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Partial Differential Equations II

 4.1 Taxonomy ✔

4.2 Wave Equation ✔

4.3 Diffusion Equation

4.4 Laplace Equation

2Thursday, April 30, 15



Myth, Legend, or Fantasy?

Friday, April 1, 2011

Answering Ivan’s Question
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Diffusion Equation
The diffusion equation is a partial differential equation 
which describes density dynamics in a material undergoing diffusion

Heat flow is a particular case of diffusive behavior                       

4.3.1. Heat flow
Heat equation is a parabolic partial differential equation                  
which describes distribution of heat in a given region over time

Consider a long thin bar of heat conducting material
Length coordinate may be taken to be x
Let   be the specific heat per unit length �


Let us assume that temperature in the subinterval 

t
Ik = [xk�1, xk]

at a given time   
uk(t)

Heat contained in    is then ☛Ik �x� uk(t) �x = xk � xk�1

(or variation in temperature)

can be adequately approximated by scalar function 

and    the heat conductivity
(i.e. the capacity of a unit length of the material to hold heat)

in which the collective diffusion coefficient is constant
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The heat conductivity coefficient expresses relationship between 
rate of flow of heat & temperature differential per unit length u

x

Since our model is spatially discrete so far 

u

x

(x
k

) by [uk(t)� uk�1(t)]/�x

Rate of heat flow emanating from Ik is  ☛ �x� duk/dt

flow of heat intowhile 
Ik+1

Ik
from

Ik�1

 [uk+1(t)� uk(t)] /�x

is ☛

 [uk�1(t)� uk(t)] /�x

from

Assuming heat is conserved we obtain

�x

�x�

duk

dt

=


�x

[uk+1(t)� 2uk(t) + uk�1(t)]

Dividing by we have

�

duk

dt

= 

uk+1(t)� 2uk(t) + uk�1(t)

(�x)2

(4.3.112.)

(4.3.113.)

we approximate 

is ☛

If we assume actual heat distribution is a function
fraction on right ☛  a second difference divided by (�x)2

 may be regarded as an approximation to u
xx

u(x, t)
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☛ we obtain the partial differential equationIn limit �x ! 0

u

t

(x, t)� ↵ u

xx

(x, t) = 0

↵ = /� > 0

f�(x, t)

u

t

(x, t)� ↵u

xx

(x, t) = f

�

(x, t)

with

If there are external heat sources or losses

equation is augmented to more general form

Both (4.3.114.) and (4.3.115.) 

(4.3.114.)

(4.3.115.)

space dimensions

by a functionwhich can be represented

are valid for arbitrary number of 
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4.3.2. Diffusion in an infinitely long metal bar

Let us first study initial value problem of heat flow
�1 < x < 1

The system is described by (4.3.114.)
u(x, 0) = f(x)

is at least piecewise continuous as a function of 
x

Fourier transform of solution is

û(k, t) =
1p
2⇡

Z 1

�1
u(x, t) e�ikx

dx

and so

(4.3.116.)

(4.3.117.)

(4.3.118.)

on an infinite bar

and we assume initial heat distribution

u(x, t) =
1p
2⇡

Z 1

�1
û(k, t) eikx dx
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Substituting (4.3.117.) and (4.3.118.) into (4.3.114.) we obtain

1p
2⇡

Z 1

�1
û
t

(k, t)eikxdk +
↵p
2⇡

Z 1

�1
k2û(k, t)eikxdk = 0

(4.3.119.)

regrouping terms (4.3.119.) becomes

1p
2⇡

Z 1

�1

⇥
û
t

(k, t) + ↵ k2û(k, t)
⇤
eikxdk = 0 (4.3.120.)

Given that Fourier transform of bracket is zero 

ût(k, t) + ↵k2û(k, t) = 0 (4.3.121.)

(4.3.122.)

