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1.3 Cauchy’s Theorem and its Applications
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if every simple closed contour encloses points of    only
A domain    is called simply connected

Definition 1.3.3.

D

D

D

A domain    is called multiply connected

�
�

Simply connected domain multiply connected domain

if it is not simply connected

Cauchy's Theorem and its Applications
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Theorem 1.3.2. [Cauchy’s Theorem]

If a function

connected domain
and is a simple closed contour lying in D

D
C

I

C
f(z)dz = 0

f(z) = u(x, y) + iv(x, y)

is analytic on a simply

Proof.

with an extra hypothesis 
u and v are continuous

but later shown unnecessary by Goursat

this was originally imposed by Cauchy

 ☛ partial derivatives of 

then
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Stokes theorem relates the surface integral of the curl of a vector field  F 
over a surface Σ in Euclidean three-space 

ZZ

⌃

~r⇥ ~F · d~⌃ =

I

@⌃

~F · d~r

RECALL THAT...

to the line integral of the vector field over its boundary ∂Σ
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 Writing

(1.3.41.)

(1.3.42.)

C

I

C
f(z)dz =

I

C
(u+ iv)(dx+ idy)

=

I

C
(u dx� v dy) + i

I

C
(v dx+ u dy)

I

C

(u dx� vdy) = �
Z

A

(v
x

+ u

y

)dxdy

dz = dx+ i dy

note that final two integrals of (1.3.41.) are real

enclosed by

two line integrals are converted to surface integrals 

procedure that is justified because we have assumed
partial derivatives to be continuous within area

We prove theorem by direct application of Stokes’ theorem

In applying Stokes' theorem

and I

C

(v dx+ udy) =

Z

A

(u
x

� v

y

)dxdy (1.3.43.)
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A

Recalling that has been assumed analytic

surface integrals in (1.3.44.) are zero 

 makes their integrands vanish

surface integral over enclosed area
we can rewrite integration around loop (1.3.41.)

(1.3.44.)

Example 1.3.1.
I

C
zndz where is a circle of radius r > 0 around origin z = 0

in positive mathematical sense (counterclockwise)
In polar coordinates z = rei✓ and dz = irei✓d✓

f(z)

as value of

 we find that both
because application of Cauchy-Riemann conditions

C

For
(   an integer)

n 6= �1
n

Because is a period of 

(1.3.45.)

2⇡ ei(n+1)✓

I

C
zndz = irn+1

Z 2⇡

0
exp[(i(n+ 1)✓]d✓

= irn+1 ei(n+1)✓

i(n+ 1)

�2⇡

0

= 0

I

C

f(z) dz = �
Z

A

(v
x

+ u

y

) dx dy + i

Z

A

(u
x

� v

y

) dx dy
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For n = �1 I
dz

z
= i

Z 2⇡

0
d✓ = i2⇡

independent of   but nonzeror

(1.3.46.)

n

n � 0

zn

r

Cauchy's theorem does not apply for any negative integer n

z = 0is singular at

Theorem does not prescribe any particular values 
n

The fact that (1.3.45.) is satisfied for all integers   
is required by Cauchy's theorem

because for these    values     is analytic   
for all points within a circle of radius 

for integrals of negative 

because for these n zn☛

Remark 
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Cauchy's integral theorem demands
Proposition 1.3.1.

This restriction may be relaxed by creation of a barrier:

FC

R

R0
B

C0
1

C0
2

G A

E D

Conversion of                 
multiply connected region 
into simply connected region 

C

a simply connected region of analyticity

a narrow region we exclude from the region identified as analytic

Closed contour    in         
multiply connected region

Cauchy's integral theorem is not valid for contour    
but we can construct a contour     for which theorem holds

C
C 0
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New contour  never crosses barrier

into a simply connected region

ABDEFGA
R

is in fact continuous across barrier f(z)

(1.3.47.)

that converts

we use Cauchy's integral theorem and  (1.3.47.) 
 since contour is now within a simply connected region

to cancel contribution of segments along barrier

Note that    and    are only infinitesimally separatedA D

Renaming ABDA C 0
1 and EFGE as �C 0

2
we have

I

C0
1

f(z)dz =

I

C0
2

f(z)dz (1.3.49.)

C 0
1 and C 0

2 are both traversed counterclockwise ☛ positive direction

(1.3.48.)

