Physics 307

MATHEMATICAL PHYSICS

Luis Anchordoqui

PARTIAL DIFFERENTIAL EQUATIONS !!! 4.1 Taxonomy V 4.2 Wave Equation 🗸 4.3 Diffusion Equation 1 THE HIGGS BOSON WALKS INTO 4.4 Laplace Equation CHURCH. THE PRIEST SAYS WE DO ALLOW HIGGS BOSONS IN HERE **IGGS BOSON SAYS 'BUT WITHOUT** ME, HOW CAN YOU HAVE MASS?'

4.4. Laplace Equation

Today we will discuss canonical form of elliptic equations Up to lower order terms we found that canonical form is $abla^2 u = u_{xx} + u_{yy} = 0$

This equation is called Laplace equation and besides theory of partial differential equations it is also extremely important in study of complex analysis More generally — we will consider Laplacian in \mathbb{R}^n

$$\nabla^2 = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} \qquad (4.4.168.)$$

and Laplace equation

$$abla^2 u = 0$$
 (4.4.169.)

Functions satisfying this condition are called harmonic functions

4.4. 1. Harmonics functions In \mathbb{R}^2 Laplacian in polar coordinates is given by $\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$ (4.4.170.)

and for n>2 $\nabla^2 = \frac{1}{r^{n-1}} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial}{\partial r} \right) + \frac{\nabla_{\Omega}^2}{r^2} \quad (4.4.171.)$ where $abla_\Omega^2$ is Laplace operator on unit sphere S^{n-1} For n=3 we have $\nabla_{\Omega}^{2} = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial\phi^{2}} \quad (4.4.172.)$ Let us seek a harmonic function with property that it depends only on radial variable ri.e. $rightarrow f(\mathbf{x}) = \phi(r)$ where $r = |\mathbf{x}| = \sqrt{\sum_{j=1}^{n} x_j^2}$

Lemma 4.4.1.

If $f(\mathbf{x}) = \phi(r)$ where $r = |\mathbf{x}|, \mathbf{x} \in \mathbb{R}^n$ then $abla^2 f(\mathbf{x}) = \phi''(r) + \frac{(n-1)}{r} \phi'(r)$ (4.4.173.) Proof. Since $\partial r/\partial x_j = x_j/r$ we have $\nabla^2 f(\mathbf{x}) = \sum \partial_{x_j} \left[\frac{x_j}{r} \phi'(r) \right]$ $= \sum_{i=1}^{n} \left| \frac{x_j^2}{r^2} \phi''(r) + \frac{1}{r} \phi'(r) - \frac{x_j^2}{r^3} \phi'(r) \right|$ $= \phi''(r) + \frac{n}{r}\phi'(r) - \frac{1}{r}\phi'(r)$ $= \phi''(r) + \frac{(n-1)}{m} \phi'(r)$ (4.4.174.)

Corollary 4.4.1. If $f(\mathbf{x}) = \phi(r)$ is a radial function on \mathbb{R}^n then f satisfies $abla^2 f = 0$ on \mathbb{R}^n_0 if and only if: (i) $\phi(r) = a + b r^{2-n}$ for n > 2(ii) $\phi(r) = a + b \ln r$ for n = 2where a, b are constants Proof. From (4.4.174.) we have $\frac{\phi''(r)}{\phi'(r)} = \frac{1-n}{r}$ Integrating once we get (4.4.175.) $\ln \left[(\phi'(r)) \right] = (1-n) \ln r + \ln c$ (4.4.176.) or (4.4.177.) $\phi'(r) = c r^{1-n}$ where c is a constant One more integration gives desired answer