Solution of (4.3.121.) is found to be

û(k, t) = f̂(k)e�↵k2t

bracket must cancel ☛ 
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Let us now reconstruct full solution by inverse Fourier transform

u(x, t) =
1p
2⇡

Z 1

�1
f̂(k) e�↵k

2
t

e

ikx

dk

 so far undeterminedFunction f̂(k)
 initial condition

u(x, 0) =
1p
2⇡

Z 1

�1
f̂(k) eikxdk = f(x)

is Fourier transform of initial temperature distributionf̂(k)

Thus ☛
u(x, t) =

1

2⇡

Z 1

�1
dke

�a

2
k

2
t

e

ikx

Z 1

�1
dx

0
f(x0)e�ikx

0

=

Z 1

�1
dx

0
K(x� x

0
, t)f(x0)

with K(x� x

0
, t) =

1

2⇡

Z 1

�1
dke

ik(x�x

0)�↵k

2
t

(4.3.123.)

(4.3.124.)

(4.3.125.)

(4.3.126.)

is specified by imposing

This is one integral that we can solve explicitly
so we turned out our problem completely

9Thursday, April 30, 15



(4.3.127.)

is the fundamental solution

Before calculating the explicit expression of   K

K(x, t)

K

t

(x, t) = ↵K

xx

(x, t), with K(x, 0) = �(x)

Note that if thenf(x) = �(x)

u(x, t) =

Z 1

�1
K(x� x

0
, t) f(x0)dx0

=

Z 1

�1
K(x� x

0
, t) �(x0)dx0

= K(x, t) (4.3.128.)

Therefore ☛ is response at any point and any time 
distribution of unitary temperature

K

we verify that

in sense that it satisfies

concentrated on a single point
to an initial 
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To determine explicit form of we complete square in exponentK

exp[ikx� ↵k

2
t] = exp


�
✓
↵k

2
t� ikx� x

2

4↵t

◆�
exp


� x

2

4↵t

�

= exp

"
�
✓

ixp
4↵t

� k

p
↵t

◆2
#

exp


� x

2

4↵t

�

yielding

K(x, t) =
e

�x

2
/(4↵t)

2⇡

Z 1

�1
e

�(ix/
p
4↵t�k

p
↵t)2

dk

=
e

�x

2
/(4↵t)

2⇡

Z 1

�1
e

�z

2

dz

with z =
p
↵t� ix/

p
4↵t dz =

p
↵t dkand

We then have to compute integral I =

Z 1

�1
e�z2

dz

but displaced on imaginary axis to not over real axis ☛ �x/

p
4↵t

(4.3.129.)
p
↵ t
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However ☛ given that e�z2

is analytical in entire plane

integrate along real axis

Z 1

�1
e�z2

dz =

Z 1

�1
e�⇣2

d⇣, ⇣ 2 R (4.3.130.)

This integral is easily solved in polar coordinates

I2 =

Z 1

�1
d⇣ e�⇣2

Z 1

�1
d⌘ e�⌘2

=

Z 1

�1

Z 1

�1
d⇣ d⌘ e�(⇣2+⌘2)

=

Z 1

0

Z 2⇡

0
r dr d� e�r2 = 2⇡

Z 1

0
r dr e�r2 = ⇡

Z 1

0
du e�u = ⇡

Finally ☛ and (4.3.129.) becomesI =
p
⇡

K(x, t) =
1p
4↵⇡t

e

�x

2
/(4↵t)

, t > 0 (4.3.131.)

 gives the same I =

Z 1

�1
e�z2

dz
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for an infinite bar
K(x� x

0
, t) is response function of heat equation

It describes temperature at position and time x

u(x, t) t > 0
for an initial temperature distribution 

u(x, 0) = �(x� x

0)
x

0located at

As a consequence of this description
as heat kernel

K(x� x

0
, t)

is referred to

It follows a Gaussian distribution centered at        
x = x

0

�(t) =
p
2↵tover time with standard deviation

Since total heat is conserved

condition

we obtain 

Z 1

�1
K(x, t) dx = 18t (4.3.132.)

that spreads 

using normalization of initial

☛

Z +1

�1
�(x� x

0)dx = 1
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With increasing heat kernel flattens and spreadst
its area

For a fix has a maximum at

 with

decreasing then as for

x 6= 0,K(x, t) t0 = x

2
/(2↵)