I

C0
f(z)dz =

Z

ABD
f(z)dz +

Z

EFG
f(z)dz = 0

Z A

G
f(z) dz = �

Z E

D
f(z) dz
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Corollary 1.3.1

This result calls for some interpretation
We have shown that integral of an analytic function over a 
closed contour surrounding an island of non-analyticity 
can be subjected to any continuous deformation within region 
of analyticity without changing value of integral

The notion of continuous deformation means that             
the change in contour must be able to be carried out                   
via a series of small steps ☛ which precludes processes 
whereby we jump over a point or region of non-analyticity

Since we already known that integral of an analytic function 
over a contour in a simply connected region of analyticity      
has value zero ☛ we can make more general statement: 

The integral of an analytic function over a closed path               
has a value that remains unchanged over all possible continuous 
deformations of the contour within the region of analyticity
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Corollary 1.3.2.

integral of around any counterclockwise closed path
that encloses has for any integer  the values

(z � z0)
n C

z0 n

Using example 1.3.1 + closed 

can be deformed continuously 
we have valuable and useful result

I

C
(z � z0)

ndz =

⇢
0 if n 6= �1
2⇡i if n = �1 (1.3.50.)

Theorem 1.3.3. [Cauchy's Integral Formula]

Let be analytic in a simply connected domain
and let be a simple closed contour lying entirely within 

f
DC

C

D

z0If is any point within

f(z0) =
1

2⇡i

I
f(z)

z � z0
dz (1.3.51.)

contours in a region of analyticity

without altering value of integral
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Proof.

be a simply connected domain Let D

C a simple closed contour in D
z0 an interior point of C

C1 be a circle centered at
enough that it is interior to

z0
with radius small C

By principle of deformation of contours ☛ we can write
I

C

f(z)

z � z0
dz =

I

C1

f(z)

z � z0
dz

We wish to show that value of integral on right is 2⇡if(z0)
To this end we add and subtract constant        in numerator: 

(1.3.52.)

(1.3.53.)

f(z0)
I

C1

f(z)

z � z0
dz =

I

C1

f(z0)� f(z0) + f(z)

z � z0
dz

= f(z0)

I

C1

1

z � z0
dz +

I

C1

f(z)� f(z0)

z � z0
dz
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Substituting (1.3.50) into (1.3.53) we obtain

(1.3.54.)

(1.3.55.)

Since   is continuous at     ☛  for any arbitrarily small f z0 ✏ > 0
there exists a � > 0 such that |f(z)� f(z0)| < ✏ whenever |z � z0| < �

In particular ☛ if we choose circle C1

ML

����
I

C1

f(z)� f(z0)

z � z0
dz

���� 
✏

�/2
2⇡

�

2
= 2⇡✏

to be

then by -inequality

of (2.3.54.) satisfies

This can be made arbitrarily small by taking 

radius of circle     to be sufficiently smallC1

this can happen only if integral is zero
Cauchy integral formula (1.3.51.)

dividing both sides by 2⇡i

I

C1

f(z)

z � z0
dz = 2⇡if(z0) +

I

C1

f(z)� f(z0)

z � z0
dz

the absolute value of integral on right side

follows from (1.3.54.) by

|z � z0| = �/2 < �
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Corollary 1.3.3.

for derivative of
Cauchy's integral formula may be used to obtain 

f(z)
z0

differentiation and integration

Differentiating (1.3.51.) with respect to    

(1.3.57.)

(1.3.56.)

an expression 

and interchanging 

f 0(z0) =
1

2⇡i

I
f(z)

(z � z0)2
dz

f 00(z0) =
2

2⇡i

I
f(z)

(z � z0)3
dz

f (n)(z0) =
n!

2⇡i

I
f(z)

(z � z0)n+1
dz (1.3.58.)

Summary

I

C

f(z)

(z � z0)n+1
dz =

8
<

:

2⇡if(z0), if n = 0 and z0 is enclosed by C
2⇡if (n)

(z0)/n!, if n � 1 and z0 is enclosed by C
0 if z0 is not enclosed by C

Let    be a simple closed curve contained in a simply connected domain C
   and   an analytic function defined on Cf

Derivatives of       are automatically analytic at all ordersf(z)
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(1.3.59.)