Next we seek harmonic functions that are products of radial functions R(r) and angular functions $\Theta(heta)$ Then From (4.4.170.) in case n=2 we have $r^2 R''(r)\Theta(\theta) + rR'(r)\Theta(\theta) + R(r)\Theta''(\theta) = 0$ (4.4.178.) or separating variables $\frac{r^2 R''(r) + r R'(r)}{R(r)} = -\frac{\ddot{\Theta}(\theta)}{\Theta(\theta)} = k^2 \quad (4.4.179.)$ or $r^2 R''(r) + r R'(r) - k^2 R(r) = 0$ and $\Theta''(\theta) = -k^2 \Theta(\theta)$ (4, 4, 180.)We recognize first equation in (4.4.180.) as an Euler equation Solution is of form r^{\wedge} with λ given by $\lambda(\lambda-1)+\lambda-k^2=0$ (4.4.181.) that is $\lambda = \pm k$

Recall that if $k=\overline{0}$

two l.i. solutions are $r^{\lambda}=r^{0}=1$ and $r^{\lambda}\ln r=\ln r$

We obtain 🦳

$$R_{k}(r) = \begin{cases} c_{1} + c_{2} \ln r & k = \\ c_{1} r^{k} + c_{2} r^{-k} & k \neq \end{cases}$$

(4.4.182.)

(4.4.183.)

angular dependence is given by

$$\Theta_k(\theta) = \begin{cases} c_1 + c_2 \theta & k = 0\\ c_1 \cos(k\theta) + c_2 \sin(k\theta) & k \neq 0 \end{cases}$$

where c_1 and c_2 are constants Note that k can be real, imaginary, or complex If $k = k_r + ik_i$ then

 $r^{k} = e^{k \ln r} = e^{k_{r} \ln r} \left[\cos(k_{i} \ln r) + i \sin(k_{i} \ln r) \right] \quad (4.4.184.)$ As for examples in rectangular coordinates we recall some facts from elementary complex analysis \Rightarrow

Theorem 4.1.1. Real and imaginary parts of a complex analytic function are harmonic functions

Proof.

Let f(z) = f(x, y) = u(x, y) + iv(x, y) be analytic on $D \subset \mathbb{C}$ Then since f is analytic on $D \leftarrow$ it is infinitely differentiable on Dand thus $u \notin v$ have (continuous) partial derivatives of all orders Furthermore $\leftarrow u$ and v satisfy Cauchy-Riemann conditions

Therefore
$$\partial^2 u = \frac{\partial}{\partial x} \left[\frac{\partial u}{\partial x} \right] = \frac{\partial}{\partial x} \left[\frac{\partial v}{\partial y} \right]$$

$$= \frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$$

$$= \frac{\partial}{\partial y} \left[\frac{\partial v}{\partial x} \right] = \frac{\partial}{\partial y} \left[-\frac{\partial u}{\partial y} \right] = -\frac{\partial^2 u}{\partial y^2}$$

Consequently – $abla^2 u = 0$ and u is a harmonic function

We can prove that v is harmonic in much same way

4.4.2 Spherical harmonics Consider equation $abla^2 u = 0$ in a spherically symmetric region $r_1 \le r \le r_2, 0 \le \theta \le \pi, 0 \le \phi \le 2\pi$ We will use notation $\Omega = (heta, \phi)$ with $d\Omega = \sin heta \, d heta \, d \phi$ In these coordinates - Laplacian is given by (4.4.171) & (4.4.172) Assuming a solution of the form $u(r,\Omega)=R(r)Y(\Omega)$ we obtain $R'' + \frac{2}{r}R' - \frac{k^2}{r^2}R = 0$ and $\nabla^2 Y = -k^2 Y$ (4.4.187.) $k \equiv \text{constant}$ It is easily seen that the solution of the angular part is bounded and single-valued only if $k^2 = l(l+1)$ with $\ l \in \mathbb{N}$ Here - $Y(\Omega) = Y_{lm}(\Omega)$ is spherical harmonic of order l $-\nabla_{\Omega}^{2}Y_{lm}(\Omega) = l(l+1)Y_{lm}(\Omega), \quad -l \le m \le l, \quad l = 0, 1, \dots$ (4.4.188.) with $Y_{lm}(\Omega) = (-1)^{(m+|m|)/2} \sqrt{\frac{(2l+1)(l-|m|)!}{4\pi(l+|m|)!}} P_l^{|m|}(\cos\theta) e^{im\phi}$ (4.4.189.)

