Physics 307

MATHEMATICAL PHYSICS

Luis Anchordoqui

PARTIAL DIFFERENTIAL EQUATIONS !!

4.1 Taxonomy
4.2 Wave Equation
4.3 Diffusion Equation
4.4 Laplace Equation

ANSWERING IVAN'S QUESTION

DIFFUSION EQUATION

The diffusion equation is a partial differential equation which describes density dynamics in a material undergoing diffusion Heat flow is a particular case of diffusive behavior in which the collective diffusion coefficient is constant 4.3.1. Heat flow

Heat equation is a parabolic partial differential equation which describes distribution of heat in a given region over time (or variation in temperature) Consider a long thin bar of heat conducting material Length coordinate may be taken to be xLet σ be the specific heat per unit length (i.e. the capacity of a unit length of the material to hold heat) and κ the heat conductivity Let us assume that temperature in the subinterval $I_k = \left[x_{k-1}, x_k
ight]$ at a given time tcan be adequately approximated by scalar function $u_k(t)$ Heat contained in I_k is then $\Delta x \, \sigma \, u_k(t)$ \blacktriangleright $\Delta x = x_k - x_{k-1}$

The heat conductivity coefficient expresses relationship between rate of flow of heat & temperature differential per unit length u_x Since our model is spatially discrete so far we approximate $u_x(x_k)$ by $[u_k(t) - u_{k-1}(t)]/\Delta x$ Rate of heat flow emanating from I_k is $-\Delta x \, \sigma \, du_k/dt$ while flow of heat into $I_k \begin{bmatrix} \text{from } I_{k+1} \text{ is } \leftarrow \kappa \left[u_{k+1}(t) - u_k(t) \right] / \Delta x \\ \text{from } I_{k-1} \text{ is } \leftarrow \kappa \left[u_{k-1}(t) - u_k(t) \right] / \Delta x \end{bmatrix}$ Assuming heat is conserved we obtain $\Delta x \,\sigma \,\frac{du_k}{dt} = \frac{\kappa}{\Delta x} \left[u_{k+1}(t) - 2u_k(t) + u_{k-1}(t) \right]$ (4.3.112.) Dividing by Δx we have \sum $\sigma \frac{du_k}{dt} = \kappa \frac{u_{k+1}(t) - 2u_k(t) + u_{k-1}(t)}{(\Delta x)^2}$ (4.3.113.) If we assume actual heat distribution is a function u(x,t) fraction on right — a second difference divided by $(\Delta x)^2$ may be regarded as an approximation to u_{xx} \blacksquare

In limit $\Delta x
ightarrow 0$ — we obtain the partial differential equation

$$u_t(x,t) - \alpha \,\, u_{xx}(x,t) = 0$$
 (4.3.114.)

with $lpha=\kappa/\sigma>0$

If there are external heat sources or losses which can be represented by a function $f_{\sigma}(x,t)$ equation is augmented to more general form $u_t(x,t) - \alpha u_{xx}(x,t) = \overline{f}_{\sigma}(x,t)$ (4.3.115.)

Both (4.3.114.) and (4.3.115.)

are valid for arbitrary number of space dimensions

4.3.2. Diffusion in an infinitely long metal bar Let us first study initial value problem of heat flow on an infinite bar $-\infty < x < \infty$

The system is described by (4.3.114.) and we assume initial heat distribution u(x,0) = f(x) (4.3.116.) is at least piecewise continuous as a function of x

Fourier transform of solution is

 $\hat{u}(k,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,t) \ e^{-ikx} \ dx$ (4.3.117.)

and so

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{u}(k,t) \ e^{ikx} \ dx \quad (4.3.118.)$$

Substituting (4.3.117.) and (4.3.118.) into (4.3.114.) we obtain $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{u}_t(k,t) e^{ikx} dk + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{\infty} k^2 \hat{u}(k,t) e^{ikx} dk = 0$ (4.3.119.) regrouping terms (4.3.119.) becomes $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\hat{u}_t(k,t) + \alpha \ k^2 \hat{u}(k,t) \right] e^{ikx} dk = 0$ (4.3.120.)Given that Fourier transform of bracket is zero $\hat{u}_t(k,t) + \alpha k^2 \hat{u}(k,t) = 0$ (4.3.121.)bracket must cancel 🖛

Solution of (4.3.121.) is found to be

 $\hat{u}(k,t) = \hat{f}(k)e^{-\alpha k^2 t}$

(4.3.122.)