 Example 1.3.2. To evaluate 
I

C

z

z2 + 9
dz with C the circle |z � 2i| = 4

we factorize denominator as z2 + 9 = (z � 3i)(z + 3i)

fails to be analytic
is only point within closed contour3i

812 CHAPTER 18 Integration in the Complex Plane

We wish to show that the value of the integral on the right is 2pi  f (z0). To this end we add 
and subtract the constant f (z0) in the numerator:

  !CC1

 
f 1z2

z 2 z0
 dz 5 !CC1

 
f 1z02 2 f 1z02 1 f 1z2

z 2 z0
 dz

  5 f 1z02 !CC1

 
dz

z 2 z0
1 !CC1

 
f 1z2 2 f 1z02

z 2 z0
 dz. (3)

Now from (4) of Section 18.2 we know that

 !CC1

 
dz

z 2 z0
5 2pi.

Thus, (3) becomes

 !CC1

 
f 1z2

z 2 z0
 dz 5 2pi!f 1z02 1 !CC1

 
f 1z2 2 f 1z02

z 2 z0
 dz.  (4)

Since f is continuous at z0 for any arbitrarily small e ! 0, there exists a d ! 0 such that 
| f (z) " f (z0)| # e whenever |z " z0| # d. In particular, if we choose the circle C1 to be 
|z " z0| $ d/2 # d, then by the ML-inequality (Theorem 18.1.3) the absolute value of the 
integral on the right side of (4) satisfies

 2  !CC1

 
f 1z2 2 f 1z02

z 2 z0
 dz 2 # e

d>2 2p ad
2
b 5 2pe.

In other words, the absolute value of the integral can be made arbitrarily small by taking the 
radius of the circle C1 to be sufficiently small. This can happen only if the integral is zero. 
The Cauchy integral formula (1) follows from (4) by dividing both sides by 2pi. 

The Cauchy integral formula (1) can be used to evaluate contour integrals. Since we often 
work problems without a simply connected domain explicitly defined, a more practical restate-
ment of Theorem 18.4.1 is

If f is analytic at all points within and on a simple closed contour C, and z0 is 

any point interior to C, then f 1z02 5 1
2pi

 !CC
 

f 1z2
z 2 z0

 dz. 
(5)

� EXAMPLE 1 Using Cauchy’s Integral Formula

Evaluate !CC
 
z2 2 4z 1 4

z 1 i
 dz, where C is the circle |z| $ 2.

Solution First, we identify f (z) $ z2 " 4z % 4 and z0 $ "i as a point within the circle C. 
Next, we observe that f is analytic at all points within and on the contour C. Thus by the 
Cauchy integral formula we obtain

 !CC
 
z2 2 4z 1 4

z 1 i
 dz $ 2pi f ("i) $ 2pi(3 % 4i) $ 2p("4 % 3i). 

� EXAMPLE 2 Using Cauchy’s Integral Formula

Evaluate !CC
 

z
z2 1 9  

dz, where C is the circle |z " 2i| $ 4.

Solution By factoring the denominator as z2 % 9 $ (z " 3i)(z % 3i), we see that 3i is the only 
point within the closed contour at which the integrand fails to be analytic. See FIGURE 18.4.1. 

FIGURE 18.4.1 Contour in 
Example 2

x

y

C

–3i

3i

!"##$%&'()%*+,-./0122333)(4!"##$%&'()%*+,-./0122333)(4 ((5456"33378(68693:;((5456"33378(68693:;
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let L be the length of C and let d denote the shortest distance between points on C and the 
point z0. Thus for all points z on C, we have

 Zz 2 z0 Z $ d�  or  � 1
Zz 2 z0 Z2

#
1
d2.

Furthermore, if we choose |!z| " d/2, then

 Zz 2 z0 2 Dz Z $ iz 2 z0Z 2 ZDzi $ d 2 ZDz Z $
d

2
�and so� 1

Zz 2 z0 2 Dz Z
#

2
d

.

Now, 2  !CC
 

f 1z21z 2 z022 dz 2 !CC
 

f 1z21z 2 z0 2 Dz2  1z 2 z02  dz 2 5 2  !CC
 

2Dz f 1z21z 2 z0221z 2 z0 2 Dz2  dz 2 # 2MLZDz Z
d3 .

Because the last expression approaches zero as !z S 0, we have shown that

 f ¿ 1z02 5 lim
DzS0

 
f 1z0 1 Dz2 2 f 1z02

Dz
5

1
2pi

 !CC
 

f 1z21z 2 z022 dz. 

If f (z) # u(x, y) $ iv(x, y) is analytic at a point, then its derivatives of all orders exist at that 
point and are continuous. Consequently, from

    f ¿  1z2 5 0u0x 1 i 
0v
0x 5

0v
0y 2 i 

0u
0y

    f –  1z2 5 02u
0x 2 1 i 

02v
0x 2 5

02v
0y!0x 2 i 

02u
0y 0x

we can conclude that the real functions u and v have continuous partial derivatives of all orders 
at a point of analyticity.