 $Y_{lm}(\Omega) \text{ are normalized eigenfunctions of } \nabla_{\Omega}^{2}$ $\int_{S^{2}} Y_{lm}(\Omega) Y_{l'm'}^{*}(\Omega) d\Omega = \int_{0}^{\pi} \int_{0}^{2\pi} Y_{lm} Y_{l'm'}^{*} \sin \theta \ d\theta \ d\phi = \delta_{ll'} \delta_{mm'} \text{ (4.4.190.)}$

For this phase convention

 $Y_{lm}^*(\Omega) = (-1)^m Y_{l-m}(\Omega)$

For l=0,1,2surfaces $r=|Y_{lm}(\theta,\phi)|$ look like this -

Equation for radial part is (as we have seen) of Euler type solution r^{λ} and λ determined by $\lambda(\lambda-1)+2\lambda-l(l+1)=0$ $\lambda = l$ and $\lambda = -l-1$ Product solution is therefore of form $\overline{R(r) Y(\Omega)} = \left(a r^{l} + b r^{-l-1}\right) Y_{lm}(\Omega)$ (4.4.191.)Solutions which do not depend on ϕ (i.e. invariants under rotations about z-axis) correspond to m=0 with arbitrary lwhile solutions independent of heta and ϕ (i.e. invariants under rotations) are obtained only for $l\equiv 0\,$ and are of form u(r)=a+b/r . The general solution takes form $u(r,\Omega) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[a_{lm} r^l + \frac{b_{lm}}{r^{l+1}} \right] Y_{lm}(\Omega)$ (4.4.192.) For bounded solutions if $r_1=0 \Rightarrow b_{lm}=0$ while if $r_2=\infty \Rightarrow a_{lm}=0$

Example 4.4.1.

Consider problem of determining harmonic function $u(r,\Omega)$ in the interior of a sphere of radius $r_2=R$ knowing their values on the surface $u(R,\Omega)=f(\Omega)$ Function must be of the form

$$u(r, \Omega) = \sum_{l=0} \sum_{m=-l} a_{lm} r^l Y_{lm}(\Omega)$$
 (4.4.193.)

Boundary condition leads to

$$u(R,\Omega) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} R^{l} Y_{lm}(\Omega) \quad (4.4.194.)$$

which is series expansion of spherical harmonics of $f(\Omega)$ Taking into account (4.4.190.) \leftarrow coefficients are given by \supset $a_{lm} = \frac{1}{R^l} \int_{S^2} Y_{lm}^*(\Omega) f(\Omega) d\Omega$ (4.4.195.)

If $f(\Omega) = f(\theta) \Rightarrow a_{lm} = 0$ for $m \neq 0$

and thus $u(r,\Omega)=c_l \; r^l \; P_l(\cos heta_0)$ with $c_l=a_{l0}\; \sqrt{(2l+1)/(4\pi)}$ If $f(\Omega) = c \Rightarrow c_l = 0$ for $l \neq 0$ (because of orthogonality of P_l for l
eq 0 with $P_0 = 1$) and therefore $u(r,\Omega)=c$ In general - using (4.4.16.) we obtain $u(r,\Omega) = \int_{S^2} \left| \sum_{l=0}^{\infty} \left(\frac{r}{R} \right)^l \sum_{m=-l}^l Y_{lm}(\Omega) Y_{lm}^*(\Omega') \right| f(\Omega') d\Omega' \quad (4.4.196.)$ To evaluate this series Let us first introduce theorem of addition of spherical harmonics $\sum_{l=1}^{l} Y_{lm}(\Omega) Y_{lm}^{*}(\Omega') = \frac{2l+1}{4\pi} P_{l}(\cos\theta_{0})$ (4.4.197.) m = -lwhere $heta_0$ is angle between directions determined by Ω and Ω' $\cos(\theta_0) = \mathbf{\hat{n}}(\Omega) \ \mathbf{\hat{n}}(\Omega') = \cos\theta \ \cos\theta' + \sin\theta \ \sin\theta' \ \cos(\phi - \phi') \ (4.4.198.)$ with $\hat{\mathbf{n}}(\Omega) = (\sin\theta \ \cos\phi, \ \sin\theta \ \sin\phi, \ \cos\theta)$

