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Complex Analysis III

 1.1 Complex Algebra ✔
1.2 Functions of a Complex Variable ✔
1.3 Cauchy’s Theorem and its Applications ✔ 
1.4 Isolated Singularities and Residues
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Isolated Singularities and Residues
Definition 1.4.1.

Given a function ☛ a zero of f f is a point z0 such that f(z0) = 0

The zero set is then Zf{z 2 C : f(z) = 0}

 there is some similarity between Z of a polynomial

Any polynomial of degree n has at most n -zeros 

we can construct a ball around a zero where no other zero exists

that is zeros are isolated

An analytic function can have infinitely many zeros 

e.g. but they are still isolated

and that of an analytic function

f(z) = sin�z
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f(z) = 08z 2 D

 Theorem 1.4.1
 Suppose that is analytic onf &D = {z 2 C : |z � z0| < r} f(z0) = 0
Then either (i)

 (ii) 9✏ > 0 such that 8z 2 B✏(z0) {z0}, f(z) 6= 0but
Consequently ☛ if                such that: 

for infinitely many zn ! z0
f(z) = 08z 2 Dthen ☛

Proof.

f(z) =
1X

n=1

an(z � z0)
n, z 2 DLet

If then ☛ (i) holds

If 9n such that an 6= 0 ☛ get smallest n (say   ) n0 such that an 6= 0

Then f(z) =
1X

n=n0

an(z � z0)
n

n f(zn) = 08nzn 6= z0(i)  (ii)  (iii)

an = 0 8n

f(z) = (z � z0)
n0(an0 + an0+1(z � z0) + an0+2(z � z0)

2 + · · · = (z � z0)
n0g(z))

g(z) 6= 08z 2 B✏(z0) ) f(z) 6= 08z 2 B✏(z0), but {z0}
As
where is analytic ong D and g(z0) = an0 6= 0

g is continuos 9✏ > 0 such that

9 {zn} ⇢ D
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Theorem 1.4.2. [Laurent's theorem]
Let f : D ! C be analytic on annulus 

can be expressed byThen f(z)

f(z) =
1X

j=0

aj(z � z0)
j +

1X

j=1

bj
1

(z � z0)j

AR
ron

(1.4.92)

For any choice of simple closed contour C ⇢ AR
r (z0)

the coefficients

aj =
1

2⇡i

I

C

f(⇣)

(⇣ � z0)j+1
d⇣, for j � 0

bj =
1

2⇡i

I

C

f(⇣)

(⇣ � z0)�j+1
d⇣ for j � 1

aj and bj are given by

(1.4.93)

(1.4.94)

AR
r = {z 2 C : r < |z � z0| < R} ⇢ D (0 < r < R < 1)

☛
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C3
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z

Figure 1.13: The situation in the proof of Laurent’s theorem.

As indicated in Fig. 1.13, choose a third circle C3, centered at z and
having radius R3, with R3 small enough that C3 is contained in AR

r (0) and
does not intersect C1 or C2. Then,

1

2⇥i

�

C1

f(�)

� � z
d� =

1

2⇥i

�

C3

f(�)

� � z
d� +

1

2⇥i

�

C2

f(�)

� � z
d�

= f(z) +
1

2⇥i

�

C2

f(�)

� � z
d� , (1.4.95)

where we have used Cauchy’s formula to obatin the last line. Solving for
f(z) gives

f(z) =
1

2⇥i

�

C1

f(�)

� � z
d� � 1

2⇥i

⇥

C2

f(�)

� � z
d�

=
1

2⇥i

�

C1

f(�)

� � z
d� +

1

2⇥i

⇥

C2

f(�)

z � �
d� (1.4.96)

We will show that the first integral on the right-hand side of (1.4.96) leads to
the analytic part of the Laurent series expansion for f(z), while the second

33

☛
choose a third circle

centered at and having radius

 with small enough that is contained

and does not intersect

C3

z R3

C3R3

AR
r (0) C1 C2

1

2⇡i

I

C1

f(⇣)

⇣ � z
d⇣ =

1

2⇡i

I

C3

f(⇣)

⇣ � z
d⇣ +

1

2⇡i

I

C2

f(⇣)

⇣ � z
d⇣

= f(z) +
1

2⇡i

I

C2

f(⇣)

⇣ � z
d⇣

where we have used Cauchy's formula to obtain last line

then

or

(1.4.95)

in

Without loss of generality we consider          and fix
Choose circle 

with radii

Proof.
z0 = 0 z 2 AR

r (0)

R1

C1 and C2 in AR
r (0)such that both are centered at 0

and R2 satisfying r < R2 < |z| < R1 < R
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Solving for givesf(z)

f(z) =
1

2⇡i

I

C1

f(⇣)

⇣ � z
d⇣ � 1

2⇡i

Z

C2

f(⇣)

⇣ � z
d⇣

=
1

2⇡i

I

C1

f(⇣)

⇣ � z
d⇣ +

1

2⇡i

Z

C2

f(⇣)

z � ⇣
d⇣ (1.4.96)

We will show that first integral on right-hand side of (1.4.96) 

leads to analytic part of Laurent series expansion for      

while second integral on right-hand side leads to singular part

f(z)

Analysis of first integral proceeds as in proof of Taylor's theorem

1

2⇡i

I

C1

f(⇣)

⇣ � z
d⇣ =

NX

j=0

zj
1

2⇡i

I

C1

f(⇣)

⇣j+1
d⇣ +

1

2⇡i

I

C1

✓
z

⇣

◆N+1 f(⇣)

⇣ � z
d⇣
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In this case however we can no longer expect that  

1

2⇡i

I

c1

f(⇣)

⇣j+1
d⇣ =

f (j)(0)

j!

because   is not necessarily differentiable insidef C1

Therefore ☛ we define aj by

aj ⌘
1

2⇡i

I

c1

f(⇣)