Like (1), (6) can sometimes be used to evaluate integrals.

� EXAMPLE 4 Using Cauchy’s Integral Formula for Derivatives

Evaluate !CC
 

z 1 1
z4 1 4z3

 
dz, where C is the circle |z| # 1.

Solution Inspection of the integrand shows that it is not analytic at z # 0 and z # %4, but 
only z # 0 lies within the closed contour. By writing the integrand as

 
z 1 1

z4 1 4z3 5

 
z 1 1
z 1 4

z3 ,

we can identify z0 # 0, n # 2, and f (z) # (z $ 1)/(z $ 4). By the Quotient Rule, f &(z) # 
%6/(z $ 4)3 and so by (6) we have

 !CC
 

z 1 1
z4 1 4z3 dz 5

2pi
2!

 f –  102 5 2
3p
32

 i.  

� EXAMPLE 5 Using Cauchy’s Integral Formula for Derivatives

Evaluate !CC
 

z3 1 3
z1z 2 i22  

dz, where C is the contour shown in FIGURE 18.4.3.

Solution Although C is not a simple closed contour, we can think of it as the union of two 
simple closed contours C1 and C2 as indicated in Figure 18.4.3. By writing

FIGURE 18.4.3 Contour in 
Example 5

y

x

i

0

C1

C2

!"##$%&'()%*+,-./0122333)(4!"##$%&'()%*+,-./0122333)(4 ((5657"33389(797#3:;((5657"33389(797#3:;

Figure 1.11: Contour in example 1.3.2. (left) and example 1.3.3. (right).

note that although C is not a simple closed contour, we can think of it as
the union of two simple closed contours C1 and C2. We rewrite (1.3.62) as

�

C

z3 + 3

z(z � i)2
dz =

�

C1

z3 + 3

z(z � i)2
dz �

�

C2

z3 + 3

z(z � i)2
dz

= �
�

�C1

(z3 + 3)/(z � i2)2

z
dz +

�

C2

(z3 + 3)/z

(z � i)2
dz

where we have considered that C1 is circulated clockwise whereas C2 is cir-
culated counterclockwise. To evaluate the first integral, we identify z0 = 0,
f(z) = (z3 + 3)/(z � i)2. It follows that

�

�C1

(z3 + 3)/(z � i2)2

z
dz = �6�i . (1.3.63)

To evaluate the second integral we identify z0 = i, n = 1, f(z) = (z3 + 3)/z,
and f ⇥(z)(2z3 � 3)/z2. It follows that

�

C2

(z3 + 3)/z

(z � i)2
dz =

2�i

1!
= 2�(�2 + 3i) (1.3.64)

Therefore, �

C

z3

z(z � i)2
dz = �4� + 12�i (1.3.65)

26

at which the integrand

by writing
z

z2 + 9
=

z/(z + 3i)

z � 3i

we can identify f(z) = z/(z + 3i)

(1.3.60.)

From Cauchy's integral formula we have I

C

z

z2 + 9
dz = i⇡ (1.3.61.)
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 Example 1.3.3. To evaluate 

is not a simple closed contour

of it as union of 2 simple closed contours   U

We rewrite (1.3.62.) as

C1 C2

C

(1.3.62.)

812 CHAPTER 18 Integration in the Complex Plane

We wish to show that the value of the integral on the right is 2pi  f (z0). To this end we add 
and subtract the constant f (z0) in the numerator:

  !CC1

 
f 1z2

z 2 z0
 dz 5 !CC1

 
f 1z02 2 f 1z02 1 f 1z2

z 2 z0
 dz

  5 f 1z02 !CC1

 
dz

z 2 z0
1 !CC1

 
f 1z2 2 f 1z02

z 2 z0
 dz. (3)

Now from (4) of Section 18.2 we know that

 !CC1

 
dz

z 2 z0
5 2pi.

Thus, (3) becomes

 !CC1

 
f 1z2

z 2 z0
 dz 5 2pi!f 1z02 1 !CC1

 
f 1z2 2 f 1z02

z 2 z0
 dz.  (4)

Since f is continuous at z0 for any arbitrarily small e ! 0, there exists a d ! 0 such that 
| f (z) " f (z0)| # e whenever |z " z0| # d. In particular, if we choose the circle C1 to be 
|z " z0| $ d/2 # d, then by the ML-inequality (Theorem 18.1.3) the absolute value of the 
integral on the right side of (4) satisfies

 2  !CC1

 
f 1z2 2 f 1z02

z 2 z0
 dz 2 # e

d>2 2p ad
2
b 5 2pe.