Equation (4.4.197.) reflects fact that first term is a scalar that depends only on angle $\, heta_0$ between $\,\Omega$ and $\,\Omega'$ In this case \blacktriangleright by choosing $\Omega = (heta, \phi) = (0, 0)$ and given that $P_l^m(1) = \delta_{m0}$ it follows that $Y_{lm}(0,0)=\delta_{m0}Y_{l0}(0,0)=\sqrt{(2l+1)/(4\pi)}$ so we obtain $\sum Y_{lm}(0,0) Y_{lm}(\Omega') = Y_{l0}(0,0) Y_{l0}^*(\Omega') = \frac{2l+1}{4\pi} P_l(\cos\theta') \quad (4.4.199.)$ m = -lwhich leads to (4.4.197) as $heta_0= heta'$ if heta=0In addition - (4.4.197.) reflects fact that as a function of $\Omega, P_l(\cos heta_0)$ is also eigenfunction of $abla_\Omega^2$ with eigenvalue -l(l+1)and therefore must be a linear combination of $Y_{lm}(\Omega)$ with same l $P_l(\cos\theta_0) = \sum_{l} c_m Y_{lm}(\Omega)$ (4.4.200.) with $c_m = \int_{S^2} Y_{lm}^*(\Omega) P_l(\cos \theta_0) d\Omega = \frac{4\pi}{2l+1} Y_{lm}^*(\Omega')$ (4.4.201.)

We must now evaluate series $\sum_{l=0}^{\infty} (2l+1) \; (r/R)^l \; P_l(\cos heta_0)$ with $r < R^l$

To this end we first introduce expansion

 $\frac{1}{d(r, R, \theta_0)} = \sum_{l=0}^{\infty} \frac{r^l}{R^{l+1}} P_l(\cos \theta_0), \quad \text{for} \quad r < R \quad (4.4.202.)$

with $d(r,R,\cos heta_0)=\sqrt{R^2+r^2-2Rr\cos heta_0}$

Relation (4.4.202.) can be derived by noting that first term of series is 3-dimensional harmonic function of (r, θ_0)

and must therefore be of form $\sum_{l=0}^{l}$

$$\int c_l r^l P_l(\cos\theta_0)$$

For $heta_0=0, d^{-1}(r,R,0)=(R-r)^{-1}=R^{-1}\sum_{l=0}^{\infty}(r/R)^l$ & so $c_l=1/R^{l+1}$

If we take derivative of (4.4.202) with respect to
$$r$$
 we can write

$$\sum_{l=0}^{\infty} l \frac{r^l}{R^{l+1}} P_l(\cos \theta_0) = r \frac{\partial}{\partial r} \sum_{l=0}^{\infty} \frac{r^l}{R^{l+1}} P_l(\cos \theta_0) = -\frac{r(r-R\cos \theta_0)}{(R^2+r^2-2Rr\cos \theta_0)^{3/2}}$$
combining this relation with (4.4.203.) we obtain

$$\sum_{l=0}^{\infty} (2l+1) \ (r/R)^l \ P_l(\cos \theta_0) = \frac{R^2 - r^2}{(R^2+r^2-2Rr\cos \theta_0)^{3/2}}$$
(4.4.203.)
Substituting(4.4.198) and (4.4.204.) into (4.4.197.)
we arrive at the solution for interior of the sphere

$$u(r,\Omega) = \frac{R(R^2-r^2)}{4\pi} \int_{S^2} \frac{f(\Omega')}{d^3(r,R,\theta_0)} d\Omega' \ (4.4.204.)$$

Example 4.4.2.