⇣j+1
d⇣

for whatever value this integral takes
This yields

1

2⇡i

I

C1

f(⇣)

⇣ � z
d⇣ =

NX

j=0

aj z
j +

1

2⇡i

I

C1

✓
z

⇣

◆N+1 f(⇣)

⇣ � z
d⇣

and letting as in proof of Taylor's theorem N ! 1

1

2⇡i

I

C1

f(⇣)

⇣ � z
d⇣ =

NX

j=0

aj z
j

gives the analytic part ☛

(1.4.97)

(1.4.98)

(1.4.99)

(1.4.100)
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(1.4.101)

To obtain singular part we apply a similar technique

Consider that for ⇣ 2 C2

f(⇣)

z � ⇣
=

f(⇣)

z

✓
1

1� ⇣/z

◆

= f(⇣)

"
1

z
+

⇣

z2
+ · · ·+ ⇣N

zN+1
+

✓
⇣

z

◆N+1 1

1� ⇣/z

#

=
f(⇣)

z

"
1 +

⇣

z
+ · · ·+

✓
⇣

z

◆N

+

✓
⇣

z

◆N+1 1

z � ⇣

#

=
N+1X

j=1

⇣j�1

zj
f(⇣) +

✓
⇣

z

◆N+1 f(⇣)

z � ⇣

So that

1

2⇡i

I

C2

f(⇣)

z � ⇣
d⇣ =

N+1X

j=1

1

zj

✓
1

2⇡i

I

C2

⇣j�1f(⇣)d⇣

◆
+

1

2⇡i

I

C2

✓
⇣

z

◆N+1 f(⇣)

z � ⇣
d⇣
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In this case ☛ define 

bj ⌘
1

2⇡i

Z

C2

⇣j�1f(⇣)d⇣

and take limit as to obtainN ! 1

1

2⇡i

I

C2

f(⇣

z � ⇣
d⇣ =

1X

j=1

bj
zj

These two series are combined into one series of form

f(z) =
1X

j=�1
cj(z � z0)

j

cj =
1

2⇡i

Z

C

f(⇣)

(⇣ � z0)j+1
d⇣, for n 2 Z

with

(1.4.102)

(1.4.103)

(1.4.104)

(1.4.105)

)

10Monday, September 19, 16



f(z) = z2 sin
1

z2
in the domain 0 < |z| < 1

(1.4.106.)

Example 1.4.1.

To find Laurent series that represents the function

sin w =
1X

n=0

(�1)n

(2n+ 1)!
w2n+1

Note that

(1.4.107.)

(1.4.108.)

for

Substituting z�2 for

|w| < 1

 it follows thatw

z2 sin
1

z2
= z2

1X

n=0

(�1)n

(2n+ 1)!
z�4n�2 =

1X

n=0

(�1)n

(2n+ 1)!

1

z4n

for 0 < |z| < 1
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Definition 1.4.2
A point is called an isolated singular point of a function z0

f

f

if  fails to be analytic at z0 but is analytic on B✏ {z0}but
(for some       )✏ > 0

For such a z09  a unique Laurent expansion of   such thatf

f(z) =
1X

n=�1
cn(z � z0)

n

Point    is called a pole of orderz0 m c�m 6= 0if cn = 08n < �m&

m = 1 z0If then is called a simple pole

(1.4.109)

Theorem 1.4.3.
is a pole of order ofz0 m f , 9h such that 

f(z) =
h(z)

(z � z0)m

with h analytic at and z0 h(z0) 6= 0

(1.4.110)
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(1.4.111)

Proof.
If z0 is a pole of orderm ffor f☛ using Laurent expansion of 
we get

f(z) =
c�m

(z � z0)m
+

c�m+1

(z � z0)m�1
+ · · ·+ c0 + c1(z � z0) + . . .

=
1

(z � z0)m
[c�m + c�m+1(z � z0) + . . . ]

=
h(z)

(z � z0)m

and h z0is analytic at

a convergent Taylor series atbecause it has z0

Definition 1.4.3.
The complex number c�1

 which is coefficient of (z � z0)
�1

in Laurent expansion of 

is called residue of 

f

z0at and is denoted byf

) h(z0) = cm 6= 0

Resf(z)|z=z0
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                     which coincides with    on      but  

U ⇢ C
z0 2 U U

f : U {z0} ! C

 Definition:  If              is an open subset of the complex plane

  is point of                

is an analytic function

 then       is called a removable singularity forz0 f

if there exists an analytic function  g : U ! C

We say     is analytically extendable over      if such a     exists

{z0}U

Uf g

f

and             but   

14Monday, September 19, 16



Theorem 1.4.4.

has a simple pole atIf f z = z0  ☛ then

Resf(z)|z=z0
= lim

z!z0
(z � z0) f(z)

is a simple poleSince

f
z = z0

Proof.

has form about that point

f(z) =
c�1

z � z0
+ c0 + c1(z � z0) + c2(z � z0)

2 + . . .

By multiplying both sides by z � z0

and then taking limit as z ! z0 we obtain

lim
z!z0

f(z) = lim
z!z0

⇥
c�1 + c0(z � z0) + c1(z � z0)

2 + . . .
⇤
= c�1 = Resf(z)|z=z0

(1.4.112)

(1.4.113)

Laurent expansion of 

(z � z0)⤶
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Theorem 1.4.5.
If   has a pole of orderf n at z = z0 then

Resf(z)|z=z0
=

1

(n� 1)!
lim
z!z0

dn�1

dzn�1
(z � z0)

n f(z)
Proof.
Since is assumed to have a pole of order
its Laurent expansion for

f
must have form

f(z) =
c�n

(z � z0)n
+ · · ·+ c�2

(z � z0)2
+

c�1

z � z0
+ c0 + c1(z � z0) + . . .

