Physics 307

Mathematical Physics

Luis Anchordoqui

Partial Differential Equations III 4.1 Taxonomy

4.2 Wave Equation ✔ 4.3 Diffusion Equation V 4.4 Laplace Equation

THE HIGGS BOSON WALKS INTO **CHURCH THE PRIEST SAYS, WE DO** ALLOW HIGGS BOSONS IN HERE

IGGS BOSON SAYS 'BUT WITHOUT ME, HOW CAN YOU HAVE MASS?

4.4. Laplace Equation

Today we will discuss canonical form of elliptic equations Up to lower order terms we found that canonical form is $\sqrt{\nabla^2 u} = u_{xx} + u_{yy} = 0$

This equation is called Laplace equation More generally \blacktriangleright we will consider Laplacian in \mathbb{R}^n it is also extremely important in study of complex analysis and besides theory of partial differential equations

$$
\nabla^2 = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}
$$
\n(4.4.168.)

and Laplace equation

$$
\nabla^2 u = 0 \t(4.4.169)
$$

Functions satisfying this condition are called harmonic functions

4.4. 1. Harmonics functions In \mathbb{R}^2 Laplacian in polar coordinates is given by $\nabla^2 =$ 1 *r* ∂ ∂r $\sqrt{2}$ *r* ∂ ∂r ◆ $+$ 1 *r*2 ∂^2 $\partial\theta^2$ and for $n > 2$ $\nabla^2 =$ 1 r^{n-1} ∂ ∂r $\int_0^1 r^{n-1} \frac{\partial}{\partial r}$ ∂r ◆ $+$ ∇^2_Ω *r*2 where ∇^2_Ω is Laplace operator on unit sphere S^{n-1} For $n=3$ we have $\nabla^2_\Omega =$ 1 $\sin\theta$ $\frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right)$ $+$ 1 $\sin^2\theta$ ∂^2 $\partial \phi^2$ $(4.4.170.)$ $(4.4.171.)$ (4.4.172.) with property that it depends only on radial variable $\,r\,$ $f(\mathbf{x}) = \phi(r)$ where $r = |\mathbf{x}| = \sqrt{\sum_{i=1}^{n} |\mathbf{x}|^2}$ *n j*=1 i.e. $\blacktriangleright\; f(\mathbf{x}) = \phi(r)$ where $r = |\mathbf{x}| = \sqrt{\sum x_j^2}$ Let us seek a harmonic function

Lemma 4.4.1.

If $f(\mathbf{x}) = \phi(r)$ where $r = |\mathbf{x}|, \mathbf{x} \in \mathbb{R}^n$ then $\nabla^2f(\mathbf{x}) = \phi^{\prime\prime}(r) + \frac{(n-1)}{r}$ *r* $\phi'(r)$ (4.4.173.) Proof. Since $\partial r/\partial x_j = x_j/r$ we have $\nabla^2 f(\mathbf{x}) = \sum$ *n j*=1 ∂_{x_j} $\lceil x_j$ *r* $\phi'(r)$ i $=$ \sum $\sum_{j=1}^{n}$ $\left[\frac{x_j^2}{r^2}\right]$ $\frac{x_j^2}{r^2}\phi''(r)+\frac{1}{r}$ ϕ' $(r) - \frac{x_j^2}{r^3}$ *j* $\frac{J}{r^3}\phi'(r)$ \mathbf{I} $=$ $\phi''(r) + \frac{n}{r}$ *r* ϕ' $(r)-\frac{1}{r}$ *r* $\phi'(r)$ $=$ $\phi^{\prime\prime}(r)+\frac{(n-1)}{r}$ *r* ϕ' $(4.4.174.)$ Corollary 4.4.1. If $f(\mathbf{x}) = \phi(r)$ is a radial function on \mathbb{R}^n then f satisfies $\nabla^2 f = 0$ on \mathbb{R}^n_0 if and only if: (i) $\phi(r) = a + b\, r^{2-n}$ for $n > 2$ (ii) $\phi(r) = a + b\,\ln\,r$ for $n=2$ where a, b are constants Proof. From (4.4.174.) we have $\phi^{\prime\prime}(r)$ $\phi'(r)$ = $1 - n$ *r* $\ln\left[\left(\phi'(r)\right)=(1-n)\ln r+\ln c$ (4.4.176.) Integrating once we get or $\phi'(r) = c \; r^{1-n}$ where c is a constant One more integration gives desired answer $(4.4.175.)$ $(4.4.177.)$