We consider now problem of determining the harmonic function on the outside of the sphere (r>R)

knowing their values on surface $u(R,\Omega)$ From (4.4.193.) we see that if u is harmonic function then

 $v(r,\Omega) = \frac{R}{r} u(R^2/r,\Omega) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[a_{lm} \frac{R^{2l+1}}{r^{l+1}} + b_{lm} \frac{r^l}{R^{2l+1}} \right] Y_{lm}(\Omega)$

is also harmonic as it is of form (4.4.192.) and satisfies boundary condition $v(R,\Omega)=u(R,\Omega)$

if u is defined for r < R then v is defined for r > R. Therefore — the solution for outside of the sphere is

$$v(r,\Omega) = \frac{R(r^2 - R^2)}{4\pi} \int_{S^2} \frac{f(\Omega')}{d^3(r, R, \theta_0)} \, d\Omega' \quad \text{(4.4.206.)}$$

4.4.3 Green function for Laplace operator Consider boundary value problem $\left\{ \begin{array}{l} \nabla^2 u(\mathbf{x}) = h(\mathbf{x}) \\ u(\mathbf{x}) = f(\mathbf{x}) \end{array} \right.$ in Ω on $\partial \Omega$ (4.4.207.) where $\Omega \subset \mathbb{R}^n$ is a normal domain that is a bounded domain such that: (i) boundary $\partial\Omega$ consists of a finite number of smooth surfaces (ii) any straight line parallel to a coordinate axis either intersects $\partial \Omega$ at a finite number of points or has a whole interval in common with $\partial\Omega$ Let $\mathbf{x}=ec{x}$ be a fixed point in $D\subset \mathbb{R}^2$ and let ξ be a variable point Let r be distance from \mathbf{x} to $\vec{\xi}$ $r = \sqrt{\sum_{j=1}^{n} (x_j - \xi_j)^2}$ solution of (4.4.207) can be written in terms of Green function satisfying \blacksquare $\begin{cases} \nabla^2 G = \delta(r) & \text{in } \Omega \\ G = 0 & \text{on } \partial\Omega \end{cases}$ (4.4.208.)

To obtain explicit form of $u(\mathbf{x})$ we make use of Gauss theorem $\int_{\Omega} \vec{\nabla} \cdot \mathbf{F} \, dV = \int_{\partial \Omega} \mathbf{F} \cdot \hat{\mathbf{n}} \, dA$ and write Green's first identity $\int_{\Omega} (G\nabla^2 u + \vec{\nabla} u . \vec{\nabla} G) \, dV = \int_{\partial\Omega} G(\vec{\nabla} u . \hat{\mathbf{n}}) \, dA \quad (4.4.209.)$ with vector field ${f F}=Gec
abla u$ Left side is a volume integral over (n-dimensional) volume Ω right side is surface integral over boundary of volume Ω Closed manifold $\partial\Omega$ is quite generally boundary of Ω oriented by outward-pointing normals and $\hat{\mathbf{n}}$ is outward pointing unit normal field of boundary $\partial\Omega$ Interchanging G with u and subtracting gives Green's second identity $\int_{\Omega} (u\nabla^2 G - G\nabla^2 u) \, dV = \int_{\partial\Omega} (u\vec{\nabla} G - G\vec{\nabla} u) \cdot \hat{\mathbf{n}} \, dA \quad \textbf{(4.4.210.)}$ Substituting (4.4.207.) and (4.4.208.) into Green's second identity

leads to
$$-\int_{\Omega} G h \, dV = \int_{\partial\Omega} f \, \vec{\nabla} G \, \cdot \, \hat{\mathbf{n}} \, dA$$
 (

rearranging we obtain

$$\begin{split} u(\mathbf{x}) &= \int_{\Omega} G \ h \ dV + \int_{\partial \Omega} f \ \vec{\nabla} G \ \hat{\mathbf{n}} \ dA \\ &= \int_{\Omega} G \ h \ dV - \int_{\partial \Omega} f \ \frac{\partial G}{\partial \hat{n}} \ dA \end{split}$$

