
Since f is assumed to have a pole of order n

its Laurent expansion for 0 < |z — 29| < R must have form

(1.4.114)

Z=Z0

S C_n oy C_2 c_l s
f(z)—(z_zo)n+ +(z—zo)2+z—zo+60+cl(z 20) + - -

We multiply bj (z —20)" to obtain

(z — 20)" fl2) = cipti= . i GUERE e TG e e
L el ) et e

and then differentiote 1 — 1 times

dn—l
o1 (2 = 20)" f(2) = (n = Dle_y + nleg(z — 20) + ...
dn—l

42— 20 w i (z — 29)" f(z) = (@ = B)le_;

z—%q)dzn_l

Solving for C_1 gives (1.4.114)
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Examyte 1.4-2.

The function

1
ML (z —1)%(z — 3)

(1.4.119.)

has o simple pole at 2 = 3 and a pole of order 2 ot z =1

Therefore )

: j i¢ 1
Resf(z)jie ll_I)I}S(Z —3)f(2) = 213% iy i (1.4.120.)

B

I 92 d
Resf(2)|,—; 17 am (2 — ()
¥ d ey
im
z—=1dz z—3
1

at pole of order 2 we have

T
z—1
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Theorem 1.4.6, [Cuachy's residue theorem]

Let D be a simply conneckted domain
and C a simpi.e closed conktour i.ji,ug en&iretj within D

If a function [ is analytic on and within C
except ot a finite vxumbernof singular points 21,22, ..., Zn within C

then 7{ fGidm=7my Resiiall (1.4.122
9 k=1 (T e o e,

A b 2 Za T \
q BRI

Proof.

C1,C5,....C) are circles

centered ak Ry B2y vy ”n
each circle (),

has a radius TL smwall enou,sk R B, o SRR A
so that (C1,05,...,C, are mu&uattv cii,sjoimf:
and are inkerior to simple closed curve (O

hen [Nz = > $ JeMs=2mi3 ResfGa)..,
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Exampi& 1.4.3,

Evaluate

: d
e 12 (1.4.124.)

where (1) contour (' is rectangle defined byz=0z=4y=-1y=1

and (i) contour O is circle 2l 2

Sice C(i) bokh Pctes 2z =1and z = 3 Lie within square, we have

1 .
7{7“) (z—1)%(z — 3)dz = 2mi|Resf(z)|.=1 + Resf(2)].=3]

Rav |
2 ) T B E = — O 114’11251
g [ 1 s 4] ( )

For C(m-) cw\i.j [ac)i.e. z = ] Lies within circle ’Z‘ oyl

1 :
jéz(m (2 Y (1.4.126.)
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Corou&rj 1.4.1.

Residue theory can be used to evaluate real integrals of forms
R

f(cos @, sin 0)do (1.4.133)
Proof. 0

Basic idea here is to convert an integral of form (1.4.133.) into

complex integral where contour (' is unit circle centered at origin

This contour can be parame&erized b-j z=cosf+isinf=¢e", 0<6<2r

Using C N B g
dz = iewdQ, cos 0 = 2 —'_26 : sinf = ¥ 2.6 (1.4’.134’)
i

we replace in turn df), cos ) and sinf by

1 i
df = @, COTG TRaT o I e )

17 2 21
(1.4.138)
integral (2.4.133) then becomes

where (O is ‘Z’ et
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Lemma 1.4.1. [Jordan's lemama ]
Consider definite integrals of form

©.D)
I = / flagige (1.4.144)
with @ real and Posi&&ve_ e

We assume two following conditions are saotisfied:
(W) f(zhe analytic in upper kaidfnptahe except for finite # of poles

(i) for 0<argz<m w~ lim flz) =0 (1.4.148)

|z| =00

Then: fo j{f(z) dz own the contour =

because the inteqgral [
is given by integration over real axis

Note that i — o0
integration over arc qives no contribution

[R = / f(ReiH)eiaR cos 0 —aR sin QiRew 40 ‘4‘14&>
0

exponhential factor qoes rapidly to zero in upper habf-pi.oma
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Let R be so large that |f(2)| = |f(Re™)| < e
Thewn

r : 1 :
’]R‘ 4 ER/ e—aR81n9d9:2€R/ —aRsin 6 A6
0 0

In range |0,7/2],20/m <sinf w
therefore
‘IR‘ S 2¢R

0
integration leads to

o —aR
Inl< 2elt

2aR /7 (a)y =20/ & (b)y=sind

, T
Finally Rhm Ir| < —e€
= a

From condition (1.4.148) ¢ —+ 0 as R — 00 and Rlim ienl =10
T AE )

therefore )
/ f(x)e dx + "l ole Z residues (upper half —plane)
il 5 R—>6¢
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Corollary 1.4.2. [Cauchy principal value]