We multiply by (z � z0)
n to obtain

(z � z0)
nf(z) = c�n + · · ·+ c�2(z � z0)

n�2 + c�1(z � z0)
n�1

+ c0(z � z0)
n + c1(z � z0)

n+1 + . . .

(1.4.114)

(1.4.115)

(1.4.116)

n

and then differentiate        timesn� 1
dn�1

dzn�1
(z � z0)

nf(z) = (n� 1)!c�1 + n!c0(z � z0) + . . .

lim
z!z0

dn�1

dzn�1
(z � z0)

nf(z) = (n� 1)!c�1

Solving for gives (1.4.114)c�1

z ! z0if

(1.4.117)

☛ (1.4.118)

0 < |z � z0| < R
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Example 1.4.2.

The function
(1.4.119.)f(z) =

1

(z � 1)2(z � 3)

has a simple pole at and a pole of order 2 atz = 3 z = 1

Resf(z)|z=3 = lim
z!3

(z � 3)f(z) = lim
z!3

1

(z � 1)2
=

1

4

Therefore

 at pole of order 2 we have

Resf(z)|z=1 =
1

1!
lim
z!1

d

dz
(z � 1)2f(z)

= lim
z!1

d

dz

1

z � 3

= lim
z!1

� 1

(z � 3)2
= �1

4

(1.4.120.)

(1.4.121.)
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Theorem 1.4.6. [Cuachy's residue theorem]
Let be a simply connected domain

lying entirely within
D
C a simple closed contour D

If a function is analytic on and within 

except at a finite number of singular points z1, z2, ..., zn within

Cf

C

then ☛
I

C
f(z)dz = 2⇡i

nX

k=1

Res f(z)|z=zk

Proof.

C1, C2, . . . , Cn are circles
z1, z2, . . . , zn
Ck

so that
has a radius small enough rk

C1, C2, . . . , Cn

to simple closed curve
are mutually disjoint

C

(1.4.122)

and

and are interior
I

C
f(z)dz =

nX

k=1

I

Ck

f(z)dz = 2⇡i
nX

k=1

Res f(z)|z=zk

Theorem 1.4.6. [Cuachy’s residue theorem] Let D be a simply
connected domain and C a simple closed contour lying entirely within D. If
a function f is analytic on and within C, except at a finite number of singular
points z1, z2, ..., zn within C, then

⇤

C

f(z)dz = 2�i
n⌅

k=1

Res f(z)|z=zk
. (1.4.122)

Proof Suppose C1, C2, . . . , Cn are circles centered at z1, z2, . . . , zn,
respectively. Suppose further that each circle Ck has a radius rk small enough
so that C1, C2, . . . , Cn are mutually disjoint and are interior to the simple
closed curve C; see Fig. 1.14. Hence

⇤

C

f(z)dz =
n⌅

k=1

⇤

Ck

f(z)dz = 2�i
n⌅

k=1

Res f(z)|z=zk
. (1.4.123)

�����

z1

C1

z2

C2

z3

C3
zn�1

Cn�1

zn

Cn

D

C

x

y

Figure 1.14: n singular points within C.

Example 1.4.3. Evaluate
⇤

C

1

(z � 1)2(z � 3)
dz , (1.4.124)

where(i) the contour C is the rectangle defined by x = 0, x = 4, y = �1,
y = 1,and (ii) the contour C is the circle |z| = 2. Since in C(i) both poles
z = 1 and z = 3 lie within the square, we have

⇤

C(i)

1

(z � 1)2(z � 3)
dz = 2�i[Resf(z)|z=1 + Resf(z)|z=3]

= 2�i

�
�1

4
+

1

4

⇥
= 0 . (1.4.125)

38

centered at
each circle

then ☛
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Example 1.4.3.

Evaluate I

C

1

(z � 1)2(z � 3)
dz (1.4.124.)

where (i) contourC is rectangle defined by 
x = 0, x = 4, y = �1, y = 1

and (ii) contour C |z| = 2is circle

Since in both poles andC(i) z = 1 z = 3 lie within square, we have
I

C(i)

1

(z � 1)2(z � 3)
dz = 2⇡i[Resf(z)|z=1 +Resf(z)|z=3]

= 2⇡i


�1

4
+

1

4

�
= 0

For  only pole lies within circle

(1.4.125.)

I

C(ii)

1

(z � 1)2(z � 3)
dz = �⇡

2
i

C(ii) z = 1 |z| = 2

(1.4.126.)
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Corollary 1.4.1.
Residue theory can be used to evaluate real integrals of forms Z 2⇡

0
f(cos ✓, sin ✓)d✓

Proof.
Basic idea here is to convert an integral of form (1.4.133.) into  

complex integral where contour is unit circle centered at originC
This contour can be parameterized by 

(1.4.133)

z = cos ✓ + i sin ✓ = ei✓, 0  ✓  2⇡

dz = iei✓d✓, cos ✓ =

ei✓ + e�i✓

2

, sin ✓ =

ei✓ � e�i✓

2i
(1.4.134)

we replace in turn d✓, cos ✓ sin ✓and by

d✓ =

dz

iz
, cos ✓ =

1

2

(z + z�1
), sin ✓ =

1

2i
(z � z�1

)

integral (2.4.133) then becomes
(1.4.135)

Z

C
f

✓
1

2
(z + z�1),

1

2i
(z � z�1)

◆
dz

iz
C |z| = 1where is

Using

(1.4.136)
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Lemma 1.4.1. [Jordan's lemma]
Consider definite integrals of form

I =

Z 1

�1
f(x) eiax dx (1.4.144)

with real and positivea
We assume two following conditions are satisfied:

is analytic in upper half-plane(i)f(z) # of poles

0  arg z  ⇡(ii) for lim
|z|!1

f(z) = 0 (1.4.145)

       on the contour ☛

Now, integrating by inspection, we obtain

|IR| ⇥ 2�R
1� e�aR

2aR/⇥
. (1.4.149)

Finally,

lim
R⇥⇤

|IR| ⇥ ⇥

a
� . (1.4.150)

From condition (1.4.145), �⇤ 0 as R⇤⌅ and

lim
R⇥⇤

|IR| = 0 . (1.4.151)

Therefore, using the contour shown in Fig. 1.15, we have
⇥ ⇤

�⇤
f(x)eiaxdx+ lim

R⇥⇤
IR = 2⇥i

�
residues (upper half�plane) . (1.4.152)

Note that a corresponding result is obtained when f is analytic in the lower
half-plane and we use a contour in the lower half-plane. In that case, the
contour will be tracked clockwise and the residues will enter with a minus
sign.