If we can find G that satisfies (4.4.208) — we can use (4.4.211) to find the solution $u(\mathbf{x})$ of boundary value problem (4.4.207.)

To find Green's function for a domain $D\subset \mathbb{R}^n$ we first find fundamental function that satisfies $abla^2K=\delta(r)$

4.4.210.)

(4.4.211.)

We have already seen that $\ln(r=|\mathbf{x}|)$ is harmonic in \mathbb{R}^2_0 and r^{2-n} is harmonic in \mathbb{R}^n_0 for $n\geq 3$ In terms of these solutions we define fundamental solutions for Laplace equation with pole at $\mathbf{x}=\mathbf{\xi}$ by $K(\mathbf{x}, \vec{\xi}) = \begin{cases} -\frac{1}{2\pi} \ln |\mathbf{x} - \vec{\xi}| \\ \frac{1}{(n-2)} \omega_n |\mathbf{x} - \vec{\xi}|^{2-n} \end{cases}$ n = 2(4.4.212.) $n \ge 3$ where ω_n denotes surface area of unit sphere in \mathbb{R}^n that is $\blacktriangleright \ \omega_n = rac{2\pi^{n/2}}{\Gamma(n/2)}$ (4.4.213.) In general – Green's function for a region Ω can be obtained by adding a harmonic function $v(\mathbf{x},\xi)$ i.e. $abla^2v=0$ in Ω to fundamental Green's function for complete space \blacktriangleright $K(\mathbf{x},\xi)$ such that sum satisfies boundary condition $G(\mathbf{x}, oldsymbol{\xi}) = 0$ if $\mathbf{x} \in \partial \Omega$ Of course r v does not need be harmonic outside Ω We illustrate this idea with some specific examples 📫

Example 4.4.3.

Consider Dirichlet problem for upper half-plane in \mathbb{R}^2 $\begin{cases}
\nabla^2 u(x,y) = 0 & \mathbb{R}^2_+ = \{(x,y) : x \in \mathbb{R}, y > 0\} \\
u(x,0) = f(x) & x \in \mathbb{R}
\end{cases}$ (4.4.214.) Green function $G(\mathbf{x}, \vec{\xi})$ must cancel on x-axis (y = 0) $\mathbf{x} = (x, y), \vec{\xi} = (x', y')$

This can be achieved using method of images placing in addition to point source at $\xi=(x',y')$ with charge 1 another (virtual) at $ec{\xi}^*=(x',-y')$ with charge -1

Green function is found to be $G(\mathbf{x},\vec{\xi}) = \frac{1}{2\pi} \left\{ \ln \left[\sqrt{(x-x')^2 + (y+y')^2} \right] - \ln \left[\sqrt{(x-x')^2 + (y-y')^2} \right] \right\}$ $= \frac{1}{2\pi} \ln \left[\frac{\sqrt{(x-x')^2 + (y+y')^2}}{\sqrt{(x-x')^2 + (y-y')^2}} \right]$ (4.4.215.) Clearly - G is harmonic for $(x,y) \neq (x',y')$ and satisfies $G\left((x,0),(x',y')
ight)=0$ Normal derivative at y'=0 is $\left. \frac{\partial G}{\partial n} \right|_{y'=0} = -\frac{\partial G}{\partial y'} \bigg|_{y'=0} = -\frac{1}{\pi} \frac{y}{(x-x')^2 + y^2}$ (4.4.216.) Solution for Dirichlet problem in upper half-plane is then given by $u(x,y) = \int_{-\infty}^{\infty} \frac{\partial G(\mathbf{x},\vec{\xi})}{\partial y'} \bigg|_{y'=0} f(x')dx'$ $= \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{\overline{f(x')}}{(x - x')^2 + y^2} \, dx'$ (4.4.217.)