Next we seek harmonic functions that are products of radial functions $R(r)$ and angular functions $\Theta(\theta)$ Then \leftarrow from (4.4.170.) in case $n=2$ we have $r^2R''(r)\Theta(\theta)+rR'(r)\Theta(\theta)+R(r)\Theta''(\theta)=0$ (4.4.178.) $r^2 R''(r) + rR'(r)$ *R*(*r*) $=-\frac{\ddot{\Theta}(\theta)}{\Theta(\theta)}$ $\Theta(\theta)$ $= k^2$ (4.4.179.) or separating variables or $r^2R''(r) + rR'(r) - k^2R(r) = 0$ and $\Theta''(\theta) = -k^2\Theta(\theta)$ We recognize first equation in (4.4.180.) as an Euler equation $(4.4.180)$ Solution is of form r^{λ} with λ given by $\lambda(\lambda - 1) + \lambda - k^2 = 0$ that is $\lambda = \pm k$ (4.4.181.)

Recall that if $k=0$

two L.i. solutions are $r^{\lambda}=r^{0}=1$ and $r^{\lambda}\, \ln\, r=\ln\, r$

We obtain

$$
R_k(r) = \begin{cases} c_1 + c_2 \ln r & k = 0\\ c_1 r^k + c_2 r^{-k} & k \neq 0 \end{cases}
$$
 (4.4.182.)

angular dependence is given by

$$
\Theta_k(\theta) = \begin{cases} c_1 + c_2 \theta & k = 0\\ c_1 \cos(k\theta) + c_2 \sin(k\theta) & k \neq 0 \end{cases}
$$

where *c*¹ and *c*² are constants Note that k can be real, imaginary, or complex If $k = k_r + ik_i$ then

 $r^k = e^{k \, \ln \, r} = e^{k_r \, \ln \, r} \left[\cos(k_i \ln r) + i \sin(k_i \, \ln r) \right]$ (4.4.184.) As for examples in rectangular coordinates we recall some facts from elementary complex analysis

(4.4.183.)

Theorem 4.1.1. Real and imaginary parts of a complex analytic function are harmonic functions

Proof.

Let $f(z) = f(x,y) = u(x,y) + iv(x,y)$ be analytic on $D \subset \mathbb{C}$ Then since f is analytic on D \bullet it is infinitely differentiable on D and thus $u \mathbin{\tilde{*}} v$ have (continuous) partial derivatives of all orders Furthermore $\blacktriangleright u$ and v satisfy Cauchy-Riemann conditions

Therefore
\n
$$
\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left[\frac{\partial u}{\partial x} \right] = \frac{\partial}{\partial x} \left[\frac{\partial v}{\partial y} \right]
$$
\n
$$
= \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}
$$
\n
$$
= \frac{\partial}{\partial y} \left[\frac{\partial v}{\partial x} \right] = \frac{\partial}{\partial y} \left[-\frac{\partial u}{\partial y} \right] = -\frac{\partial^2 u}{\partial y^2}
$$

Consequently $\blacksquare \lor \ulcorner u = 0 \mod u$ is a harmonic function

We can prove that v is harmonic in much same way

4.4.2 Spherical harmonics Consider equation $\nabla^2u=0$ in a spherically symmetric region $r_1 \leq r \leq r_2, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2\pi$ We will use notation $\Omega = (\theta, \phi)$ with $d\Omega = \sin \theta \, d\theta \, d\phi$ In these coordinates \leftarrow Laplacian is given by $(4.4.171)$ \notin $(4.4.172)$ Assuming a solution of the form $u(r,\Omega)=R(r)Y(\Omega)$ we obtain R'' + 2 *r* $R^{\prime} - \frac{k^2}{r^2}$ $\frac{\hbar^2}{r^2}R = 0$ and $\nabla^2 Y = -k^2Y$ $k\equiv$ constant It is easily seen that the solution of the angular part is bounded and single-valued only if $k^2=l(l+1)$ with $l\in\mathbb{N}$ Here \blacktriangleright $Y(\Omega) = Y_{lm}(\Omega)$ is spherical harmonic of order *l* $-\nabla_{\Omega}^{2} Y_{lm}(\Omega) = l(l+1)Y_{lm}(\Omega), \quad -l \leq m \leq l, \quad l = 0, 1, \ldots$ (4.4.188.) with $Y_{lm}(\Omega) = (-1)^{(m+|m|)/2}$ $\overline{}$ $\frac{(2l + 1)(l - |m|)!}{l}$ $\frac{1}{4\pi}(l + |m|)!$ $P_l^{|m|}(\cos\theta) e^{im\phi}$ (4.4.189.) (4.4.187.)

