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& D, Lagi&&e Equ&&&ov\

Today we will discuss canonical form of elliptic equations

Up to lower order terms we found that canonical form is
VU = Uy + Uy =40
This equa&iou is called LQFLC&CQ equ&&mv\

and besides theory of partial differential equations
ik is also extremely important in study of complex analysis

More generally m we will consider Laplacian in R
G -

and Laplace equation
Vi —"(]

Functions satisfying this condition are called harmonic functions
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44, 1. Harmonics functions
I Rz La\pmcmv\ A potar coordinates is glven b:j

%, 1 H?
B (4.4.170.)
(T 6’T> p r2 062

and for n > 2

1 e 0

rn—1 op or

where V?) is Laplace operator on unit sphere o=t

vQ A 3 ,rn—l_ bl V_?Z
5 G (44.171)

For N = 3 we have

Vess i sin@2 + o
7 sin6 69 0o Wy ey reir

Leb us seek a harmonic function
wikh Properﬁv Ehat ik depemds oni.j on radial variable 7 D

n

e o LBl 5

i
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Levwinwa 441,

Inff( ) = ¢(7“) where 1" = ‘X‘,X € R" then

V3 f(x) = ¢ () + B

"(r) (44.173)
Prook. G il

Since ﬁr/axj = gjj/r we have

V2 f (%)
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Corou&rv 441,
¥ f(x) = ¢(r) is a radial function on R”

then f satisfies V2f =0 on R{ # and only if:
WD o(r) =a+br*" forn > 2

(W) o(r) =a+bln7r forn =2
where a, b are constanks

Proof.,

From (4.4.174.) we have i
¢ Gk LS (4.4.175.)

Uy T
Integrating ohce we get o
In[(¢'(r)]=1—-n)lnr+Inc (4.4.176)

¢/(7“) —crl " (4.4.177.)
where C is a constant
One more integration gives desired answer
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Next we seek harmonic functions that are products

of radial functions R(7) and angular functions O(0)

Then w from (4.4.170.) in case N =2 we have
r’R"(r)O(0) + rR' (r)O(0) + R(r)0" () = 0 (44.17%.)
or separating variables

r“R'(r)+ rRir) _% ¥
or R(r) ICION T

rR’(r)+rR(r) = k°R(r) =0 and 0©"(8)=—%k"6©(9)
(4.4.1%0.)
We recognize first equation in (4.4.1%9.) as an Euler equation

Solution is of form I with ) given by

AA—1)+ XA — k2 =0 (44a%1)

Ehat ts )\ = +k
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Recall that f £k =
A 0

bwo Li. solutions are " =19 =1 and r* Inr=1Inr

We obtain
) c1+co Inr o=

it A4 1%2.
Ry(r) {cl rkaco p " k#0 ¢ :

angular dependence is given by

@k(e):{ c1+c20 o, =)

c1 cos(k @) + cosin(k 9) ka0

(4.4.1%3.)
where ¢; and €2 are cownstants

Note that £ can be real, imaginary, or compte.x
rk = N N7 — PREES S T isinth, dn )] (4.4.1%4.)
As for examples in rectangular coordinates

we recall some facts from elementary complex analysis

Sunday, May 10, 15



Theorem 4.1.1.
Real and imaginary parts of a complex analytic function
are harmonic functions

Proof.
L@.Ef(z) — f(gj7 y) — u(gj7 y) A7 iv(x) y) be &Maljﬁt: own e

Then since f is analytic on D m it is infinitely differentiable on D
and thus U &V have (continuous) partial derivatives of all orders

Furthermore w U and v so&iséffj Cauchy-Riemann conditions

0% u 9, 8u] %, [(’9?)]

Therefore i

Oz2 or |0z | ~ Ox
0% o 0%
0xdy  Oydx

0 {(%] 0 [ ﬁu] 0%u

dy

oy |0x| ~ dy 3
Consequently w V2u=0 and U is a harmonic function

We cawn prove that v s harmonic i wmuch same way
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&4 42 Sphavicat harmonics

Consider equation &y — 0 spherically symmelric region
r1 < S roslEs 0 < U e = .

We will use notation () = ((9, ¢) with d{) = sin6db do
In these coordinates m Laplacian is given bv (4.4.171) & (4.4.172)
Assuming a solution of the form u(r,Q) = R(r)Y (€2) we obtain

2
R" + gR’ = k—R — O and e~ (BENT (4.0, 157.)

r £ . = cownskant
It is easily seen that the solution of the angular part
is bounded and single-valued only if k2 =1(l+1) with [ €N
Here mw Y (Q) = Y}, () is spherical harmonic of order [

(4.4.1%%)

}/lm(ﬂ) N (_1)( T \/ 47T(l—|— ’m‘)| Pl (COSQ) €

¢
(4.4.1%9)
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Yim(Q) are hormalized eigeh{um‘:&mv\s cwf V?)