$$\mathbf{x} = (x_1, \dots, x_n) \quad \text{and} \quad \vec{\xi} = (\xi_1, \dots, \xi_n) \quad \mathbf{b}$$

$$u(x_1, \dots, x_n) = \int_{-\infty}^{\infty} d\xi_1 \dots \int_{-\infty}^{\infty} d\xi_{n-1} \frac{\partial G(\mathbf{x}, \vec{\xi})}{\partial \xi_n} \Big|_{\xi_n = 0} f(\xi_1, \dots, \xi_{n-1})$$

$$= \frac{2x_n}{\omega_n} \int_{-\infty}^{\infty} d\xi_1 \dots \int_{-\infty}^{\infty} d\xi_{n-1} f(\xi_1, \dots, \xi_{n-1})$$

$$\times \frac{1}{(x_1 - \xi_1)^2 + \dots + (x_{n-1} - \xi_{n-1})^2 + x_n^2} \quad (4.4.218.)$$
Sunday, May 10, 15

If more generally

Example 4.4.4.

Consider Dirichlet problem $\begin{cases} \nabla^2 u(\mathbf{x}) = 0\\ u(\mathbf{x}) = f(\mathbf{x}) \end{cases}$ $B^{3}(0, R)$ (4.4.219.) $S^{2}(0,R)$ where $B^3(0,R)$ is the ball of radius R centered at the origin and $S^2(0,R)$ is its 2-dimensional spherical boundary By placing a +1 charge at $ec{\xi}$ with $|ec{\xi}| = \xi < R$ and a virtual charge $-R/\xi$ at $ec{\xi^*}=ec{\xi}R^2/\xi^2$ with $|ec{\xi^{*}}|=\xi^{*}=R^{2}/\xi>R$ we obtain $G(\mathbf{x}, \vec{\xi}) = \frac{1}{4\pi} \left| \frac{1}{d} - \frac{R}{\xi} \frac{1}{d'} \right|$ (4.4.220.) where d,d' are distances from ${f x}$ to ${f \xi}$ and ${f ec \xi}^*$: $d^{2} = r^{2} + \xi^{2} - 2r\xi \cos \theta_{0}$ and $d'^{2} = r^{2} + \xi^{*2} - 2r\xi^{*} \cos \theta_{0}$ (4.4.221.)with $r = |\mathbf{x}|$ and $heta_0$ angle between \mathbf{x} and ξ

In this way - if x is at border of sphere r = Rthe triangle $\triangle(\mathbf{0}, \vec{\xi}, \mathbf{x})$ is similar to the triangle $\triangle(\mathbf{0}, \mathbf{x}, \vec{\xi}^*)$ where $\triangle(a, b, c)$ denotes triangle with vertices a, b, c

Therefore $rac{d}/d' = \xi/R$ and $G(\mathbf{x}, \vec{\xi}) = 0$ If $\xi \to 0$ then $d \to r$ and $d' \to \infty$ with $\xi d' \to R^2$ yielding $G(\mathbf{x}, \mathbf{0}) = \frac{1}{4\pi} \left(\frac{1}{r} - \frac{1}{R}\right)$ (4.4.222.)