 $Y_{lm}(\Omega)$ are normalized eigenfunctions of ∇^2_{Ω} $Y_{l'm'}(0)d\Omega = \int \int Y_{lm} Y_{l'm'} \sin \theta d\theta d\phi = \partial_{ll'} \partial_{mm'}$ (4.4.190.) *^Y*0*,*0*(θ, ^φ)* ⁼ ¹ √ ⁴*^π .* $\frac{3}{2}$ $\sqrt{2}$ L/m $I_{l'm'}$ sill σ $\omega \sigma$ $\omega \varphi = o_{ll'} o_{mm'}$ $\theta_{m'}$ sin θ $d\theta$ $d\phi = \delta_{ll'}\delta_{mm'}$ (4.4.1° Z *S*² $Y_{lm}(\Omega)$ $Y^*_{l'm'}(\Omega)d\Omega =$ \int_0^π 0 $\int^{2\pi}$ 0 Y_{lm} $Y_{l'm'}^*$ sin θ $d\theta$ $d\phi = \delta_{ll'}\delta_{mm'}$

For this phase convention

 $Y_{lm}^*(\Omega) = (-1)^m Y_{l-m}(\Omega)$

For $l = 0, 1, 2$ *P*1*,*1*(ξ)* = $\textsf{surfaces}\,\,r = |Y_{lm}(\theta, \phi)|$ | look like this ☛

Equation for radial part is (as we have seen) of Euler type solution r^{λ} and λ determined by $\lambda(\lambda - 1) + 2\lambda - l(l + 1) = 0$ $\lambda = l$ and $\lambda = -l - 1$ Product solution is therefore of form $R(r) Y(\Omega) = (a r^{l} + b r^{-l-1}) Y_{lm}(\Omega)$ Solutions which do not depend on ϕ (i.e. invariants under rotations about 2-axis) while solutions independent of θ and $\,\phi$ correspond to $m=0$ with arbitrary l $l = 0$ and are of form $u(r) = a + b/r$ The general solution takes form $u(r,\Omega) = \sum$ ∞ *l*=0 \sum *l* $m = -l$ $\overline{\mathsf{I}}$ a_{lm} r^{l} + $\left[\frac{b_{lm}}{r^{l+1}}\right]$ *Ylm*(⌦) (4.4.192.) $(4.4.191.)$ For bounded solutions if $r_1 = 0 \Rightarrow b_{lm} = 0$ while if $r_2 = \infty \Rightarrow a_{lm} = 0$ are obtained only for $l=0$ and are of form \hat{a} (i.e. invariants under rotations)

Example 4.4.1.

Consider problem of determining harmonic function *u*(*r,* ⌦) in the interior of a sphere of radius $r_2 = R$ knowing their values on the surface $u(R,\Omega)=f(\Omega)$ Function must be of the form *l*

$$
u(r, \Omega) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} r^{l} Y_{lm}(\Omega) \quad (4.4.193.)
$$

Boundary condition leads to

$$
u(R, \Omega) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} R^{l} Y_{lm}(\Omega) \quad (4.4.194.)
$$

which is series expansion of spherical harmonics of $f(\Omega)$ Taking into account (4.4.190.) ☛ coefficients are given by $a_{lm} =$ 1 *Rl* Z *S*² $Y_{lm}^*(\Omega) \ f(\Omega) \ d\Omega$ (4.4.195.)

If $f(\Omega) = f(\theta) \Rightarrow a_{lm} = 0$ for $m \neq 0$

and thus $u(r,\Omega) = c_l \, \, r^l \, \, P_l(\cos\theta_0)$ with $c_l = a_{l0} \, \sqrt{(2l+1)/(4\pi)}$ If $f(\Omega) = c \Rightarrow c_l = 0$ for $l \neq 0$ (because of orthogonality of P_l for $l \neq 0$ with $P_0=1$) and therefore $u(r,\Omega)=c$ In general ☛ using (4.4.16.) we obtain $u(r, \Omega) =$ *S*² **T** \sum ∞ *l*=0 \sqrt{r} *R* \int_0^l \sum_0^l *l m*=*l* $Y_{lm}(\Omega) \, Y_{lm}^*(\Omega')$ 1 $f(\Omega')$ $d\Omega'$ (4.4.196.) To evaluate this series \sum *l* $m = -l$ $Y_{lm}(\Omega)$ $Y_{lm}^*(\Omega')=\frac{2l+1}{4\pi}$ 4π $P_l(\cos\theta_0)$ $\cos(\theta_0) = \hat{\mathbf{n}}(\Omega) \hat{\mathbf{n}}(\Omega') = \cos\theta \cos\theta' + \sin\theta \sin\theta' \cos(\phi - \phi')$ (4.4.198.) $(4.4.197)$ with $\hat{\mathbf{n}}(\Omega) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ where θ_0 is angle between directions determined by Ω and Ω' let us first introduce theorem of addition of spherical harmonics