K(x, t0) = 1/(
p
2⇡x)

t�1/2 t ! 1

Note also that if
t > 0,K(x, t) 6= 0 8x 6= 0

an infinite speed of heat transmissionwhich indicates 

(4.2.114.) is clearly not invariant under Lorentz transformations 

However ☛ is very small forK(x, t)
x � �(t)

(as opposed to wave equation)

preserving
☛

14Thursday, April 30, 15



Example 4.3.1.
For u(x, 0) = A cos(kx) = A <e [e

ikx

]

 it follows that

u(x, t) = A <e [e

ikx�↵k

2
t

] = A cos(kx) e

�↵k

2
t

General solution (4.3.125.)  is therefore 
u(x, 0) = û(k, 0)

(4.3.133.)

Note that initial spatial fluctuations of temperature 
more rapidly for higher frequency

``sum'' of elementary solutions for initial conditions

decay much 

If
k = 0, u(x, t) = A

k

Example 4.3.2.

u(x, 0) = A e

�x

2
/r

/

p
⇡r,

For with r > 0
(Gaussian initial distribution of temperatures)

it follows that

u(x, t) = A

e

�x

2
/(r+4↵t)

p
⇡(r + 4↵t)

= AK(x, t+ t0), t0 =
r

4↵

Temperature distribution remains Gaussian 
If r ! 0+ then

u(x, t) ! AK(x, t)
8t > 0
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4.3.3. Diffusion in a finite metal bar

Consider evolution of temperature in a bar of finite length 
with boundary conditions

u(x, t) L

u(0, t) = u(L, t) = 0

u(x, 0) = f(x)and initial condition 
The temperature is assumed separable in x t

u(x, t) = X(x)T (t)and we write

and

so that (4.3.114.) becomes

1

↵

T

0(t)

T (t)
=

X

00(x)

X(x)
= �k

2

k2where is separation constant and X(0) = X(L) = 0

motion equation

The spatial equation is then X 00 + k2X = 0

which is simple harmonic

X(x) = A cos (kx) +B sin (kx)

(4.3.135.)

(4.3.136.)

(i) Homogeneous equation

with trigonometric solutions
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(4.3.137.)

(4.3.138.)

Now ☛ applying boundary conditions we find 

X(x) = sin(n⇡x/L)

For such values of we havek

We take most general solution 

(4.3.139.)

Final step is to apply initial conditions

u(x, 0) =
1X

n=1

bn sin(n⇡x/L) = f(x) (4.3.140.)

and invert Fourier series to determine coefficients bn

satisfying boundary conditions
by adding together all possible solutions

Tn(t) = bne
�(n⇡/L)2↵t

u(x, t) =
1X

n=1

bne
�(n⇡/L)2↵t sin(n⇡x/L)
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(4.3.141.)

We do this by multiplying equation by
and integrating

sin (m⇡x/L)

over interval [0, L]

bn =
2

L

Z L

0
f(s) sin (n⇡s/L) ds

Solution is then 

u(x, t) =
1X

n=1

2

L

Z L

0
f(s) sin(n⇡s/L) sin(n⇡x/L)e�(n⇡/L)2↵t

ds

Note that due to rapid decrease in exponential when
series is strongly convergent

n grows

(4.3.142.)

Moreover ☛ given that |un(x, t)| < |cn| 8t, 0  x  L

that series of absolute value of Fourier coefficients convergesand

is continuous with continuous derivative to pieces f
f(0) = f(L) = 0(with ) 

1X

n=1

un

determines a continuous function for

converges uniformly

t � 0

if

and

 series
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(4.3.143.)