Let us now reconstruct full solution by inverse Fourier transform

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k) \ e^{-\alpha k^2 t} e^{ikx} dk \qquad (4.3.123.)$$
Function $\hat{f}(k)$ so far undetermined
is specified by imposing initial condition

$$u(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k) \ e^{ikx} dk = f(x) \qquad (4.3.124.)$$
 $\hat{f}(k)$ is Fourier transform of initial temperature distribution
Thus - $u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{-a^2k^2 t} e^{ikx} \int_{-\infty}^{\infty} dx' f(x') e^{-ikx'}$

$$= \int_{-\infty}^{\infty} dx' \ K(x - x', t) f(x') \qquad (4.3.126.)$$
with $K(x - x', t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ik(x - x') - \alpha k^2 t} \qquad (4.3.126.)$
This is one integral that we can solve explicitly

so we turned out our problem completely

al.

critic

Before calculating the explicit expression of Kwe verify that K(x,t) is the fundamental solution in sense that it satisfies $K_t(x,t) = \alpha K_{xx}(x,t)$, with $K(x,0) = \delta(x)$ (4.3.127.) Note that if $f(x) = \delta(x)$ then

> $u(x,t) = \int_{-\infty}^{\infty} K(x - x',t) f(x')dx'$ = $\int_{-\infty}^{\infty} K(x - x',t) \delta(x')dx'$ = K(x,t) (4.3.128.)

Therefore -K is response at any point and any time to an initial distribution of unitary temperature concentrated on a single point

To determine explicit form of
$$K$$
 we complete square in exponent
 $\exp[ikx - \alpha k^2 t] = \exp\left[-\left(\alpha k^2 t - ikx - \frac{x^2}{4\alpha t}\right)\right] \exp\left[-\frac{x^2}{4\alpha t}\right]$
 $= \exp\left[-\left(\frac{ix}{\sqrt{4\alpha t}} - k\sqrt{\alpha t}\right)^2\right] \exp\left[-\frac{x^2}{4\alpha t}\right]$
yielding
 $K(x,t) = \frac{e^{-x^2/(4\alpha t)}}{2\pi} \int_{-\infty}^{\infty} e^{-\left(ix/\sqrt{4\alpha t} - k\sqrt{\alpha t}\right)^2} dk$
 $= \frac{e^{-x^2/(4\alpha t)}}{\sqrt{\alpha t}} \int_{-\infty}^{\infty} e^{-z^2} dz$ (4.3.129.)
with $z = \sqrt{\alpha t} - ix/\sqrt{4\alpha t}$ and $dz = \sqrt{\alpha t} dk$
We then have to compute integral $I = \int_{-\infty}^{\infty} e^{-z^2} dz$
not over real axis - but displaced on imaginary axis to $-x/\sqrt{4\alpha t}$

However - given that e^{-z^2} is analytical in entire plane

 $I = \int_{-\infty}^{\infty} e^{-z^2} dz$ gives the same integrate along real axis

$$\int_{-\infty}^{\infty} e^{-z^2} dz = \int_{-\infty}^{\infty} e^{-\zeta^2} d\zeta, \quad \zeta \in \mathbb{R}$$
 (4.3.130.)

This integral is easily solved in polar coordinates

$$I^{2} = \int_{-\infty}^{\infty} d\zeta \ e^{-\zeta^{2}} \int_{-\infty}^{\infty} d\eta \ e^{-\eta^{2}} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\zeta \ d\eta \ e^{-(\zeta^{2}+\eta^{2})}$$
$$= \int_{0}^{\infty} \int_{0}^{2\pi} r \ dr \ d\phi \ e^{-r^{2}} = 2\pi \int_{0}^{\infty} r \ dr \ e^{-r^{2}} = \pi \int_{0}^{\infty} du \ e^{-u} = \pi$$

Finally = $I=\sqrt{\pi}$ and (4.3.129.) becomes

$$K(x,t) = \frac{1}{\sqrt{4\alpha\pi t}} e^{-x^2/(4\alpha t)}, \quad t > 0$$
 (4.3.131.)

K(x-x',t)is response function of heat equation for an infinite bar It describes temperature $u(\boldsymbol{x},t)$ at position \boldsymbol{x} and time t>0for an initial temperature distribution $u(x,0)=\delta(x-x')$ located at x'As a consequence of this description $K(x-x^\prime,t)$ is referred to as heat kernel It follows a Gaussian distribution centered at $x=x^\prime$ that spreads over time with standard deviation $\sigma(t)=\sqrt{2lpha t}$ Since total heat is conserved using normalization of initial condition $\int_{-\infty}^{+\infty} \delta(x-x')dx = 1$ we obtain $\forall t \models \int_{-\infty}^{\infty} K(x,t) \ dx = 1$ (4.3.132.)