™ 20T
/ Yim (Q) Vi ()dQ = / Yim Yl sin 0 df dé = 6 Omm: (4.4.190.)
S2 0o Jo

For this Fhasa convenkion

N
VR
\\\\\‘\\

(Q) BT (_1)m Yl—m(ﬂ)

For [/— (e
surfaces 7 = |Y},,(0, 0)

look Likke Ehis
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Equation for radial part is (as we have seen) of Euler type
solution 7 and A determined by A(A—1) + 2\ — (I + 1
A=l and N=—2E{_]
Product solution is therefore of form
RBir)¥a0)) = (@ i r_l_l) Yo (52) (4.4.191.)

Solubkions which do not depemd on @
(L.e. lavariants under rotations about z-axis)

torrespmnci to m = 0 with arbi&rar:, [

while solutions independent of 0 and @
(i.e. avariants under rotaktions)

are obtained only for | = () and are of formu(r) =a +b/r
The general solution Eodees form ;

blm
S‘ S‘ [alm Spe +1] Yim(Q)  (44.192)

[=0 m=-—I1

For bounded solubtions
E'“f r1 =0= by =0 wkite.£§ X =, — 0
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Example 4.4.1.
Consider problem of determining harmonic function u(r, )
in the interior of a sphere of radius 72 = R

knowing their values on the surface u(R, Q) = f(Q)
Function must be o{ the aform

> >\ aim 7' Yim () (4.4.193)

=0 m=-—1
Bou.mdarv condition leads Eo

Y S‘ almR Yim Q) (44.194.)

B
which is series expansion of spherical harmonics of f(Q2)

Taking into account (4.4.190.) = coefficients are given by >

(4.4.198)
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I‘F f(Q) —= f(@) (i =) fo.r il

and thus u(r, Q) = (] Tl PZ(COS 9()) wikh C; — ajo \/(2[ = 1)/(47‘(’)
f f(D=c=te,= 0 o=
(because of orthogonality of P, for [ #£0 with Py =1)

and therefore u(r, 1) =
In general w u,sms (4.4 16) we obtain

u(r, Q) = /S 2 Z( ) Z Vi (Q) Y5 ()| £(Q) dY  (4.4.196)

| l==6) ¢
To evaluate bthis series

let us first introduce theorem of addition of spherical harmonics

201
Z Yin (€0) Y () = I 1(cosbo)  (4.4.197.)

-
m=—I

where ) is angle between directions determined by () and Q)

cos(fp) = n(Q) n(Q') = cosh cos @ + sin 6 sinf’ cos(¢p — ¢') (4.4.19%.)
with N(€2) = (sinf cos ¢, sinf sin ¢, cosh)
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Equation (4.4.197.) reflects fact thot first term is a scalar

that depends only on angle 0 between Q) and Q'
In this case w bfj choosing ) = (6, ¢) = (0,0)

and givewn that P (1) = §,,0
it follows that Y5, (0,0) = 0,,0Y70(0,0) = /(21 + 1) /(47) so we obtain

[
2051
E Yim (0, 0) ¥iasf@8 43 (0 ey " (O = 4+ Pi(cos @) (4.4.199.)
ein

m==I

which leads to (4.4.19) as Oy =0 & 6 =0
In addition w (4.4.197) reflects fact that

as o function of Q, P(cosby) is also eigenfunction of Vi

with eigenvalue —[(I + 1)

and therefore must be a Llinear combination of Y, (1) with same [
[

Pi(cosby) = Z €5 Tiks)) (4.4.200)

m=—1I

wikh Cm:/ Y, (&) Blcosnlaslc—
SQ
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We must now evaluabe series Z (21 + 1 fr/R)l Pi(cos ) with 7 < R
[=0

To this end we first introduce expansion
1 — !

d(r, R, 0o) Z Ribe

Frleogty), - fordm < R taqa.208)

with d(r, R,cosly) = \/R2 + r2 — 2Rr cos 0,

Relation (4.4.202.) can be derived by noting that

first term of series is 3-dimensional harmonic function of (7, 0o )