In other words, the absolute value of the integral can be made arbitrarily small by taking the 
radius of the circle C1 to be sufficiently small. This can happen only if the integral is zero. 
The Cauchy integral formula (1) follows from (4) by dividing both sides by 2pi. 

The Cauchy integral formula (1) can be used to evaluate contour integrals. Since we often 
work problems without a simply connected domain explicitly defined, a more practical restate-
ment of Theorem 18.4.1 is

If f is analytic at all points within and on a simple closed contour C, and z0 is 

any point interior to C, then f 1z02 5 1
2pi

 !CC
 

f 1z2
z 2 z0

 dz. 
(5)

� EXAMPLE 1 Using Cauchy’s Integral Formula

Evaluate !CC
 
z2 2 4z 1 4

z 1 i
 dz, where C is the circle |z| $ 2.

Solution First, we identify f (z) $ z2 " 4z % 4 and z0 $ "i as a point within the circle C. 
Next, we observe that f is analytic at all points within and on the contour C. Thus by the 
Cauchy integral formula we obtain

 !CC
 
z2 2 4z 1 4

z 1 i
 dz $ 2pi f ("i) $ 2pi(3 % 4i) $ 2p("4 % 3i). 

� EXAMPLE 2 Using Cauchy’s Integral Formula

Evaluate !CC
 

z
z2 1 9  

dz, where C is the circle |z " 2i| $ 4.

Solution By factoring the denominator as z2 % 9 $ (z " 3i)(z % 3i), we see that 3i is the only 
point within the closed contour at which the integrand fails to be analytic. See FIGURE 18.4.1. 

FIGURE 18.4.1 Contour in 
Example 2

x

y

C

–3i

3i

!"##$%&'()%*+,-./0122333)(4!"##$%&'()%*+,-./0122333)(4 ((5456"33378(68693:;((5456"33378(68693:;
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let L be the length of C and let d denote the shortest distance between points on C and the 
point z0. Thus for all points z on C, we have

 Zz 2 z0 Z $ d�  or  � 1
Zz 2 z0 Z2

#
1
d2.

Furthermore, if we choose |!z| " d/2, then

 Zz 2 z0 2 Dz Z $ iz 2 z0Z 2 ZDzi $ d 2 ZDz Z $
d

2
�and so� 1

Zz 2 z0 2 Dz Z
#

2
d

.

Now, 2  !CC
 

f 1z21z 2 z022 dz 2 !CC
 

f 1z21z 2 z0 2 Dz2  1z 2 z02  dz 2 5 2  !CC
 

2Dz f 1z21z 2 z0221z 2 z0 2 Dz2  dz 2 # 2MLZDz Z
d3 .

Because the last expression approaches zero as !z S 0, we have shown that

 f ¿ 1z02 5 lim
DzS0

 
f 1z0 1 Dz2 2 f 1z02

Dz
5

1
2pi

 !CC
 

f 1z21z 2 z022 dz. 

If f (z) # u(x, y) $ iv(x, y) is analytic at a point, then its derivatives of all orders exist at that 
point and are continuous. Consequently, from

    f ¿  1z2 5 0u0x 1 i 
0v
0x 5

0v
0y 2 i 

0u
0y

    f –  1z2 5 02u
0x 2 1 i 

02v
0x 2 5

02v
0y!0x 2 i 

02u
0y 0x

we can conclude that the real functions u and v have continuous partial derivatives of all orders 
at a point of analyticity.

Like (1), (6) can sometimes be used to evaluate integrals.

� EXAMPLE 4 Using Cauchy’s Integral Formula for Derivatives

Evaluate !CC
 

z 1 1
z4 1 4z3

 
dz, where C is the circle |z| # 1.

Solution Inspection of the integrand shows that it is not analytic at z # 0 and z # %4, but 
only z # 0 lies within the closed contour. By writing the integrand as

 
z 1 1

z4 1 4z3 5

 
z 1 1
z 1 4

z3 ,

we can identify z0 # 0, n # 2, and f (z) # (z $ 1)/(z $ 4). By the Quotient Rule, f &(z) # 
%6/(z $ 4)3 and so by (6) we have

 !CC
 

z 1 1
z4 1 4z3 dz 5

2pi
2!

 f –  102 5 2
3p
32

 i.  