Due to uniform convergence

sum to obtain

u(x, t) =

Z L

0
f(s) K(x, s, t) ds

K(x, s, t) =
2

L

1X

n=1

sin(n⇡s/L) sin(n⇡x/L)e�(n⇡/L)2↵t

(4.3.144.)

where

is fundamental solution that 

K(0, s, t) = K(L, s, t) = 0

 satisfies boundary conditions

Fundamental solution decays exponentially in time 

describes a transient process 

decays awayK(x, s, t)

we can swap order of integral and

i.e. if we wait long enough then 

and hence 
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eigenfunctions for spatial part
Other boundary conditions

X 00 + k2X = 0, X 0(0) = X 0(L) = 0

From these boundary conditions we obtain

X(x) = cos(n⇡x/L), n = 0, 1, . . .

and so u(x, t) =

a0

2

+

1X

n=1

a

n

e

�(nx/L)2↵t
cos(n⇡x/L)

Initial condition yields f(s) =

a0

2

+

1X

n=1

an cos(n⇡x/L)

and so an =

2

L

Z L

0
f(s) cos(n⇡s/L) ds ,

a0 =

2

L

Z L

0
f(s) ds

Note that terms with are transient
Stationary term of solution        is independent of   

n � 1
a0/2 x

(4.3.146.)

(4.3.147.)

(4.3.148.)

(4.3.149.)

and gives average of initial temperatures

e.g. ☛  if edges are isolated

lead to different eigenvalues and
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Problem with fixed temperature at edges

u(0, t) = T0, and u(L, t) = TL

T0 TL t

u(x, t) = w(x, t) + T0 +
x

L

(TL � T0)

 independent of  with and
problem with substitution

w(x, t)

w(x, 0) = u(x, 0)� T0 � x(TL � T0)/L)

In this case lim
t!1

u(x, t) = T0 +
x

L

(TL � T0)

(4.3.150.)

(4.3.151.)

(4.3.152.)

Note that linear function on right is a stationary solution

but with homogeneous boundary conditions

whereas          also satisfies homogeneous diffusion equation 

of diffusion equation that satisfies boundary conditions (4.3.150.) 

can be reduced to previous
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(ii) Inhomogeneous equation

Solution of inhomogeneous equation (4.3.115.)

u(x, 0) = 0, for 0  x  L

(4.3.153.)

and boundary conditions

u(0, t) = u(L, t) = 0, for 0  x  L

(4.3.156.)

(4.3.155.)

(4.3.154.)
is given by

u(x, t) =

Z 1

�1

Z 1

�1
G(x, x0

, t� t

0) f�(x
0
, t

0)dx0
dt

0

where satisfies differential equation
G(x, x0

, t� t

0)

G

t

(x, x0
, t� t

0)� ↵

2
G

xx

(x, x0
, t� t

0) = �(x� x

0)�(t� t

0)

with
G(0, x0

, t� t

0) = G(L, x0
, t� t

0) = 0

with initial condition
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We have seen that solution of homogeneous equation (4.3.114.)        

G(x, x0
, t� t

0) =
1X

n=1

gn(x
0
, t� t

0) sin
⇣
n⇡x

L

⌘

We have also seen that a Fourier series expansion of gives�(x� x

0)

�(x� x

0) =
2

L

1X

n=1

sin

✓
n⇡x

0

L

◆
sin

⇣
n⇡x

L

⌘

Substituting (4.3.157.) and (4.3.158.) into (4.3.156.) we obtain

2

L

1X

n=1

sin

✓
n⇡x

0

L

◆
�(t� t

0) sin
⇣
n⇡x

L

⌘
=

1X

n=1

sin
⇣
n⇡x

L

⌘
@gn

@t

(x0
, t� t

0)

+ ↵

⇣
n⇡

L

⌘2
gn(x

0
, t� t

0)

�

and so Fourier coefficients of    satisfyG

@gn

@t

(x0
, t� t

0) + ↵

⇣
n⇡

L

⌘2
gn(x

0
, t� t

0) =
2

L

sin

✓
n⇡x

0

L

◆
�(t� t

0)

(4.3.157.)

(4.3.158.)

(4.3.159.)

can be expanded in a Fourier sine series ☛
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we write it in terms of its
To determine

gn(x
0
, t� t

0)
Fourier transform

gn(x, t� t

0) =
1p
2⇡

Z 1

�1
ĝn(x

0
,!)ei!(t�t0)

d!