®.@)

and must therefore be of form Z ;' Py(cos 6p)
=0

~or (9() = O,d_l(r, R, O) e (R— 7°>_1 = R_l Z(T/R)l & so C| = 1/Rl+1
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1f we take derivative of (4.4.202) with respect ko T we can write

— e ] r(r — Rcosfy)
; O R o ; i - (R% + r2 — 2Rr cos 6p)3/2

combining this relotion with (4.4.203.) we obtain
o0 R2 u T2
(R2 4+ 72 — 2Rr cos 6y)3/2

Z(Ql +1) (r/R)* Py(cosby) =

(=18

(4.4.203)

Substitubing(4.4.19%) and (4.4.204.) into (4.4.197.)

we arrive abt the solution for inkerior of the sphere

g R(R2 i T2) f(Q/) I {4.4.204)
ulf3h) = T /S i e
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E?xamr.:i.e 4 4 2.

We consider now problem of determining the harmonic function

on the oubside of the sphere (iR

kiowing their values on surface u(R, ()
From (4.4.193.) we see that if U is harmonic function then

R s R2l+1
v(r,Q) ==u(R /el — YY Qim =3

r
=0 m=-—1

is also harmomnic as it is of form (4.4.192.)
and satisfies boundary condition Fie0)) = uR, Q)

U uis defined for r < R then v is defined for r > R

Therefore w the solution for outside of the sphere is

Rk O o Fl) G,
i 4.4.206,
W A /S S e ;
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44,3 Green function for LQF@L&C@. opero&or
Consider boundary value problem
VAu(x) = hifx S iin 6
{ X )= e on 9Q) (44.207)

where () C R" is a normal domain
Ehak is a bounded domain such Ehak:

(L) boundary §() consists of a finite number of smooth surfaces
(i) any straight line parallel to a coordinate axis
cither intersects I at a finite number of points

or has a whole inkerval in common wikth ()
Let X =T be a fixed point in D C R?%mnd Let £ be a variable point

n
==

Let r be distance from X to § 1w \ Z(% )
e

Solution of (4.4.207) can be written in terms of Green function

e Vel @0
satisfying m i) OLPOOR ech s,
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To obtain explicit form of 1(X)we make use of Gauss theorem

/ﬁ.FdV:/ F.hdA
Q2 oS

and write Green's first identiby

/ (GV2u + Vu.VG) dV = / G(Vu.B) dA (44.209)
Q o2 -
with vector field F = GVu

Left side is a volume integral over (N-dimensional) volume ()
right side is surface integral over boundary of volume ()

Closed manifold 0f) is quite generally boundary of (2

oriented by outward-pointing normals
and 1 is outward pointing unit normal field of bou&\d&rj o0

Interchanging (G with U and subtracting gives

Crreen's second Ldeh&i&vj

/ (uV2G — GV2u) dV = / (uVG — GVu) . h dA (4.4.210))
Q2 02
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Substituting (4.4.207.) and (4.4.20%.) into Green's second identity

leads to w u(X) o / G h dV = f 6@ .0 dA (4.4.210.)
Q o

rearranqging we obtain

u(x):/Gth+ fVG.hdA
2

oQ
(‘96} dA (4.4.211.)
on

Q2 of2

1f we can find G that satisfies (4.4.20%) w we can use (4.4.211)

to find the solubtion u(X) of bou&\d&rvj value F?rabtem (4.4.207.)

To find Green's function for a domain D C R"

we first find fundamental function that satisfies VK =6 (1)
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We have already seen that In(r = [x|) is harmonic in ]R(Q)

and 72" is harmonic in R for n > 3
In terms of these solutions we define fundamental solutions

—

for Laplace equation with pole ot Xx = by

, B

—

K(x,§) =
=)
where Wn denotes surface area of unit sphere in R”

o/ 2

In general m Green's function for a region () can be obtained

by adding a harmonic function v(X, 5) te. Vo=0in
to fundamental Green's function for complete space = K (X, §)
such that sum satisfies boundary condition G(x, g) =g x c 00

0f course mw U does not need be harmonic outside ()

We illustrate this idea with some specific examples
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Example 4.4.3,
Consider Dirichlet problem for upper half-plane in R?

Vule et R2-= {(z, g Roy >0}
{ ulz O) = dile TR s Ll

Green function G (X, {) must cancel on T-axis (y o 0)

x = (2,4),§ = (=, y)
This can be achieved using method of images
placing in addition to me& source at & = (:U/, y’) with charge 1

anocther (virtual) a&f : i 3 ) with charge —1
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Grreen function is found to be

1

G(x,¢) 5 {ln {\/(ﬂj = 7) e y’)ﬂ —In W(af =27 + (s y’)2] }

Lo [\/(3j — 2% + (D

2 1 /(z — 22 + (y — ') (4.4.215.)
Clearly = (5 is harmonic for (:E, y) = (ajl, y/)

and satisfies G ((2,0), (z',y')) =0

Normal derivative at 3y = 0 is

oG [ #iEg0C e

oy o Oyt SR s 2 (4.4.216.)