7.2 Calculus of Residues 381

y

z

x
−R R

R → ∞

Figure 7.4

Path of Integration
is a Half Circle in
the Upper Half
Plane

With these conditions, we may take as a contour of integration the real axis
and a semicircle in the upper half-plane as shown in Fig. 7.4. We let the radius
R of the semicircle become infinitely large. Then

∮

f (z) dz = lim
R→∞

∫ R

−R
f (x) dx + lim

R→∞

∫ π

0
f (Reiθ )iReiθdθ

= 2πi
∑

residues (upper half-plane) (7.16)

From the second condition, the second integral (over the semicircle) vanishes
and

∫ ∞

−∞
f (x) dx = 2πi

∑

residues (upper half-plane). (7.17)

Note that a corresponding result is obtained when f is analytic in the lower
half-plane and we use a contour in the lower half-plane. In that case, the contour
will be tracked clockwise and the residues will enter with a minus sign.

EXAMPLE 7.2.2 Inverse Polynomial Evaluate

I =
∫ ∞

−∞

dx
1 + x2

. (7.18)

From Eq. (7.16),
∫ ∞

−∞

dx
1 + x2

= 2πi
∑

residues (upper half-plane).

Here and in every other similar problem, we have the question: Where are the
poles? Rewriting the integrand as

1
z2 + 1

= 1
z + i

· 1
z − i

, (7.19)

we see that there are simple poles (order 1) at z = i and z = −i.

Figure 1.15: Path of integration is a half circle in the upper half plane.

Corollary 1.4.2. [Cauchy principal value] Occasionally, an isolated
first-order pole will be directly on the contour of integration. In this case,

42

 exponential factor goes rapidly to zero in upper half-plane

except for finite

IR =

Z ⇡

0

f(Rei✓)eiaR cos ✓�aR sin ✓iRei✓ d✓

☛

because the integral   
is given by integration over real axis

Note that        
integration over arc gives no contribution

I

I =

I
f(z) dzThen

R ! 1

(1.4.146)
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Let be so large thatR |f(z)| = |f(Rei✓)| < ✏
Then

|IR|  ✏R

Z ⇡

0
e�aR sin ✓d✓ = 2✏R

Z ⇡/2

0
e�aR sin ✓ d✓

[0,⇡/2], 2✓/⇡  sin ✓In range

7.2 Calculus of Residues 383

y

(a)

(b)
1

2
p q

Figure 7.5

(a) y = (2/⇥)�;
(b) y = sin �

Let R be so large that | f (z)| = | f (Reiθ )| < ε. Then

|IR| ≤ εR
∫ π

0
e−aR sin θ dθ = 2εR

∫ π/2

0
e−aR sin θ dθ . (7.26)

In the range [0, π/2],

2
π

θ ≤ sin θ .

Therefore (Fig. 7.5),

|IR| ≤ 2εR
∫ π/2

0
e−aR2θ/πdθ . (7.27)

Now, integrating by inspection, we obtain

|IR| ≤ 2εR
1 − e−aR

aR2/π
.

Finally,

lim
R→∞

|IR| ≤ π

a
ε. (7.28)

From condition (7.24), ε → 0 as R → ∞ and

lim
R→∞

|IR| = 0. (7.29)

This useful result is sometimes called Jordan’s lemma. With it, we are pre-
pared to deal with Fourier integrals of the form shown in Eq. (7.23).

Using the contour shown in Fig. 7.4, we have
∫ ∞

−∞
f (x)eiaxdx + lim

R→∞
IR = 2πi

∑

residues (upper half-plane).

Figure 1.16: Behavior of (a)y = 2⇥/⇤ and (b)y = sin ⇥.
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x0

Figure 7.6

Bypassing Singular
Points

Since the integral over the upper semicircle IR vanishes as R → ∞ (Jordan’s
lemma),

∫ ∞

−∞
f (x)eiaxdx = 2πi

∑

residues (upper half-plane) (a > 0). (7.30)

This result actually holds more generally for complex a with ℜ(a) > 0. ■

Cauchy Principal Value

Occasionally, an isolated first-order pole will be directly on the contour of
integration. In this case, we may deform the contour to include or exclude the
residue as desired by including a semicircular detour of infinitesimal radius.
This is shown in Fig. 7.6. The integration over the semicircle then gives, with
z − x0 = δeiϕ , dz = iδeiϕdϕ,

∫

dz
z − x0

= i
∫ 2π

π

dϕ = iπ, i.e., πia−1 if counterclockwise,

∫

dz
z − x0

= i
∫ 0

π

dϕ = −iπ, i.e., − πia−1 if clockwise.

This contribution, + or −, appears on the left-hand side of Eq. (7.10). If our
detour were clockwise, the residue would not be enclosed and there would
be no corresponding term on the right-hand side of Eq. (7.10). However, if our
detour were counterclockwise, this residue would be enclosed by the contour
C and a term 2πia−1 would appear on the right-hand side of Eq. (7.10). The
net result for either a clockwise or counterclockwise detour is that a simple
pole on the contour is counted as one-half what it would be if it were within
the contour.