Substituting Fourier-integral expression for delta function

�(t� t0) =
1

2⇡

Z 1

�1
ei!(t�t0)d!

 and (4.3.160.) into (4.3.159.) we obtain


i! + ↵

⇣
n⇡

L

⌘2
�
ĝn(x

0
,!) =

1p
2⇡

2

L

sin

✓
n⇡x

0

L

◆which leads to

and so ĝn(x
0
,!) =

1

L

r
2

⇡

sin(n⇡x0
/L)

i! + ↵(n⇡/L)2

(4.3.160.)

(4.3.161.)

(4.3.162.)

(4.3.163.)

1p
2⇡

Z +1

�1


i! + ↵

⇣
n⇡

L

⌘2
�
ĝn(x

0
,!)ei!(t�t0)

d! =
1

2⇡

Z +1

�1
d!e

i!(t�t0) 2

L

sin

✓
n⇡x

0

L

◆
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Now ☛ we must solve anti-Fourier transformation

gn(x
0
, t� t

0) =
1

L

r
2

⇡

sin(n⇡x0
/L)p

2⇡

Z 1

�1
d!

e

i!(t�t0)

i! + ↵(n⇡/L)2

This integral can be performed in complex plane
upper half-plane 

!
 closing contour on

Z 1

�1
d!

ei!(t�t0)

i! + ↵(n⇡/L)2
= 2⇡e↵(n⇡/L)2(t�t0)

Therefore

gn(x, t� t

0) =
2

L

e

�↵(n⇡/L)2(t�t0) sin

✓
n⇡x

0

L

◆

and

G(x, x0
, t� t

0) =
2

L

1X

n=1

e

�↵(n⇡/L)2(t�t0) sin

✓
n⇡x

0

L

◆
sin

⇣
n⇡x

L

⌘

(where exponential function decreases at infinity)
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4.2.5 Schrodinger & Klein-Gordon equation
A quantum mechanical description of a relativistic free particle 

In position representation the correspondence principle states

which in four-vector notation reads 

(4.2.58.)E ! �}
i

@

@t
⌘ �}

i
@t, p ! }

i
r

pµ ! i}(@t,r) = i}@µ ; pµ ! i}(@t,�r) = i}@µ

by quantum mechanical operators acting on wave functions
which allows one to replace classical observables   

results from applying correspondence principle                                                                     

..

General prescription for obtaining Schrodinger equation 

for a free particle of mass    is to substitute differential operators
into  classical energy momentum relation 

m

..

E =
p2

2m
(4.2.59.)

µ = 0, 1, 2, 3 ⌘ t, x, y.z
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Applying correspondence principle 

one obtains wave equation (}2@µ@µ +m2) = 0
where is a scalar complex-valued wavefunction

to relativistic energy-momentum relation E2 = p2 +m2

 (x, t)

(4.2.61.)

Resulting operator equation

is understood to act on a (complex) wavefunction 
Schrodinger equation can be viewed as a diffusion equation

with imaginary diffusion constant i}/(2m)
as diffusion equation in imaginary time  or mathematically it

Wavefunction does not have any physical interpretation
but we interpret as probability density ☛ that is 

 probability of finding particle in volume element d3x

Because of its parabolic anatomy (4.2.60) violates Lorentz invariance 

and is not suitable for a particle that moves relativistically

(4.2.60.)

(4.2.62.)

� }2
2m

r2 = i } @t 
 (x, t)

with a real diffusion constant }/(2m)

⇢ = | |2

| |2d3x

..
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Hereafter we work with natural units } = c = 1
In natural units quantities: 

 ☛ all have the same dimension
and (time)

In these units (4.2.60.) reads (⇤2 +m2) = 0

⇤2 ⌘ @µ@
µ is invariant d'Alembertian operator

Partial differential equation (4.2.61) is called Klein-Gordon equation

(4.2.61.)

Multiplying Klein-Gordon equation by

and complex conjugate 

and subtracting ☛ leads continuity equation

�i ⇤

equation by �i 

@t [i( 
⇤ @t �  @t 

⇤)]| {z }
⇢

+r. [�i( ⇤ r �  r ⇤)]| {z }
|

= 0

 probability density  density flux of

-1

a beam of particles

(4.2.62.)