Solution for Dirichlet Prabt&m i upper hatfmptav\e ts then given bfj

—

/OO 0G(x,§)
f
s W BT
S e
d
oo (= 2")2 + 92 5 (4.4.217.)

f(z")dz’

u(zw,y)
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If more generally

—

X = (Z1, i, ) E=il (o) D

Sunday, May 10, 15

—

= S 0G(x,§)
/ood§1.../ood§n1 o€, 5 :Of(f1,...,§n—1)

A sk e

it d&.../ g o

Col 5 A %

1
2+t (xpe1 —En1)? + 22

(4.4.21%.)




E’?xo\mrytﬁ & 4 &,
Consider Dirichlek Frobiem

Veu(x) = B3(0, R) (4.4.219.)
u(x) = f(x)  S%0, R)
where b 3(0, R)is the ball of radius R centered akt the origin
and G2 (()7 R) is iks 2-dimensional sphe_rwat bouv\darv
By placing a +1 charge at E with |5| =& < R
and a virtual charge —R/f ab g* = §R2/§2
with |£*| =€* = R?/¢ > R
~ (75l .
e 35 ST e
we obbtain (X, f) i {d ¢ d’] (4.4.220.)
where d, d' are distances from X to § and 5 <

P =r?+&—2€cosby and d?=712+&7—2r€" cos by (4.4.221.)

with 7 = |X| and 0y angle between X and {
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In this way = if X is at border of sphere r = R

the triangle A(O, 5, X) is similar to the triangle A(0, X, g*)
where A(a,b,c) denctes triangle with vertices g b, ¢

—

Therefore w d/d" = SR o (X P2 ()
¥ £ 0then d 5 p and d =5 00 with &d — R?

Lty Do

yielding  G(x,0) = e (; ] E) (4.4.222.)
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Similarly = U case of a circle C R?

—

G(x,¢)

e&—0

G(x,0) (4.4.224.)

In both cases = G(x,£) is of the form ¢g(d) — g(d'é/R)
We compute normal derivative at { = R g0 £ - —R)H

ocx8| .  [0d ¢od
S ‘g(d)[é’s R 0€

2R? — d? — 2Rr cos 8,

(4.4.225.)

(4.4.226)
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In case of sphere w  g'(d) = —1/(4wd?)

and so solution of (4.4.219.) with u(R, ) = () becomes >

0G s
w7 S b= _/523—5 () dA

2t /
4 S22 dS(R, i (90)

where we have taken dA = R*dQ) and 0 is given by (4.4.19%.)

For two dimensional case = ¢ (d) = —1/(27d)

Solution to (4.4.219.) with U(R, 9) = f(0) becomes
oG I

st 0

R2—T2 21T f(@/)
5 /0 E(Rr eo)de’ (4.4.22%.)

ulr, @) 4= 5 (6") dA

where we have kaken dA = RdO and 0y =0 — 0’

n-dimensional problem is solved in a similar fashion
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Exampt& 4 4 .5,

Gravity fields of Earth, Moon, and Mars have been described bj
Laplace series with real eigenfunctions

& oo, n—+1
U(r,0,8) = 2o {R 233 (F) (Con¥hn@)+ snmn%nw,qs)]}

n=2m=0
Y1,.(6,8) = P™(cos6) cos(me)
YY) (0,¢) = P™(cosf) sin(ma)
Satellites measurements Llead to

Coefficient Earth Moon Mars
Cao 1.083 x 1072 (0.200 & 0.002) x 10~2  (1.96 £ 0.01) x 103
Cao 0.16 x 107° (2.4 0.5) ¢ 10 e 10 °
Soo —0.09 x 107° (0.5 +0.6) x 107° S0 °
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NODAL LINES SEPARATING REGIONS OF SPHERE FOR VARIOUS (L, m) PAIRS

Top row shows (o, o) monopole

and partition of sphere into two dipoles (1, ©) and (1, 1)
middle row shows guadrupoles (2, 0), (2, 1), and (2, 2)
Bottom row shows the L = 3 partitions, (3, 0), (3, 1), (3, 2), and (3, 3)
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