Equation (4.4.197.) reflects fact that first term is a scalar that depends only on angle $\,\theta_0$ between $\,\Omega$ and Ω' In this case \blacksquare by choosing $\Omega=(\theta,\phi)=(0,0)$ and given that $P_l^m(1) = \delta_{m0}$ it follows that $Y_{lm}(0,0)=\delta_{m0}Y_{l0}(0,0)=\sqrt{(2l+1)/(4\pi)}$ so we obtain $\sum Y_{lm}(0,0) Y_{lm}(\Omega') = Y_{l0}(0,0) Y_{l0}^*(\Omega') = \frac{2l+1}{l} P_l(\cos \theta')$ (4.4.199.) *l* $m = -l$ $Y_{lm}(0,0)$ $Y_{lm}(\Omega') = Y_{l0}(0,0)$ $Y^*_{l0}(\Omega') = \frac{2l+1}{4\pi}$ 4π $P_l(\cos\theta')$ $(4.4.200.)$ which leads to (4.4.197) as $\theta_0=\theta'$ if $\theta=0$ with $c_m = \int Y_{lm}(\Omega) P_l(\cos\theta_0) d\Omega = \frac{1}{\Omega l + 1} Y_{lm}(\Omega')$ (4.4.201.) $P_l(\cos \theta_0) = \sum c_m Y_{lm}(\Omega)$ *l m*=*l* $c_m =$ Z *S*² $Y_{lm}^*(\Omega) P_l(\cos\theta_0)d\Omega =$ 4π $2l + 1$ $Y^*_{lm}(\Omega')$ In addition \blacktriangleright (4.4.197.) reflects fact that as a function of $\Omega, P_l(\cos\theta_0)$ is also eigenfunction of ∇^2_{Ω} with eigenvalue $-l(l+1)$ and therefore must be a linear combination of $Y_{lm}(\Omega)$ with same l

We must now evaluate series \sum ∞ *l*=0 $(2l+1)$ $(r/R)^l$ $P_l(\cos\theta_0)$ with $r < R$

To this end we first introduce expansion

1 $d(r,R,\theta_0)$ $=$ \sum ∞ *l*=0 r^l $\frac{1}{R^{l+1}} P_l(\cos \theta_0)$, for $r < R$ (4.4.202.)

with $d(r, R, \cos \theta_0) = \sqrt{R^2 + r^2 - 2Rr \cos \theta_0}$

Relation (4.4.202.) can be derived by noting that first term of series is 3-dimensional harmonic function of (r,θ_0)

and must therefore be of form $\sum c_l r^l P_l(\cos \theta_0)$

 ∞

l=0

 $\theta_0 = 0, d^{-1}(r, R, 0) = (R - r)^{-1} = R^{-1} \sum$ ∞ *l*=0 For $\theta_0 = 0, d^{-1}(r,R,0) = (R-r)^{-1} = R^{-1} \sum (r/R)^l$ \$ so $c_l = 1/R^{l+1}$

If we take derivative of (4.4.202) with respect to
$$
r
$$
 we can write
\n
$$
\sum_{l=0}^{\infty} l \frac{r^l}{R^{l+1}} P_l(\cos \theta_0) = r \frac{\partial}{\partial r} \sum_{l=0}^{\infty} \frac{r^l}{R^{l+1}} P_l(\cos \theta_0) = \frac{r(r - R \cos \theta_0)}{(R^2 + r^2 - 2Rr \cos \theta_0)^{3/2}}
$$
\ncombining this relation with (4.4.203.) we obtain
\n
$$
\sum_{l=0}^{\infty} (2l+1) (r/R)^l P_l(\cos \theta_0) = \frac{R^2 - r^2}{(R^2 + r^2 - 2Rr \cos \theta_0)^{3/2}}
$$
\n(4.4.203.)
\nSubstituting (4.4.198) and (4.4.204.) into (4.4.197.)
\nwe arrive at the solution for interior of the sphere
\n
$$
u(r,\Omega) = \frac{R(R^2 - r^2)}{4\pi} \int_{S^2} \frac{f(\Omega')}{d^3(r,R,\theta_0)} d\Omega' \quad (4.4.204.)
$$

Example 4.4.2.