With increasing t - heat kernel flattens and spreads preserving its area

For a fix x
eq 0, K(x,t) has a maximum at $t_0=x^2/(2lpha)$ with $K(x,t_0)=1/(\sqrt{2\pi x})$ decreasing then as $t^{-1/2}$ for $t o\infty$

Note also that if $t>0, K(x,t) \neq 0 \; \forall x \neq 0$

which indicates an infinite speed of heat transmission

(4.2.114.) is clearly not invariant under Lorentz transformations (as opposed to wave equation)

However — K(x,t) is very small for $x\gg\sigma(t)$

Example 4.3.1. For $u(x,0) = A \cos(kx) = A \Re e [e^{ikx}]$ it follows that $u(x,t) = A \Re e \left[e^{ikx - \alpha k^2 t} \right] = A \cos(kx) e^{-\alpha k^2 t}$ (4.3.133.)General solution (4.3.125.) is therefore ''sum" of elementary solutions for initial conditions $\,u(x,0)=\hat{u}(k,0)$ Note that initial spatial fluctuations of temperature decay much more rapidly for higher frequency kIf k = 0, u(x, t) = AExample 4.3.2. For $u(x,0) = A \ e^{-x^2/r}/\sqrt{\pi r}$, with r>0(Gaussian initial distribution of temperatures) it follows that $u(x,t) = A \frac{e^{-x^2/(r+4\alpha t)}}{\sqrt{\pi(r+4\alpha t)}} = AK(x,t+t_0), \quad t_0 = \frac{r}{4\alpha}$ Temperature distribution remains Gaussian orall t>0If $r
ightarrow 0^+$ then u(x,t)
ightarrow AK(x,t)

4.3.3. Diffusion in a finite metal bar (i) Homogeneous equation Consider evolution of temperature u(x,t) in a bar of finite length Lwith boundary conditions u(0,t) = u(L,t) = 0and initial condition u(x,0) = f(x)The temperature is assumed separable in x and tand we write u(x,t) = X(x)T(t) so that (4.3.114.) becomes

 $\frac{1}{\alpha} \frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = -k^2$ (4.3.135.)

where k^2 is separation constant and X(0) = X(L) = 0The spatial equation is then $X'' + k^2 X = 0$ which is simple harmonic motion equation with trigonometric solutions

 $X(x) = A\cos(kx) + B\sin(kx)$

(4.3.136.)

Now - applying boundary conditions we find $X(x) = \sin(n\pi x/L)$ (4.3.137.)

For such values of k we have

$$T_n(t) = b_n e^{-(n\pi/L)^2 \alpha t}$$
 (4.3.138.)

We take most general solution by adding together all possible solutions satisfying boundary conditions $u(x,t) = \sum_{n=1}^{\infty} b_n e^{-(n\pi/L)^2 \alpha t} \sin(n\pi x/L)$ (4.3.139.)

Final step is to apply initial conditions

$$u(x,0) = \sum_{n=1}^{\infty} b_n \sin(n\pi x/L) = f(x) \quad (4.3.140.)$$

and invert Fourier series to determine coefficients b_n

We do this by multiplying equation by $\sin~(m\pi x/L)$ and integrating over interval $\left[0,L ight]$ $b_n = \frac{2}{L} \int_0^L f(s) \, \sin \, \left(n \pi s / L \right) \, ds \quad \mbox{(4.3.141.)} \label{eq:bn}$ Solution is then

$$u(x,t) = \sum_{n=1}^{\infty} \frac{2}{L} \int_0^L f(s) \sin(n\pi s/L) \sin(n\pi x/L) e^{-(n\pi/L)^2 \alpha t} ds$$
(4.3.142.)

Note that due to rapid decrease in exponential when n grows series is strongly convergent

Moreover - given that $|u_n(x,t)| < |c_n| \ \forall t, 0 \leq x \leq L$ and that series of absolute value of Fourier coefficients converges if f is continuous with continuous derivative to pieces (with f(0) = f(L) = 0)

series $\sum u_n$ converges uniformly

and determines a continuous function for $t \geq 0$

 ∞

n=1

Due to uniform convergence

we can swap order of integral and sum to obtain $u(x,t) = \int_0^L f(s) \ K(x,s,t) \ ds$ (4.3.143.)