-1
energy, momentum, mass, (length)
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Hints for the calculation

@µ(�⇤@µ�) = @µ�⇤@µ� + �⇤@µ@µ�

�i�⇤@µ@µ�� i�⇤m2� + i�@µ@µ�⇤ + i�m2�⇤ = �i�⇤@µ@µ� + i�@µ@µ�⇤

= 0
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Considering motion a free particle of energy and momentum pE

described by Klein-Gordon solution

from (4.2.62.) we find

⇢ = �i(2 i E)|N |2 = 2E |N |2 and

We note that probability density

is timelike component of a four-vector 

⇢

In addition to acceptable       solutionsE > 0

We cannot simply discard negative energy solutions
as we have to work with a complete set of states

includes unwanted states

solutions

(4.2.63.)

(4.2.64.)

 = N ei(p .x�Et)

j = �i(2 ip)|N |2 = 2p |N |2

⇢ / E = ±(p 2 +m2)1/2

and this set inevitably 

which have associated a negative probability density
we have negative energy
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Prescription for handling negative energy configurations..
Expressed most simply ☛ idea is that a negative energy solution 
describes a particle which propagates backwards in time 

To master this idea ☛ consider a spin-zero particle of:

E
p

�e

Substituting (4.2.63.) into the charge current density of electron

jµ = �i e ( ⇤ @µ �  @µ ⇤)

we obtain the electromagnetic four-vector current 

jµ(e�) = �2e|N |2(E, p)

(4.2.65.)

(4.2.66.)

 was put forward by Stuckelberg and by Feynman

a positive energy antiparticle propagating forward in time
or equivalently

generally referred to as spinless electron
and charge 
three-momentum        
energy 
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Now ☛ taking its antiparticle    of same         

jµ(e+) = 2e|N |2(E,p)

= �2e|N |2(�E,�p) (4.2.67.)
�E,�pwhich is exactly same as current of original particle with

Hence ☛ as far as a system is concerned                                                   

�E
E

e+ (E,p)

Pictorially

we obtain the electromagnetic four-vector current

jµ(e�) = �2e|N |2(E, p) . (4.2.66)

Now, taking its antiparticle e+ of the same (E,p), because its charge is �e,
we obtain

jµ(e+) = 2e|N |2(E,p)

= �2e|N |2(�E,�p) , (4.2.67)

which is exactly the same as the current of the original particle with �E,�p.
Hence, as far as a system is concerned, the emission of an antiparticle with
energy E is the same as the absorption of a particle of energy �E. Pictorially,
we have

Now, taking its antiparticle e+ of the same (E, �p), because its charge is �e,
we obtain

�ejµ(e+) = �2e|N |2(E, �p)

= 2e|N |2(�E,�p) , (1.4.48)

which is exactly the same as the current of the original particle with �E,��p.
Hence, as far as a system is concerned, the emission of an antiparticle with
energy E is the same as the absorption of a particle of energy �E. Pictorially,
we have

e+

e�

time �

equivalent to

E < 0

E > 0

In other words, negative-energy particle solutions going backward in time
describe positive-energy antiparticle solutions going forward in time. Of
course the reason why this identification can be made is simply because
e�i(�E)(�t) = e�iEt.

The particle-antiparticle conjugation C constitutes a finite symmetry
group containing only two elements, the identity I and an element g, satis-
fying g2 = I. Invariance of a system under the symmetry operation g means
that if the system is in an eigenstate of C, then transitions can only occur
to eigenstates with the same eigenvalue.

1.5 Dirac Equation

Let us now attempt to construct a wave equation for spin- 12 relativistic parti-
cles of massm. Following Dirac13 we proceed by analogy with non-relativistic
quantum mechanics and write an equation which, unlike the Klein-Gordon

13P. A. M. Dirac, Proc. Roy. Soc. Lond. A 117, 610 (1928); 118, 351 (1928); 126, 360

(1930); 133, 60 (1931).
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In other words, negative-energy particle solutions going backward in time
describe positive-energy antiparticle solutions going forward in time. Of
course the reason why this identification can be made is simply because
e�i(�E)(�t) = e�iEt.