For instance, let us suppose that f (z) with a simple pole at z = x0 is inte-
grated over the entire real axis assuming | f (z)| → 0 for |z| → ∞ fast enough
(faster than 1/|z|) that the integrals in question are finite. The contour is closed
with an infinite semicircle in the upper half-plane (Fig. 7.7). Then

∮

f (z) dz =
∫ x0−δ

−∞
f (x) dx +

∫

Cx0

f (z) dz

+
∫ ∞

x0+δ

f (x) dx +
∫

C
infinite semicircle

= 2πi
∑

enclosed residues. (7.31)

Figure 1.17: Bypassing singular points.

we may deform the contour to include or exclude the residue as desired by
including a semicircular detour of infinitesimal radius. This is shown in
Fig. 1.17. The integration over the semicircle then gives, with z � x0 = �ei⇥,
dz = i�ei⇥d⌅,

�
dz

z � x0
= i

� 2�

�

d⌅ = i⇤, if conunterclockwise

�
dz

z � x0
= i

� 2�

�

d⌅ = �i⇤, if clockwise .

This contribution, + or �, should be added to the left-hand side of (1.4.122).
If our detour were clockwise, the residue would not be enclosed and there
would be no corresponding term on the right-hand side of (1.4.122). However,
if our detour were counterclockwise, this residue would be enclosed by the
contour C and a term 2⇤i Res f(z)|z=x0 would appear on the right-hand side
of (1.4.122). The net result for either a clockwise or counterclockwise detour
is that a simple pole on the contour is counted as one-half what it would be
if it were within the contour.
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therefore
☛

(a)y = 2✓/⇡ & (b)y = sin ✓

integration leads to

|IR|  2✏R
1� e�aR

2aR/⇡

Finally ☛ lim
R!1

|IR| 
⇡

a
✏

Z 1

�1
f(x)eiaxdx+ lim

R!1
I

R

= 2⇡i
X

residues (upper half�plane)

From  condition (1.4.145)         as✏ ! 0 R ! 1 and lim
R!1

|IR| = 0

therefore

|IR|  2✏R

Z ⇡/2

0
e�aR2✓/⇡d✓
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Corollary 1.4.2. [Cauchy principal value]

If first-order pole is directly on  contour of integration
 we may deform contour to include or exclude residue as desired 

infinitesimal radius

7.2 Calculus of Residues 383

y

(a)

(b)
1

2
p q

Figure 7.5

(a) y = (2/⇥)�;
(b) y = sin �

Let R be so large that | f (z)| = | f (Reiθ )| < ε. Then

|IR| ≤ εR
∫ π

0
e−aR sin θ dθ = 2εR

∫ π/2

0
e−aR sin θ dθ . (7.26)

In the range [0, π/2],

2
π

θ ≤ sin θ .

Therefore (Fig. 7.5),

|IR| ≤ 2εR
∫ π/2

0
e−aR2θ/πdθ . (7.27)

Now, integrating by inspection, we obtain

|IR| ≤ 2εR
1 − e−aR

aR2/π
.

Finally,

lim
R→∞

|IR| ≤ π

a
ε. (7.28)

From condition (7.24), ε → 0 as R → ∞ and

lim
R→∞

|IR| = 0. (7.29)

This useful result is sometimes called Jordan’s lemma. With it, we are pre-
pared to deal with Fourier integrals of the form shown in Eq. (7.23).

Using the contour shown in Fig. 7.4, we have
∫ ∞

−∞
f (x)eiaxdx + lim

R→∞
IR = 2πi

∑

residues (upper half-plane).

Figure 1.16: Behavior of (a)y = 2⇥/⇤ and (b)y = sin ⇥.
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Bypassing Singular
Points

Since the integral over the upper semicircle IR vanishes as R → ∞ (Jordan’s
lemma),

∫ ∞

−∞
f (x)eiaxdx = 2πi

∑

residues (upper half-plane) (a > 0). (7.30)

This result actually holds more generally for complex a with ℜ(a) > 0. ■

Cauchy Principal Value

Occasionally, an isolated first-order pole will be directly on the contour of
integration. In this case, we may deform the contour to include or exclude the
residue as desired by including a semicircular detour of infinitesimal radius.
This is shown in Fig. 7.6. The integration over the semicircle then gives, with
z − x0 = δeiϕ , dz = iδeiϕdϕ,

∫

dz
z − x0

= i
∫ 2π

π

dϕ = iπ, i.e., πia−1 if counterclockwise,

∫

dz
z − x0

= i
∫ 0

π

dϕ = −iπ, i.e., − πia−1 if clockwise.

This contribution, + or −, appears on the left-hand side of Eq. (7.10). If our
detour were clockwise, the residue would not be enclosed and there would
be no corresponding term on the right-hand side of Eq. (7.10). However, if our
detour were counterclockwise, this residue would be enclosed by the contour
C and a term 2πia−1 would appear on the right-hand side of Eq. (7.10). The
net result for either a clockwise or counterclockwise detour is that a simple
pole on the contour is counted as one-half what it would be if it were within
the contour.

For instance, let us suppose that f (z) with a simple pole at z = x0 is inte-
grated over the entire real axis assuming | f (z)| → 0 for |z| → ∞ fast enough
(faster than 1/|z|) that the integrals in question are finite. The contour is closed
with an infinite semicircle in the upper half-plane (Fig. 7.7). Then

∮

f (z) dz =
∫ x0−δ

−∞
f (x) dx +

∫

Cx0

f (z) dz

+
∫ ∞

x0+δ

f (x) dx +
∫

C
infinite semicircle

= 2πi
∑

enclosed residues. (7.31)

Figure 1.17: Bypassing singular points.

we may deform the contour to include or exclude the residue as desired by
including a semicircular detour of infinitesimal radius. This is shown in
Fig. 1.17. The integration over the semicircle then gives, with z � x0 = �ei⇥,
dz = i�ei⇥d⌅,

�
dz

z � x0
= i

� 2�

�

d⌅ = i⇤, if conunterclockwise

�
dz

z � x0
= i

� 2�

�

d⌅ = �i⇤, if clockwise .