1f first-order pole is directly on contour of integration
we may deform contour to include or exclude residue as desired

by including a semicircular detour of infinitesimal radius

taking m 2 — To = 6e'? dz = i6e'®do

integration over semicircle then gives

/ = / d¢ = 1w, if conunterclockwise

Z ey

d 2T
/ © S 7,/ dp = —im, if clockwise

A 1))
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This contribution (+ or =) should be added to LHS of (1.4.122)

1f detour is clockwise m residue would not be enclosed
and there would be no corresponding term on RHS of (1.4.122)

1f detour is counterclockwise m residue would be enclosed by C

and a term 2miRes f(2)]:225 would appear on RHS of (1.4.122)

Net result for either a clockwise or counterclockwise detour

ts that a simpt«a pc»ie. on the contour
s counted as one-half what it would be if it were within contour

For example m leb us suppose that f(2) with a simple pole at 2z = 7

is integrated over entire real axis
assuming | f(z)| — 0 for|z| — 00 that relevant integrals are finite

(faster than 1/‘2" Y

Contour is closed with infinite semicircle in upper half-plane
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o / f(x)dx + / infinite semicircle
To+0 &

2 2m'z enclosed residues (1.4.183)

Integrals along Z-axis may be combined
and semicircle radius permi&&ed ko approat:k zero

We therefore define Cauchy principal value m P.V. /

lim { /_ Z_é F ()i / :; f(:v)dm} Py /_ O; )i
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Exampi& 1.4-7.

w .
Evaluate / der ™ O is real and Posi&iva (1.4.188)
= B

Using sinz = (e — e "%)/2i we rewrite (1.4.155.) in complex plane

o0 . o0 12 o0 —1z

T SInx 1 ze 1 ze

/ 5 5 Gl o= 2—2 22—2 dz — — A Y dz (1.4.156.)
_w T

L5 ot e g7 1C

O oviakiibd, .-

To compute first term n (1.4.186) To compute second term in (1.4.186)
complete contour with infinite we complete contour with infinite
semicircle in upper half-plane semicircle in lower half-plane

Monday, September 19, 16




By Jordan's lemma
neither semicircle contributes anything to integral

We find polesat z =0 and z=—0
for z =0 residue 7 /9

{m 2z = —0 residue e_w/Q

detouring around poles we find thot residue theorem yields

1 o0 12 1 —10 1 10
—P.V./ i de—m—e —|—7Ti—€—

21 22— 0 20000 2 2

ey (O
recalling contour for second integral is clockwise

1 e s e [l
0 Pl o e R
2 / 72— o2 D S S,

. OC)

adding
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TOBE
FNNTINNED. ...
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Theorem 2.3.7. [Taylor's Theorem]
Let f be analytic within a domain D and 20 be a FOEM& )

Then | has a series represev\&a&ou

R
i Z / k(!zo) () D 2 7s )
1)

valid for the largest circle U with center ot 20 and radius R
that Lies eh&irdj within )

Proof.
Let 2 be a fixed point within circle (
and let ( denote the integration variable

Circle (' is deseribed b-j

(=2 =R m
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Use Cauchy integral formula to obtain value of [ at 2

b it
)‘%%c—zdc

= f(C)
z—m = Zo e d¢ (2.3.76.)

1
T 2 C—ZO 1 —(z—20)/(C — 20)
We need the following algebraic identity

dg

1 S 2 n—1

which follows easily from

I+ ¢ g’ TS
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By replacing ¢ bfj (2 —20)/(C — 20) in (2.3.77) we have

(-£2)
(=20

+
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Utilizing Cauchy's integral formula for derivatives

we cal wrikte (2.3.50.) as

f”(zO)

5 (oo

(z — 20) +

(Z 0 Zo)n—l & ,On(z) (2.3.‘8’1.)

d¢ (2.3.%2.)

271

Now m we just need to show that fern o2y — 0
T =rEed

Since [ is &M&i:jﬁit‘i‘ D w ’f(z)l has a maximum value V[ on (
In addition m since z is inside (' we have |2 — 2ol < R

§ — 2| = | — 2p = (2800 )| = |0 = en SSaEseh |i= I d

where d = |z — 29| = distance from z ko 20 (2.3.%3.)
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i L-—-Lmequ&ti&j then gives

e o) L)
211 %c (=i (Caizn)”

d(‘
< Tt g
Nar(R_ZBR i R

ise A< PREGHS R S (0> S s o0
e (w/e f):c:vtr\ctu,d.e. that |p,(2)] 20 as 1 — o©

d" M B
R (R.3.%4.)

It follows that infinite series

f'(20)
1!

f"(#0)

ol o 20)2 T (.3.55)

f(20) + (Z = o) oie

converges to & (Z)
In other words result in (2.3.75.)
is valid for any point 2 interior to C
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