We consider now problem of determining the harmonic function on the outside of the sphere ($r>R$)

knowing their values on surface $u(R,\Omega)$ From (4.4.193.) we see that if u is harmonic function then

 $v(r,\Omega)=\frac{R}{\tau}$ *r* $u(R^2/r,\Omega)=\sum$ ∞ *l*=0 $\overline{}$ *l* $m = -l$ $\overline{\mathbb{I}}$ *alm* R^{2l+1} $\frac{c}{r^{l+1}} + b_{lm}$ $\frac{r^l}{R^{2l+1}}$ $Y_{lm}(\Omega)$

is also harmonic as it is of form (4.4.192.) and satisfies boundary condition $v(R,\Omega)=u(R,\Omega)$

if u is defined for $r < R$ then v is defined for $r > R$ Therefore ☛ the solution for outside of the sphere is

$$
v(r,\Omega) = \frac{R(r^2 - R^2)}{4\pi} \int_{S^2} \frac{f(\Omega')}{d^3(r,R,\theta_0)} d\Omega' \quad (4.4.206.)
$$

on $\partial\Omega$ (4.4.207.) Consider boundary value problem $\int \nabla^2 u(\mathbf{x}) = h(\mathbf{x})$ in Ω $u(\mathbf{x}) = f(\mathbf{x}) \qquad \text{on } \partial \Omega$ 4.4.3 Green function for Laplace operator where $\Omega \subset \mathbb{R}^n$ is a normal domain (i) boundary $\partial\Omega$ consists of a finite number of smooth surfaces that is a bounded domain such that: (ii) any straight line parallel to a coordinate axis either intersects $\partial\Omega$ at a finite number of points or has a whole interval in common with $\partial \Omega$ (4.4.208.) Let $\mathbf{x} = \vec{x}$ be a fixed point in $D \subset \mathbb{R}^2$ $\mathbf{x} = \vec{x}$ be a fixed point in $D \subset \mathbb{R}^2$ and let $\vec{\xi}$ be a variable point Let r be distance from \mathbf{x} to $\vec{\xi}$ = $r = \sqrt{\sum_{n=1}^{n}$ $\int \nabla^2 G = \delta(r)$ in Ω $G = 0$ on $\partial\Omega$ Solution of (4.4.207) can be written in terms of Green function satisfying ☛ *n j*=1 $\vec{\xi}$ $\vec{r} = \sqrt{\sum (x_j - \xi_j)^2}$

(4.4.209.) To obtain explicit form of *u*(x) we make use of Gauss theorem and write Green's first identity with vector field $\mathbf{F} = G \vec{\nabla} u$ Left side is a volume integral over (n -dimensional) volume Ω right side is surface integral over boundary of volume Ω Closed manifold $\partial\Omega$ is quite generally boundary of Ω oriented by outward-pointing normals and $\hat{\mathbf{n}}$ is outward pointing unit normal field of boundary $\partial\Omega$ Interchanging G with u and subtracting gives $(4.4.210)$ Green's second identity Ω r $\vec{\nabla} \cdot {\bf F} \; dV =$ Z $\partial\Omega$ $\mathbf{F} \cdot \mathbf{\hat{n}} \; dA$ Z Ω $(G\nabla^2 u + \vec{\nabla} u \cdot \vec{\nabla} G) dV =$ Z $\partial\Omega$ $G(\vec{\nabla}u \cdot \hat{\mathbf{n}}) dA$ Z Ω $(u\nabla^2 G - G\nabla^2 u) dV =$ Z $\partial\Omega$ $(u\vec{\nabla}G - G\vec{\nabla}u)$. $\hat{\mathbf{n}}$ *dA*

Substituting (4.4.207.) and (4.4.208.) into Green's second identity

leads to
$$
\bullet
$$
 $u(\mathbf{x}) - \int_{\Omega} G h dV = \int_{\partial \Omega} f \vec{\nabla} G \cdot \hat{\mathbf{n}} dA$

rearranging we obtain

$$
u(\mathbf{x}) = \int_{\Omega} G \, h \, dV + \int_{\partial \Omega} f \, \vec{\nabla} G \cdot \hat{\mathbf{n}} \, dA
$$

$$
= \int_{\Omega} G \, h \, dV - \int_{\partial \Omega} f \, \frac{\partial G}{\partial \hat{n}} \, dA
$$

If we can find G that satisfies $(4.4.208)$ \blacktriangleright we can use $(4.4.211)$ to find the solution $u(\mathbf{x})$ of boundary value problem (4.4.207.)