This contribution, + or �, should be added to the left-hand side of (1.4.122).
If our detour were clockwise, the residue would not be enclosed and there
would be no corresponding term on the right-hand side of (1.4.122). However,
if our detour were counterclockwise, this residue would be enclosed by the
contour C and a term 2⇤i Res f(z)|z=x0 would appear on the right-hand side
of (1.4.122). The net result for either a clockwise or counterclockwise detour
is that a simple pole on the contour is counted as one-half what it would be
if it were within the contour.
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integration over semicircle then gives

z � x0 = �e

i�
, dz = i�e

i�
d�

Z
dz

z � x0
= i

Z 2⇡

⇡
d� = i⇡, if conunterclockwise

Z
dz

z � x0
= i

Z 2⇡

⇡
d� = �i⇡, if clockwise

by including a semicircular detour of 

taking ☛
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This contribution (+ or -) should be added to LHS of (1.4.122)

If detour is clockwise ☛ residue would not be enclosed         
and there would be no corresponding term on RHS  of (1.4.122)

If detour is counterclockwise ☛ residue 

and a term 

C

2⇡iRes f(z)|
z=x0

would be enclosed by

would appear on RHS of (1.4.122)

would be if it were within contour
is that a simple pole on the contour 
Net result for either a clockwise or counterclockwise detour

For example ☛ let us suppose that with a simple pole atf(z)
z = x0

|f(z)| ! 0
 is integrated over entire real axis

|z| ! 1for

1/|z| )
are finite

what it 

assuming

(faster than 

that relevant integrals

Contour is closed with infinite semicircle in upper half-plane ☛

is counted as one-half 
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x0

y

z

x

Figure 7.7

Closing the Contour
with an Infinite
Radius Semicircle

If the small semicircle Cx0 includes x0 (by going below the x-axis; counter-
clockwise), x0 is enclosed, and its contribution appears twice—as πia−1 in
∫

Cx0
and as 2πia−1 in the term 2πi

∑

enclosed residues—for a net contribution
of πia−1 on the right-hand side of Eq. (7.31). If the upper small semicircle is se-
lected, x0 is excluded. The only contribution is from the clockwise integration
over Cx0 , which yields −πia−1. Moving this to the extreme right of Eq. (7.11),
we have +πia−1, as before.

The integrals along the x-axis may be combined and the semicircle radius
permitted to approach zero. We therefore define

lim
δ→0

{
∫ x0−δ

−∞
f (x) dx +

∫ ∞

x0+δ

f (x) dx
}

= P
∫ ∞

−∞
f (x) dx. (7.32)

P indicates the Cauchy principal value and represents the preceding limit-
ing process. Note that the Cauchy principal value is a balancing or canceling
process; for even-order poles, P

∫ ∞
−∞ f (x) dx is not finite because there is no

cancellation. In the vicinity of our singularity at z = x0,

f (x) ≈ a−1

x − x0
. (7.33)

This is odd, relative to x0. The symmetric or even interval (relative to x0)
provides cancellation of the shaded areas (Fig. 7.8). The contribution of the
singularity is in the integration about the semicircle.

Sometimes, this same limiting technique is applied to the integration limits
±∞. If there is no singularity, we may define

P
∫ ∞

−∞
f (x) dx = lim

a→∞

∫ a

−a
f (x) dx. (7.34)

An alternate treatment moves the pole off the contour and then considers the
limiting behavior as it is brought back, in which the singular points are moved
off the contour in such a way that the integral is forced into the form desired to
satisfy the boundary conditions of the physical problem (for Green’s functions
this is often the case; see Examples 7.2.5 and 16.3.2). The principal value limit

Figure 1.18: Closing the contour with an infinite radius semicircle.

For example, let us suppose that f(z) with a simple pole at z = x0 is
integrated over the entire real axis assuming |f(z)| ⇥ 0 for |z| ⇥ ⇤ fast
enough (faster than 1/|z|) that the integrals in question are finite. The
contour is closed with an infinite semicircle in the upper half-plane, as in
Fig. 1.18. Then

�
f(z)dz =

⇧ x0��

�⇥
f(x)dx +

⇧

Cx0

f(z)dz

+

⇧ ⇥

x0+�

f(x)dx +

⇧

C

infinite semicircle

= 2�
⌅

enclosed residues . (1.4.153)

If the small semicircle Cx0 includes x0 (by going below the x-axis; counter-
clockwise), x0 is enclosed, and its contribution appears twice – namely, as
�i Res f(z)|z=x0 in

⇤
Cx0

and as 2�i Res f(z)|z=x0 in the term 2�i
⇥

enclosed

residues – for a net contribution of �i Res f(z)|z=x0 . If the upper small semi-
circle is selected, x0 is excluded. The only contribution is from the clockwise
integration over Cx0 , which yields ��i Res f(z)|z=x0 . Moving this to the
extreme right of (1.4.153), we have �i Res f(z)|z=x0 , as before.

The integrals along the x-axis may be combined and the semicircle radius

44

(1.4.153)

I
f(z)dz =

Z
x0��

�1
f(x)dx+

Z

C

x0

f(z)dz

+

Z 1

x0+�

f(x)dx+

Z

C

infinite semicircle

= 2⇡

X
enclosed residues

Integrals along   -axis may be combined
and semicircle radius permitted to approach zero

lim
�!0

(Z
x0��

�1
f(x)dx+

Z 1

x0+�

f(x)dx

)
= P.V.

Z 1

�1
f(x)dx

We therefore define  Cauchy principal value ☛ P.V.