� EXAMPLE 5 Using Cauchy’s Integral Formula for Derivatives

Evaluate !CC
 

z3 1 3
z1z 2 i22  

dz, where C is the contour shown in FIGURE 18.4.3.

Solution Although C is not a simple closed contour, we can think of it as the union of two 
simple closed contours C1 and C2 as indicated in Figure 18.4.3. By writing

FIGURE 18.4.3 Contour in 
Example 5

y

x

i

0

C1

C2
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Figure 1.11: Contour in example 1.3.2. (left) and example 1.3.3. (right).

note that although C is not a simple closed contour, we can think of it as
the union of two simple closed contours C1 and C2. We rewrite (1.3.62) as

�

C

z3 + 3

z(z � i)2
dz =

�

C1

z3 + 3

z(z � i)2
dz �

�

C2

z3 + 3

z(z � i)2
dz

= �
�

�C1

(z3 + 3)/(z � i2)2

z
dz +

�

C2

(z3 + 3)/z

(z � i)2
dz

where we have considered that C1 is circulated clockwise whereas C2 is cir-
culated counterclockwise. To evaluate the first integral, we identify z0 = 0,
f(z) = (z3 + 3)/(z � i)2. It follows that

�

�C1

(z3 + 3)/(z � i2)2

z
dz = �6�i . (1.3.63)

To evaluate the second integral we identify z0 = i, n = 1, f(z) = (z3 + 3)/z,
and f ⇥(z)(2z3 � 3)/z2. It follows that

�

C2

(z3 + 3)/z

(z � i)2
dz =

2�i

1!
= 2�(�2 + 3i) (1.3.64)

Therefore, �

C

z3

z(z � i)2
dz = �4� + 12�i (1.3.65)

26

but we can think

I

C

z3 + 3

z(z � i)2
dz =

I

C1

z3 + 3

z(z � i)2
dz �

I

C2

z3 + 3

z(z � i)2
dz

= �
I

�C1

(z3 + 3)/(z � i)2

z
dz +

I

C2

(z3 + 3)/z

(z � i)2
dz

where we have considered that is circulated clockwise
whereas

C1

C2 is circulated counterclockwise 

I

C

z3 + 3

z(z � i)2
dz

with C

+
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To evaluate first integral

z0 = 0, f(z) = (z3 + 3)/(z � i)2

To evaluate second integral

z0 = i, n = 1, f(z) = (z3 + 3)/z and

It follows that

I

C

z3

z(z � i)2
dz = �4⇡ + 12⇡i

(1.3.63.)

(1.3.64.)

(1.3.65.)

we identify

we identify

I

�C1

(z3 + 3)/(z � i)2

z
dz = �6⇡i

f 0(z) = (2z3 � 3)/z2

I

C2

(z3 + 3)/z

(z � i)2
dz =

2⇡i

1!
(2i+ 3) = 2⇡(�2 + 3i)
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Theorem 1.3.4. [Cauchy's estimate]

Let be analytic on a simply connected domainf D

for some closed ballR > 0 BR(z0) ⇢ D with CR(z0) = {z : |z � z0| = R}

and 

☛ then

(1.3.66.)

According to Cauchy's integral formula we have
Proof.

f (n)(z0) =
n!

2⇡i

I

CR(z0)

f(z)

(z � z0)n+1
dz (1.3.67.)

(1.3.68.)

then

|f(z)|  MR, 8z 2 CR(z0)If ���f (n)(z0)
��� 

n!MR

Rn
, 8n � 0

|f (n)(z0)| =

�����
n!

2⇡i

I

CR(z0)

f(z)

(z � z0)n+1
dz

�����


����
n!

2⇡i

����
I

CR(z0)

����
f(z)

(z � z0)n+1

���� |dz| =
n!

2⇡

I

CR(z0)

|f(z)|
|z � z0|n+1

|dz|

 n!

2⇡

I

CR(z0)

MR

Rn+1
|dz| = n!