To find Green's function for a domain $D\subset \mathbb{R}^n$ we first find fundamental function that satisfies $\nabla^2 K = \delta(r)$

 $(4.4.211)$

 $(4.4.210.)$

In terms of these solutions we define fundamental solutions for Laplace equation with pole at $\mathrm{x}=\vec{\xi}$ by where ω_n denotes surface area of unit sphere in \mathbb{R}^n $(4.4.212.)$ $(4.4.213.)$ that is $\blacktriangleright \omega_n =$ $2\pi^{n/2}$ $\Gamma(n/2)$ In general \blacktriangleright Green's function for a region Ω can be obtained by adding a harmonic function $v(\mathbf{x},\vec{\xi})$ i.e. $\nabla^2 v=0$ in Ω to fundamental Green's function for complete space $\bm{\cdot} \in K(\mathbf{x},\vec{\xi})$ such that sum satisfies boundary condition $G(\mathbf{x},\vec{\xi})=0$ if $\mathbf{x}\in\partial\Omega$ Of course \blacktriangleright v does not need be harmonic outside Ω We illustrate this idea with some specific examples $K(\mathbf{x},\vec{\xi}) =$ $\overline{6}$ $\frac{1}{2}$ $\overline{}$ $-\frac{1}{2\pi} \ln |\mathbf{x} - \vec{\xi}|$ $n = 2$ $\frac{1}{(n-2)}$ ω_n $\overline{}$ **Colorado** $\left| \mathbf{x} - \bar{\xi} \right|$ $\frac{1}{2}$ 2*n* $n \geq 3$ and r^{2-n} is harmonic in \mathbb{R}^n_0 for $n\geq 3$ We have already seen that $\ln(r=|{\bf x}|)$ is harmonic in \mathbb{R}^2_0

Example 4.4.3. 8.2. FUNDAMENTAL SOLUTIONS AND GREEN'S FUNCTIONS 15

Consider Dirichlet problem for upper half-plane in \mathbb{R}^2 $\left\{\nabla^2 u(x, y) = 0 \quad \mathbb{R}^2_+ = \{(x, y) : x \in \mathbb{R}, y > 0\} \right\}$ $u(x, 0) = f(x)$ $x \in \mathbb{R}$ Green function $G(\mathbf{x},\vec{\xi})$ must cancel on x -axis $(y=0)$ $\mathbf{x} = (x, y), \vec{\xi} = (x', y')$ $(4.4.214)$ (*n*2) ⇤*ⁿ [|]^x* ²*[|] ⁿ* ⇥ ³ *,* (4.4.212) Consider Dirichlet problem for upper half-plane in \mathbb{R}^+ $\mathcal{L}(x,y)$ (*n/*2) *.* (4.4.213) $\int \nabla^2 u(x, y)$ $\displaystyle\frac{1}{x} = f(x)$: $\displaystyle\frac{x}{x} \in \mathbb{R}$ $\left(\omega, y\right)$, in the method of images $\left(\omega, y\right)$

ln *|x | n* = 2

2

This can be achieved using method of images
placing in addition to point source at $\xi=(x',y')$ with charge 1 another (virtual) at $\vec{\xi}^* = (x', -y')$ with charge -1 This can be achieved using method of images This can be achieved using ⁺. Then the reflection through through the plane placing in addition to point so

 ξ $\boldsymbol{\xi}^*$ \boldsymbol{y} \boldsymbol{x}

 $(4.4.216.)$ $(4.4.217)$ Clearly \blacktriangleright G is harmonic for $(x,y) \neq (x',y')$ and satisfies $G\left((x,0),(x',y')\right)=0$ Normal derivative at $y'=0$ is ∂G ∂n $\overline{}$ $|y|=0$ $=-\frac{\partial G}{\partial y^{\prime}}$ $\partial y'$ $\overline{}$ **Louise Avenue** $|y|=0$ $=-\frac{1}{\pi}$ π *y* $(x - x')^2 + y^2$ Solution for Dirichlet problem in upper half-plane is then given by $u(x,y) = \int^\infty$ $-\infty$ $\partial G(\mathbf{x},\vec{\xi})$ $\partial y'$ $\overline{\mathbb{I}}$ $|y|=0$ $f(x')dx'$ = *y* π \int^{∞} $-\infty$ $f(x')$ $(x-x)$ $\frac{y}{(x^{2}+y^{2})}dx'$ $G(\mathbf{x},\vec{\xi}) = \frac{1}{2}$ 2π $\left\{\ln\left[\sqrt{(x-x')^2+(y+y')^2}\right.$ $\bigg] - \ln \bigg[\sqrt{(x - x')^2 + (y - y')^2}$ $\overline{1}$ = 1 2π $\ln \left[\frac{\sqrt{(x-x')}}{\sqrt{(x-x')}} \right]$ $(x+y^2)(y+y^2)$ $\sqrt{(x-x')^2 + (y-y')^2}$ $\mathbf 1$ Green function is found to be $(4.4.215.)$