Z

x

i
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Example 1.4.7.

Evaluate
Z 1

�1

x sinx

x

2 � �

2
dx

� is real and positive

Using 
Z 1

�1

x sinx

x

2 � �

2
dx =

1

2i

Z 1

�1

ze

iz

z

2 � �

2
dz � 1

2i

Z 1

�1

ze

�iz

z

2 � �

2
dz

permitted to approach zero. We therefore define

lim
�⇥0

�⌅ x0��

�⇤
f(x)dx +

⌅ ⇤

x0+�

f(x)dx

⇥
= =

⌅ ⇤

�⇤
f(x)dx , (1.4.154)

where =
⇤

indicates the Cauchy principal value and represents the preceding
limiting process.

Example 1.4.7. Evaluate
⌅ ⇤

�⇤

x sin x

x2 � �2
dx , (1.4.155)

where � is real and positive.
Using (1.2.26) we rewrite (1.4.155) in the complex plane
⌅ ⇤

�⇤

x sin x

x2 � �2
dx =

1

2i

⌅ ⇤

�⇤

zeiz

z2 � �2
dz � 1

2i

⌅ ⇤

�⇤

ze�iz

z2 � �2
dz (1.4.156)

To compute the first term in (1.4.156) we complete the contour by an infinite
semicircle in the upper half-plane as shown in Fig. 1.19. For the second
term, the exponential is negative and we complete the contour by an infinite
semicircle in the lower half-plane, as also shown in Fig. 1.19. By Jordan’s
lemma, neither semicircle contributes anything to the integral.
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I1

x
−s −s

I1

(a)

y

I2

x

(b)

s I2 s

Figure 7.10

Contours

Using

sin z = 1
2i

eiz − 1
2i

e−iz, (7.43)

we write Eq. (7.42) in the complex plane as

I(σ ) = I1 + I2, (7.44)

with

I1 = 1
2i

∫ ∞

−∞

zeiz

z2 − σ 2
dz,

I2 = − 1
2i

∫ ∞

−∞

ze−iz

z2 − σ 2
dz. (7.45)

Integral I1 is similar to Example 7.2.2 and, as in that case, we may complete the
contour by an infinite semicircle in the upper half-plane as shown in Fig. 7.10a.
For I2, the exponential is negative and we complete the contour by an infinite
semicircle in the lower half-plane, as shown in Fig. 7.10b. As in Example 7.2.2,
neither semicircle contributes anything to the integral–Jordan’s lemma.

There is still the problem of locating the poles and evaluating the residues.
We find poles at z = +σ and z = −σ on the contour of integration. The
residues are (Exercises 7.1.1 and 7.2.1)

z = σ z = −σ

I1
eiσ

2
e−iσ

2

I2
e−iσ

2
eiσ

2 .

Figure 1.19: Contours in example 1.3.10. The infinite semicircle in the upper

half-plane is displayed on the left and the infinite semicircle in the lower half-

plane is displayed on the right.

There is still the problem of locating the poles and evaluating the residues.
We find poles at z = � and z = �� on the contour of integration. It is easily

45

To compute first term in (1.4.156.) 
complete contour with infinite 
semicircle in upper half-plane
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⌅ ⇤
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f(x)dx

⇥
= =

⌅ ⇤

�⇤
f(x)dx , (1.4.154)

where =
⇤

indicates the Cauchy principal value and represents the preceding
limiting process.

Example 1.4.7. Evaluate
⌅ ⇤

�⇤

x sin x

x2 � �2
dx , (1.4.155)

where � is real and positive.
Using (1.2.26) we rewrite (1.4.155) in the complex plane
⌅ ⇤

�⇤

x sin x

x2 � �2
dx =

1

2i

⌅ ⇤

�⇤

zeiz

z2 � �2
dz � 1

2i

⌅ ⇤

�⇤

ze�iz

z2 � �2
dz (1.4.156)

To compute the first term in (1.4.156) we complete the contour by an infinite
semicircle in the upper half-plane as shown in Fig. 1.19. For the second
term, the exponential is negative and we complete the contour by an infinite
semicircle in the lower half-plane, as also shown in Fig. 1.19. By Jordan’s
lemma, neither semicircle contributes anything to the integral.
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Using

sin z = 1
2i

eiz − 1
2i

e−iz, (7.43)

we write Eq. (7.42) in the complex plane as

I(σ ) = I1 + I2, (7.44)

with

I1 = 1
2i

∫ ∞

−∞

zeiz

z2 − σ 2
dz,

I2 = − 1
2i

∫ ∞

−∞

ze−iz

z2 − σ 2
dz. (7.45)

Integral I1 is similar to Example 7.2.2 and, as in that case, we may complete the
contour by an infinite semicircle in the upper half-plane as shown in Fig. 7.10a.
For I2, the exponential is negative and we complete the contour by an infinite
semicircle in the lower half-plane, as shown in Fig. 7.10b. As in Example 7.2.2,
neither semicircle contributes anything to the integral–Jordan’s lemma.

There is still the problem of locating the poles and evaluating the residues.
We find poles at z = +σ and z = −σ on the contour of integration. The
residues are (Exercises 7.1.1 and 7.2.1)

z = σ z = −σ
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eiσ

2
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2
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eiσ
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Figure 1.19: Contours in example 1.3.10. The infinite semicircle in the upper

half-plane is displayed on the left and the infinite semicircle in the lower half-

plane is displayed on the right.

There is still the problem of locating the poles and evaluating the residues.
We find poles at z = � and z = �� on the contour of integration. It is easily

45

To compute second term in (1.4.156)     
we complete contour with infinite 
semicircle in lower half-plane

(1.4.155.)

(1.4.156.)