2⇡

MR

Rn+1
2⇡R =

n!MR

Rn
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Corollary 1.3.4. [Liouville's theorem]

is analytic and bounded in entire complex plane 
then it is a constant

If f(z)

Proof.
To prove this we will prove that 

(1.3.69.)

f 0 is the zero function
 Suppose f : C ! C is everywhere analytic and is bounded byM

|f(z)|  Mi.e. for every z 2 C
Fix an arbitrary point z0 2 C
Since f is analytic everywhere ☛ it is in particular analytic

on a neighborhood of closed ball BR(z0) for any value ofR > 0

By Cauchy’s estimate there exists

and thus |f 0(z0)| 
MR

R
 M

R
, 8R > 0

Since expression on left is a nonnegative constant

R ! 1 0  |f 0(z0)|  0letting on right yields f 0(z0) = 0whence

MR = max{|f(z)| in |z � z0| = R}  M
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Theorem 1.3.5. [Fundamental Theorem of Algebra]

Every polynomial of degree has a root inP (z) n � 1 C

Suppose

Proof.

Cwith no root in thenP�1(z) must be analytic on whole
Since

C
����
P (z)

zn

���� =
���1 +

an�1

z
+ · · ·+ a0

zn

��� ! 1, as |z| ! 1

it follows that |P (z)| ! 1 and hence |1/P (z)| ! 0 |z| ! 1as

(prove of a well known fact: polynomials are unbounded functions)

Consequently P�1(z) is a bounded function

 Hence ☛ by Liouville's theorem

P�1(z) which is a contradictionwould have to be constant 

(1.3.70.)

P (z) = zn + an�1z
n�1 + · · ·+ a0  is a polynomial
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(2.3.85.)

Because 
  we conclude that

asd < R, (d/R)n ! 0 n ! 1
|⇢n(z)| ! 0 n ! 1as

It follows that infinite series

f(z0) +
f 0(z0)

1!
(z � z0) +

f 00(z0)

2!
(z � z0)

2 + . . .

converges to f(z)

In other words result in (2.3.75.) 

z interior to Cis valid for any point  

-inequality then gives ML

⇢n(z) =

����
(z � z0)n

2⇡i

I

C

f(⇣)

(⇣ � z)(⇣ � z0)n
d⇣

����

 dn

2⇡

M

(R� d)Rn
2⇡R =

MR

R� d

✓
d

R

◆n

(2.3.84.)
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Theorem 1.3.6. [Taylor's Theorem]
f DD z0Let be analytic within a domain and be a point in 

Then has a series representation f

f(z) =
1X

k=0

f (k)(z0)

k!
(z � z0)

k

valid for the largest circle with center at and radius
that lies entirely within 

z0 RC

Proof.
Let be a fixed point within circle   z C

⇣ denote the integration variable

Circle is described by

Equation (1.3.74) shows that F (z), which by construction is single-valued,
has a derivative at all points within D and is therefore analytic in this re-
gion. Since F (z) is analytic, then so also must be its derivative, f(z), therby
proving Morera’s theorem.

Theorem 1.3.7. [Taylor’s Theorem] Let f be analytic within a do-
main D and z0 be a point in D. Then f has a series representation

f(z) =
�⇥

k=0

f (k)(z0)

k!
(z � z0)

k (1.3.75)

valid for the largest circle C with center at z0 and radius R that lies entirely
within D.

⇣

D

C

z

z0

R

Figure 1.12: Circular contour C used in proof of Taylor’s theorem.

Proof. Let z be a fixed point within the circle C and let � denote the
variable of integration. The circle C is then described by |� � z0| = R, as
shown in Fig. 1.12. To begin, we use the Cauchy integral formula to obtain
the value of f at z

f(z) =
1

2⇥i

�
f(�)

� � z
d�

=
1

2⇥i

�
f(�)

(� � �0)� (z � z0)
d�

=
1

2⇥i

�
f(�)

� � z0

1

1� (z � z0)/(� � z0)
d� . (1.3.76)

29

C

|⇣ � z0| = R ☛

(1.3.75.)

D

and let
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Use Cauchy integral formula to obtain value of   at 

We need the following algebraic identity

1

1� q
= 1 + q + q2 + · · ·+ qn�1 +

qn

1� q
which follows easily from 

1 + q + q2 + · · ·+ qn�1 =
1� qn

1� q

(1.3.76.)

(1.3.77.)