1 $(x_1 - \xi_1)^2 + \cdots + (x_{n-1} - \xi_{n-1})^2 + x_n^2$ $(4.4.218.)$ Sunday, May 10, 15 25

 $\partial G(\mathbf{x},\vec{\xi})$

 $\overline{}$

 $d\xi_{n-1} f(\xi_1, \ldots, \xi_{n-1})$

 $\left| \xi_n = 0 \right\rangle$

 $f(\xi_1,\ldots,\xi_{n-1})$

 $\partial \xi_n$

$$
\mathbf{x} = (x_1, \dots, x_n) \quad \text{and} \quad \vec{\xi} = (\xi_1, \dots, \xi_n)
$$

 $-\infty$

 $d\xi_1 \ldots \int^\infty$

 $d\xi_1 \ldots \int^\infty$

If more generally

 $u(x_1,\ldots,x_n)$ = $\int_{-\infty}^{\infty}$

=

 \times

 $-\infty$

 \int^{∞}

 $-\infty$

 $2x_n$

 ω_n

 $d\xi_{n-1}$

 $-\infty$

Example 4.4.4.

 Consider Dirichlet problem $\int \nabla^2 u(\mathbf{x}) = 0$ $B^3(0,R)$ $u(\mathbf{x}) = f(\mathbf{x})$ *S*²(0*, R*) where $B^{3}(0,R)$ is the ball of radius R centered at the origin and $S^2(0,R)$ is its 2-dimensional spherical boundary By placing a $+1$ charge at $\vec{\xi}$ with $|\vec{\xi}| = \xi < R$ and a virtual charge $-R/\xi$ at $\vec{\xi}^* = \vec{\xi} R^2/\xi^2$ with $|\vec{\xi}^*|=\xi^*=R^2/\xi>R$ we obtain $G(\mathbf{x},\vec{\xi})=\frac{1}{4}$ 4π $\left[\frac{1}{d} - \frac{R}{\xi}\right]$ 1 d' 1 where d,d^{\prime} are distances from ${\bf x}$ to (4.4.219.) (4.4.220.) $\vec{\xi}$ and $\vec{\xi}^*$: $d^2 = r^2 + \xi^2 - 2r\xi \cos \theta_0$ and $d'^2 = r^2 + {\xi^*}^2 - 2r\xi^* \cos \theta_0$ (4.4.221.) with $r=|\mathbf{x}|$ and θ_0 angle between $\mathbf x$ and $\bar{\xi}$

⌃²*u*(*x*)=0 *B*³(0*, R*) at border of sphere $r = R$, $\hspace{1cm}$ the triangle $\bigtriangleup(0,\xi, \mathrm{x})$ is similar to the triangle $\bigtriangleup(0,\mathrm{x},\xi^*)$ where $\triangle(a, b, c)$ denotes triangle with vertices a, b, c In this way \blacktriangleright if X is at border of sphere For Friano *R*² *||* the triangle $\triangle(0,\vec{\xi},{\bf x})$ is similar to the triangle $\triangle(0,{\bf x},\vec{\xi}^*)$ In this way \blacktriangleright if ${\bf x}$ is at border of sphere $r=R$

⇧

 $\frac{1}{\sqrt{2}}$ is the Sphere $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ is the sphere of $\frac{1}{\sqrt{2}}$ B_1 yielding $G(\mathbf{x}, \mathbf{0}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ (4.4.222 $\mathcal{A}(\mathbf{x}, \mathbf{v}) = 4\pi (r - R)$ Therefore $\blacktriangleright d/d' = \xi/R$ and $G(\mathbf{x},\vec{\xi})=0$ If $\xi \to 0$ then $d \to r$ and $d' \to \infty$ with $\xi d' \to R^2$ yielding $G(\mathbf{x},\mathbf{0})=\frac{1}{4}$ 4π $\left(\frac{1}{r} - \frac{1}{R}\right)$ ◆ $(4.4.222.)$