☛

we rewrite (1.4.155.) in complex planesin z = (eiz � e�iz)/2i
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to integral
By Jordan's lemma

We find poles at and

for

z = � z = ��

ei�/2
e�i�/2

z = �

z = ��

neither semicircle contributes anything

residue

for residue

recalling  contour for second integral is clockwise

1

2i
P.V.

Z 1

�1

zeiz

z2 � �2
dz � ⇡i

1

2i

e�i�

2
+ ⇡i

1

2i

ei�

2
= 2⇡i

1

2i

ei�

2

detouring around poles we find that residue theorem yields

� 1

2i
P.V.

Z 1

�1

ze�iz

z2 � �2
dz + ⇡i

1

2i

ei�

2
� ⇡i

1

2i

e�i�

2
= 2⇡i

1

2i

ei�

2

adding
P.V.

Z 1

�1

x sinx

x

2 � �

2
=

⇡

2

�
e

i�
+ e

�i�
�
= ⇡ cos�
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Theorem 2.3.7. [Taylor's Theorem]
f DD z0Let be analytic within a domain and be a point in 

Then has a series representation f

f(z) =
1X

k=0

f (k)(z0)

k!
(z � z0)

k

valid for the largest circle with center at and radius
that lies entirely within 

z0 RC

Proof.
Let be a fixed point within circle   z C

⇣ denote the integration variable

Circle is described by

Equation (1.3.74) shows that F (z), which by construction is single-valued,
has a derivative at all points within D and is therefore analytic in this re-
gion. Since F (z) is analytic, then so also must be its derivative, f(z), therby
proving Morera’s theorem.

Theorem 1.3.7. [Taylor’s Theorem] Let f be analytic within a do-
main D and z0 be a point in D. Then f has a series representation

f(z) =
�⇥

k=0

f (k)(z0)

k!
(z � z0)

k (1.3.75)

valid for the largest circle C with center at z0 and radius R that lies entirely
within D.

⇣

D

C

z

z0

R

Figure 1.12: Circular contour C used in proof of Taylor’s theorem.

Proof. Let z be a fixed point within the circle C and let � denote the
variable of integration. The circle C is then described by |� � z0| = R, as
shown in Fig. 1.12. To begin, we use the Cauchy integral formula to obtain
the value of f at z

f(z) =
1

2⇥i

�
f(�)

� � z
d�

=
1

2⇥i

�
f(�)

(� � �0)� (z � z0)
d�

=
1

2⇥i

�
f(�)

� � z0

1

1� (z � z0)/(� � z0)
d� . (1.3.76)

29

C

|⇣ � z0| = R ☛

(2.3.75.)

D

and let
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Use Cauchy integral formula to obtain value of   at 

We need the following algebraic identity

1

1� q
= 1 + q + q2 + · · ·+ qn�1 +

qn

1� q
which follows easily from 

1 + q + q2 + · · ·+ qn�1 =
1� qn

1� q

(2.3.76.)

(2.3.77.)

(2.3.78.)

f z

f(z) =
1

2⇡i

I
f(⇣)

⇣ � z
d⇣

=
1

2⇡i

I
f(⇣)

(⇣ � z0)� (z � z0)
d⇣

=
1

2⇡i

I
f(⇣)

⇣ � z0

1

1� (z � z0)/(⇣ � z0)
d⇣
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By replacing   by q (z � z0)/(⇣ � z0) in (2.3.77) we have

✓
1� z � z0

⇣ � z0

◆�1

= 1 +
z � z0
⇣ � z0

+

✓
z � z0
⇣ � z0

◆2

+ · · ·+
✓
z � z0
⇣ � z0

◆n�1

+
(z � z0)n

(⇣ � z)(⇣ � z0)n�1

and so (2.3.76.) becomes

(2.3.79.)

(2.3.80.)

f(z) =
1

2⇡i

I

C

f(⇣)

⇣ � z0
d⇣ +

z � z0
2⇡i

I

C

f(⇣)

(⇣ � z0)2
d⇣

+
(z � z0)2

2⇡i

I

C

f(⇣)

(⇣ � z0)3
d⇣ + · · ·+ (z � z0)n�1

2⇡i

I

C

f(⇣)

(⇣ � z0)n
d⇣

+
(z � z0)n

2⇡i

I

C

f(⇣)

(⇣ � z)(⇣ � z0)n
d⇣
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Utilizing Cauchy's integral formula for derivatives

we can write (2.3.80.) as

(2.3.81.)

where

(2.3.82.)⇢n(z) =
(z � z0)n

2⇡i

I

C

f(⇣)

(⇣ � z)(⇣ � z0)n
d⇣

f(z) = f(z0) +
f 0(z0)

1!
(z � z0) +

f 00(z0)

2!
(z � z0)

2 + . . .

+
f (n�1)(z0)

(n� 1)!
(z � z0)

n�1 + ⇢n(z)

Now  ☛ we just need to show that lim
n!1

|⇢n(z)| = 0

Since is analytic inf D ☛ |f(z)| has a maximum value M on C

In addition ☛ since z is inside C we have |z � z0| < R

|⇣ � z| = |⇣ � z0 � (z � z0)| � |⇣ � z0|� |z � z0| = R� d

d = |z � z0|where ☛ distance from    toz z0 (2.3.83.)
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(2.3.85.)

Because 
  we conclude that

asd < R, (d/R)n ! 0 n ! 1
|⇢n(z)| ! 0 n ! 1as

It follows that infinite series

f(z0) +
f 0(z0)

1!
(z � z0) +

f 00(z0)

2!
(z � z0)

2 + . . .

converges to f(z)

In other words result in (2.3.75.) 

z interior to Cis valid for any point  

-inequality then gives ML

⇢n(z) =

����
(z � z0)n

2⇡i

I

C

f(⇣)

(⇣ � z)(⇣ � z0)n
d⇣

����

 dn

2⇡

M

(R� d)Rn
2⇡R =

MR

R� d

✓
d

R

◆n

(2.3.84.)
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