The Green function (or propagator) of the spinless electron, G(x � x⇥),
satisfies the equation

(2 +m2) G(x� x⇥) = �(4)(x� x⇥) . (4.2.68)

plicated composite structures of spin- 12 quarks and spin-1 gluons. The spin-zero leptons,

that is, leptons satisfying the Klein-Gordon equation, are completely fictitious objects. We

will ignore the complications due to the spin of the electrons, leaving complete develop-

ments to specialized textbooks; see e.g. F. Halzen and A. D. Martin, Quarks and Leptons:

An Introductory Course in Modern Particle Physics, (Wiley, 1984).

170

               particle solutions going backward in time            
describe     antiparticle solutions going forward in time

 this identification can be made  because e�i(�E)(�t) = e�iEt

because its charge is     we obtain

 ☛

+e

is the same as absorption of a particle of energy
emission of an antiparticle with energy                                          

�E
E
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Green function (or propagator) of spinless electron satisfies

(4.2.68.)

To define Green function entirely

non-vanishing for positive (negative) values of time t� t0

Boundary conditions for Feynman propagator are causal:

To solve (4.2.68.) ☛ we first Fourier transform to momentum space

(4.2.69.)

positive (negative) solutions propagate forward (backward) in time

Retarded (advanced) Green function is defined to be

boundary conditionone also needs to fix 

G

F

(x� x

0) =
1

(2⇡)4

Z
S

F

(p) e�ip·(x�x

0)
d

4
p

(⇤+m

2) GF (x� x

0) = �

(4)(x� x

0)
2
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(4.2.71.)

Then ☛ on substituting into (4.2.68.) we obtain

right-hand side is Fourier representation of delta function
In momentum space ☛ (4.2.68.) therefore becomes simply

(p2 �m2) SF (p) = 1

(4.2.72.)
that is ☛ 

To complete determination of

singularities atwe need to know how to treat 

p2 � µ2 = p0
2 � (p2 +m2) = (p0 � E) (p0 + E) = 0

To obtain correct prescription for integration over poles at

we need to impose appropriate boundary conditions on

p0 = ±E

1

(2⇡)4

Z
(p2 �m2) S

F

(p) e�ip·(x�x

0)d4p =
1

(2⇡)4

Z
e�ip·(x�x

0) d4p

SF (p) =
1

p2 �m2

SF (p)

GF (x� x

0)
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From (4.2.101.) and (4.2.104.)

GF (x� x

0)

G

F

(x� x

0) =
1

(2⇡)4

Z
1

(p0 � E)(p0 + E)
e

�ip·(x�x

0)
d

4
p

=
1

(2⇡)4

Z
d

3
p e

ip ·(x�x

0)

Z 1

�1

e

�ip0(t�t

0)

(p0 � E)(p0 + E)
dp0

represents wave produced at source atby a unit 

That is ☛ propagation is from 

x

x

x

0

x

0 to

We will see that

positive-energy spinless electrons forward in time 

SF (p) which is associated with propagation of

(t > t0)

with negative energy spinless electrons backwards in time (t < t0)

and

This can be accomplished by performing     integrationp0

in complex plane using Cauchy residue theorem

(4.2.105.)
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To do this ☛ we rewrite propagator as

introduction of  (with infinitesimal and positive)
poles slightly off axis

+i✏ ✏

of displacing p0 = ±E

There are two poles one just above real axis and one just below

First pole has

location ! +

✓
E � i✏

2E

◆
residue ! exp{+i(E � i✏/2E)(t� t0)}

2(E � i✏/2E)

while second has

location ! �
✓
E � i✏

2E

◆
residue ! �exp{�i(E � i✏/2E)(t� t0)}

2(E � i✏/2E)

(4.2.106.)

 has the effect 

SF (p) =
1

p2 �m2 � ✏2
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We therefore enclose pole at            to obtain (in limit        )p0 = +E ✏ ! 0
Z 1

�1

e�ip0(t�t0)

(p0 � E)(p0 + E)
dp0 = �2⇡i

 
+
e�iE(t�t0)

2E

!

Substituting this result into (4.2.105.)