Similarly — in case of a circle $\subset \mathbb{R}^2$ $G(\mathbf{x},\vec{\xi}) = -\frac{1}{2\pi} \left| \ln(d) - \ln\left(\frac{d'\xi}{R}\right) \right|$ $= -\frac{1}{2\pi} \ln \left[\frac{dR}{d'\xi} \right]$ (4.4.223.) if $\xi \to 0$ $G(\mathbf{x}, \mathbf{0}) = -\frac{1}{2\pi} \ln\left(\frac{r}{R}\right)$ (4.4.224.) In both cases \blacktriangleright $G(\mathbf{x}, ec{\xi})$ is of the form $g(d) - g(d'\xi/R)$ We compute normal derivative at $\xi=R$ (d=d' $\xi=\xi^*=R$) $\frac{\partial G(\mathbf{x}, \overline{\xi})}{\partial \xi} \bigg|_{\xi = R} = g'(d) \left[\frac{\partial d}{\partial \xi} - \frac{\xi}{R} \frac{\partial d'}{\partial \xi} - \frac{d}{R} \right]$ $= g'(d) \ \frac{2R^2 - d^2 - 2Rr\cos\theta_0}{dR}$ $=g'(d)\frac{R^2-r^2}{dP}$ (4.4.225.) $\left. \frac{\partial d}{\partial \xi} \right|_{\xi=R} = -\frac{\partial d'}{\partial \xi} \right|_{\xi=R} = \frac{R - r \cos \theta_0}{d}$ (4.4.226.)where

In case of sphere $racksing'(d) = -1/(4\pi d^2)$ and so solution of (4.4.219.) with $\ u(R,\Omega)=f(\Omega)$ becomes $u(r,\Omega) = -\int_{S^2} \frac{\partial G}{\partial \xi} f(\Omega') \, dA$ $= \frac{R(R^2 - r^2)}{4\pi} \int_{S^2} \frac{f(\Omega')}{d^3(R, r, \theta_0)} d\Omega' \quad (4.4.227.)$ where we have taken $dA=R^2d\Omega$ and $heta_0$ is given by (4.4.198.) For two dimensional case $\blacktriangleright g'(d) = -1/(2\pi d)$ Solution to (4.4.219.) with u(R, heta)=f(heta) becomes $u(r,\theta) = -\int_{S^1} \frac{\partial G}{\partial \xi} f(\theta') dA$ $= \frac{R^2 - r^2}{2\pi} \int_{0}^{2\pi} \frac{\overline{f(\theta')}}{d^2(R, r, \theta_0)} d\theta' \quad (4.4.228.)$ where we have taken dA=Rd heta' and $heta_0= heta- heta'$

n-dimensional problem is solved in a similar fashion

Example 4.4.5.

Gravity fields of Earth, Moon, and Mars have been described by Laplace series with real eigenfunctions

$$U(r,\theta,\phi) = \frac{GM}{R} \left\{ \frac{R}{r} - \sum_{n=2}^{\infty} \sum_{m=0}^{\infty} \left(\frac{R}{r}\right)^{n+1} \left[C_{nm}Y_{mn}^{l}(\theta,\phi) + S_{nm}Y_{mn}^{0}(\theta,\phi)\right] \right\}$$

 $Y_{mn}^{l}(\theta,\phi) = P_{n}^{m}(\cos\theta) \, \cos(m\phi)$

 $Y_{mn}^0(\theta,\phi) = P_n^m(\cos\theta)\,\sin(m\phi)$

Satellites measurements lead to

Coefficient	Earth	Moon	Mars
C_{20}	1.083×10^{-3}	$(0.200 \pm 0.002) \times 10^{-3}$	$(1.96 \pm 0.01) \times 10^{-3}$
C_{22}	0.16×10^{-5}	$(2.4 \pm 0.5) \times 10^{-5}$	$(-5 \pm 1) \times 10^{-5}$
S_{22}	-0.09×10^{-5}	$(0.5 \pm 0.6) \times 10^{-5}$	$(3\pm1)\times10^{-5}$

NODAL LINES SEPARATING REGIONS OF SPHERE FOR VARIOUS (L, m) PAIRS