 $(4.4.223)$ $(4.4.224.)$ $(4.4.225)$ $(4.4.226.)$ Similarly \blacksquare in case of a circle $\subset \mathbb{R}^2$ $G(\mathbf{x},\vec{\xi}) = -\frac{1}{2\pi}$ 2π $\left[\ln\left(d\right)-\ln\right]\left(\frac{d'\xi}{R}\right]$ *R* \setminus $= -\frac{1}{2\pi}$ 2π $\ln \left[\frac{dR}{\mu} \right]$ $d'\xi$ $\overline{1}$ if $\xi \to 0$ $G(\mathbf{x},\mathbf{0})=-\frac{1}{2\pi}$ 2π $\ln\left(\frac{r}{\tau}\right)$ *R* \overline{a} In both cases \blacktriangleright $G(\mathbf{x},\vec{\xi})$ is of the form $g(d)-g(d'\xi/R)$ We compute normal derivative at $\xi = R$ $(d = d' | \xi = \xi^* = R)$ ∂d $\partial \xi$ $\overline{}$ $\overline{}$ $\overline{}$ $\mid_{\xi=R}$ $=-\frac{\partial d^{\prime\prime}}{\partial \varepsilon}% =-\frac{\partial d^{\prime\prime}}{\partial \varepsilon^{2}} =-\frac{\partial d^{\prime\prime}}$ $\partial \xi$ $\overline{}$ I I I $\mid_{\xi=R}$ = $R-r\cos\theta_0$ where $\frac{d\vec{\theta}}{d\vec{\xi}}\bigg|_{\vec{\xi}=R} = -\frac{d\vec{\theta}}{d\vec{\xi}}\bigg|_{\vec{\xi}=R} = \frac{1}{d\vec{\xi}}$ $\partial G(\mathbf{x},\vec{\xi})$ $\partial \xi$ $\overline{}$ $\mid_{\xi=R}$ $= g'(d)$ $\left[\frac{\partial d}{\partial \xi} - \frac{\xi}{R}\right]$ $\frac{\partial d'}{\partial \xi} - \frac{d}{R}$ $\mathbf{1}$ $= g'(d) \frac{2R^2 - d^2 - 2Rr \cos \theta_0}{L}$ *dR* $= g'(d) \frac{R^2 - r^2}{lR}$ *dR*

In case of sphere \bullet $g'(d) = -1/(4\pi d^2)$ and so solution of (4.4.219.) with $u(R, \Omega) = f(\Omega)$ becomes $u(r,\Omega)$ = $-$ *S*² ∂G $\frac{\partial \mathcal{L}}{\partial \xi} f(\Omega') \ dA$ = $\frac{R(R^2 - r^2)}{r^2}$ 4π *S*² $f(\Omega')$ $\frac{J(25)}{d^3(R,r,\theta_0)} d\Omega'$ (4.4.227.) $u(r, \theta) = -$ *S*¹ ∂G $\frac{\partial \mathcal{L}}{\partial \xi}$ $f(\theta')$ dA = $\frac{R^2 - r^2}{4}$ 2π $\int^{2\pi}$ 0 $f(\theta')$ $d^2(R,r,\theta_0)$ $d\theta'$ (4.4.228.) where we have taken $dA=R^2d\Omega$ and θ_0 is given by (4.4.198.) For two dimensional case $\blacktriangleright g'(d) = -1/(2\pi d)$ Solution to (4.4.219.) with $u(R,\theta)=f(\theta)$ becomes where we have taken $dA = R d\theta'$ and $\theta_0 = \theta - \theta'$

n-dimensional problem is solved in a similar fashion

Example 4.4.5.

Gravity fields of Earth, Moon, and Mars have been described by Laplace series with real eigenfunctions

$$
U(r, \theta, \phi) = \frac{GM}{R} \left\{ \frac{R}{r} - \sum_{n=2}^{\infty} \sum_{m=0}^{\infty} \left(\frac{R}{r} \right)^{n+1} \left[C_{nm} Y_{mn}^{l}(\theta, \phi) + S_{nm} Y_{mn}^{0}(\theta, \phi) \right] \right\}
$$

 $Y_{mn}^l(\theta, \phi) = P_n^m(\cos \theta) \cos(m\phi)$

 $Y_{mn}^{0}(\theta, \phi) = P_n^m(\cos \theta) \sin(m\phi)$

Satellites measurements lead to

Nodal lines separating regions of sphere for various (l, m) pairs

Bottom row shows the $L = 3$ partic here for EUSO is well-matched to the systematic angular IV. RECONSTRUCTING SPATIAL MOMENTS Bottom row shows the L = 3 partitions, (3, 0), (3, 1), (3, 2), and (3, 3)