G

F

(x� x

0) =
�2⇡i

(2⇡)4

Z
d

3
p

(2E)
e

�ip·(x�x

0)

=
�i

(2⇡)3

Z
d

3
p

2E
e

�ip·(x�x

0)

SF (p) +Erepresents propagation of spinless electrons forward in time

(4.2.108.)

(4.2.107.)

yielding

GF (x� x⇤) =
2�i

(2�)4

�
d3p

(�2E)
eip ·(x�x�) e�i(�E)(t�t�) . (4.2.110)

Since we are integrating over all of three-momentum space, GF is unchanged
by the substitution p ⇥ �p; we obtain

GF (x� x⇤) =
�i

(2�)3

�
d3p

2E
eip·(x�x�) , (4.2.111)

Therefore, SF (p) represents the propagation of �E,�p spinless electrons
backward in time, which is equivalent to the propagation of +E, +p spinless
positrons forward in time. We see that the origin of the antiparticle states is
the pole at p0 = �E, which is not present in a nonrelativistic theory.

In terms of creation and annihilation of particles, it represents the creation of a particle at
the point y and its destruction at x if x0 > y0 and the creation of a particle at the point x and
its destruction at y if x0 < y0. Thus it represents the propagation of a particle from x to y or
from y to x.
Expanding in terms of creation and annihilation operators and using the fact that the annihi-
lation operator acting on the vacuum gives zero so that

⇤0|a(p)a†(p′)|0⌅ = ⇤0|
�
a(p),a†(p′)

⇥
|0⌅ = (2!)32EP"3(p�p′),

we have

i#F(x,y) =
Z d3p

(2!)32Ep

⇤
$(x0� y0)e−ip·(x−y)+$(y0� x0)e+ip·(x−y)

⌅

We can cast this into manifestly Lorentz invariant form by considering the integral

lim
!→0

Z

dp0
e−ip0t

p2o�E2P+ i%

|p0

•
•

The integrand has poles at
p0 =±(EP� i%)

If t > 0, then we close the contour below the real axis, (as shown) so that eip0t ⇥ 0 as
|p0|⇥ & and we pick up the pole at p0 = EP� i%, giving the result

� 2!i2Ep
e−iEpt ,

(the minus sign arising from the fact that the contour is in the clockwise direction) whereas
if t < 0 we need to close the contour in the upper plane, thereby picking up the pole at
p0 =�Ep+ i%, giving the result

2!i
�2Ep

e+iEpt ,

Thus we may write the “Feynman propagator”, #F(x,y) in manifestly Lorentz invariant form
as

#F(x,y) = lim
!→0

Z d4p
(2!)4

e−ip·(x−y)

(p2�m2+ i%)

16

=m p0

<e p0

t > t0

Figure 4.12: The contour in the complex plane p0 used to evaluate the dp0
integral of (4.2.107).

4.3 Di�usion Equation

The di�usion equation is a partial di�erential equation which describes den-
sity dynamics in a material undergoing di�usion. The heat flow is a partic-
ular case of di�usive behavior in which the collective di�usion coe⇤cient is
constant.

182

If       from (4.2.105) we see that to ensure 

that contribution from semicircle vanishes

we must close contour in lower half-plane

t > t0
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We now enclose pole at and sop0 = �E
Z 1

�1

e�ip0(t�t0)

(p0 � E)(p0 + E)
dp0 = +2⇡i

 
�e�i(�E)(t�t0)

2E

!

GF (x� x

0) =
2⇡i

(2⇡)4

Z
d

3
p

(�2E)
e

ip ·(x�x

0)
e

�i(�E)(t�t0)yielding

Since we are integrating over all of three-momentum space
is unchanged by substitutionGF p ! �p

we obtain 
G

F

(x� x

0) =
�i

(2⇡)3

Z
d

3
p

2E
e

ip·(x�x

0)

represents propagation of

 

backward in time

spinless positrons forward in time

SF (p) �E,�p
spinless electrons

p0 = �E

+E,+p

We see that origin of antiparticle states is pole at
which is not present in a nonrelativistic theory

(4.2.111.)

(4.2.109.)

which is equivalent to propagation of

t < t0 semicircle contribution will vanish 
provided we close contour in upper half-plane

For
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