(1.3.78.)

f z

f(z) =
1

2⇡i

I
f(⇣)

⇣ � z
d⇣

=
1

2⇡i

I
f(⇣)

(⇣ � z0)� (z � z0)
d⇣

=
1

2⇡i

I
f(⇣)

⇣ � z0

1

1� (z � z0)/(⇣ � z0)
d⇣
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nX

j=0

qj = 1 + q + q2 + q3 + · · ·+ qn

q
nX

j=0

qj = q + q2 + q3 + q4 + · · ·+ qn+1

nX

j=0

qj � q
nX

j=0

qj = 1� qn+1

nX

j=0

qj =
1� qn+1

1� q

(1.3.78.) follows from
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By replacing   by q (z � z0)/(⇣ � z0) in (1.3.77) we have

✓
1� z � z0

⇣ � z0

◆�1

= 1 +
z � z0
⇣ � z0

+

✓
z � z0
⇣ � z0

◆2

+ · · ·+
✓
z � z0
⇣ � z0

◆n�1

+
(z � z0)n

(⇣ � z)(⇣ � z0)n�1

and so (1.3.76.) becomes

(1.3.79.)

(1.3.80.)

f(z) =
1

2⇡i

I

C

f(⇣)

⇣ � z0
d⇣ +

z � z0
2⇡i

I

C

f(⇣)

(⇣ � z0)2
d⇣

+
(z � z0)2

2⇡i

I

C

f(⇣)

(⇣ � z0)3
d⇣ + · · ·+ (z � z0)n�1

2⇡i

I

C

f(⇣)

(⇣ � z0)n
d⇣

+
(z � z0)n

2⇡i

I

C

f(⇣)

(⇣ � z)(⇣ � z0)n
d⇣
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Utilizing Cauchy's integral formula for derivatives

we can write (1.3.80.) as

(1.3.81.)

where

(1.3.82.)⇢n(z) =
(z � z0)n

2⇡i

I

C

f(⇣)

(⇣ � z)(⇣ � z0)n
d⇣

f(z) = f(z0) +
f 0(z0)

1!
(z � z0) +

f 00(z0)

2!
(z � z0)

2 + . . .

+
f (n�1)(z0)

(n� 1)!
(z � z0)

n�1 + ⇢n(z)

Now  ☛ we just need to show that lim
n!1

|⇢n(z)| = 0

Since is analytic inf D ☛ |f(z)| has a maximum value M on C

In addition ☛ since z is inside C we have |z � z0| < R

|⇣ � z| = |⇣ � z0 � (z � z0)| � |⇣ � z0|� |z � z0| = R� d

d = |z � z0|where ☛ distance from    toz z0 (1.3.83.)
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(1.3.85.)

Because 
  we conclude that

asd < R, (d/R)n ! 0 n ! 1
|⇢n(z)| ! 0 n ! 1as

It follows that infinite series

f(z0) +
f 0(z0)

1!
(z � z0) +

f 00(z0)

2!
(z � z0)

2 + . . .

converges to f(z)

In other words result in (1.3.75.) 

z interior to Cis valid for any point  

-inequality then gives ML

⇢n(z) =

����
(z � z0)n

2⇡i

I

C

f(⇣)

(⇣ � z)(⇣ � z0)n
d⇣

����

 dn

2⇡

M

(R� d)Rn
2⇡R =

MR

R� d

✓
d

R

◆n

(1.3.84.)
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Theorem 1.3.7. [Morera's Theorem] 

is continuous in a simply connected domain   If Df
I

f(z)dz = 0 for every simple closed contour C D

Df

in

then is analytic throughout

To prove theorem we integrate 
Proof.

f(z) z1from to

Since every closed-path integral of 

(1.3.71.)

f(z)
this integral is independent of path

vanishes

We may therefore write 

F (z)

F (z2)� F (z1) =

Z z2

z1

f(z) dz

where can be called the indefinite integral of f(z)

and if

z2

and depends only on its ends points
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We then construct the identity
F (z2)� F (z1)

z2 � z1
� f(z1) =

1

z2 � z1

Z z2

z1

[f(t)� f(z1)] dt (1.3.72.)

where we have introduced another complex variable 
Using fact that 

t
f(t) is continuous we write 

to first order in         )t� z1
f(t)� f(z1) = f 0(z1)(t� z1) + . . .

which implies that
Z z2

z1

[f(t)� f(z1)] dt =

Z z2

z1

[f 0(z1)(t� z1) + . . . ] dt =
f 0(z1)

2
(z2 � z1)

2 + . . .

Note that right-hand side of (1.3.72.) approaches zero for z2 ! z1

Equation (1.3.74.) shows that F (z) D

 then so also must be its derivative 
thereby proving Morera's theorem

f(z)

(1.3.74.)

(1.3.73.)

(keeping only terms 

f(z1) = lim
z2!z1

F (z2)� F (z1)

z2 � z1
= F 0(z1)

is analytic in
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