where

 $K(x,s,t) = \frac{2}{L} \sum_{n=1}^{\infty} \sin(n\pi s/L) \sin(n\pi x/L) e^{-(n\pi/L)^2 \alpha t}$ (4.3.144.)

is fundamental solution that satisfies boundary conditions $K(0,s,t)=K(L,s,t)=0 \label{eq:K}$

Fundamental solution decays exponentially in time and hence describes a transient process , i.e. if we wait long enough then K(x,s,t) decays away

Other boundary conditions lead to different eigenvalues and eigenfunctions for spatial part e.g. – if edges are isolated $X''+k^2X=0, \quad X'(0)=X'(L)=0$ From these boundary conditions we obtain $X(x) = \cos(n\pi x/L), \quad n = 0, 1, \dots$ (4.3.146.) $u(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \ e^{-(nx/L)^2 \alpha t} \ \cos(n\pi x/L)$ (4.3.147.) and so Initial condition yields $f(s) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x/L)$ (4.3.148.) and so $a_n = \frac{2}{L} \int_0^L f(s) \cos(n\pi s/L) ds$, $a_0 = \frac{2}{L} \int_0^L f(s) ds$ (4.3.149.) Note that terms with $n\geq 1$ are transient Stationary term of solution $a_0/2$ is independent of x and gives average of initial temperatures

Problem with fixed temperature at edges $u(0,t) = T_0$, and $u(L,t) = T_L$ (4.3.150.) with T_0 and T_L independent of tcan be reduced to previous problem with substitution $u(x,t) = w(x,t) + T_0 + \frac{x}{I}(T_L - T_0)$ (4.3.151.) Note that linear function on right is a stationary solution of diffusion equation that satisfies boundary conditions (4.3.150.) whereas w(x,t) also satisfies homogeneous diffusion equation but with homogeneous boundary conditions $w(x, 0) = u(x, 0) - T_0 - x(T_L - T_0)/L$ $\lim_{t \to \infty} u(x,t) = T_0 + \frac{x}{L}(T_L - T_0)$ (4.3.152.) In this case

(ii) Inhomogeneous equation

Solution of inhomogeneous equation (4.3.115.) with initial condition

u(x,0) = 0, for $0 \le x \le L$

and boundary conditions

 $u(0,t) = u(L,t) = 0, \text{ for } 0 \le x \le L$

is given by

$$u(x,t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x,x',t-t') \ \overline{f}_{\sigma}(x',t') dx' \ dt' \qquad \text{(4.3.15)}$$

where G(x, x', t - t') satisfies differential equation $G_t(x, x', t - t') - \alpha^2 G_{xx}(x, x', t - t') = \delta(x - x')\delta(t - t')$ (4.3.156.) with G(0, x', t - t') = G(L, x', t - t') = 0

Thursday, April 30, 15

(4.3.153.)

(4.3.154.)

We have seen that solution of homogeneous equation (4.3.114.)
can be expanded in a Fourier sine series =

$$G(x, x', t - t') = \sum_{n=1}^{\infty} g_n(x', t - t') \sin\left(\frac{n\pi x}{L}\right)$$
 (4.3.157.)
We have also seen that a Fourier series expansion of $\delta(x - x')$ gives
 $\delta(x - x') = \frac{2}{L} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x'}{L}\right) \sin\left(\frac{n\pi x}{L}\right)$ (4.3.158.)
Substituting (4.3.157.) and (4.3.158.) into (4.3.156.) we obtain
 $\frac{2}{L} \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x'}{L}\right) \delta(t - t') \sin\left(\frac{n\pi x}{L}\right) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) \left[\frac{\partial g_n}{\partial t}(x', t - t') + \alpha\left(\frac{n\pi}{L}\right)^2 g_n(x', t - t')\right]$
and so Fourier coefficients of G satisfy
 $\frac{\partial g_n}{\partial t}(x', t - t') + \alpha\left(\frac{n\pi}{L}\right)^2 g_n(x', t - t') = \frac{2}{L} \sin\left(\frac{n\pi x'}{L}\right) \delta(t - t')$
(4.3.159.)

To determine $g_n(x^\prime,t-t^\prime)$ we write it in terms of its Fourier transform $g_n(x,t-t') = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{g}_n(x',\omega) e^{i\omega(t-t')} d\omega$ (4.3.160.) Substituting Fourier-integral expression for delta function $\delta(t-t') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t-t')} d\omega \quad (4.3.161.)$ and (4.3.160.) into (4.3.159.) we obtain $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[i\omega + \alpha \left(\frac{n\pi}{L}\right)^2 \right] \hat{g}_n(x',\omega) e^{i\omega(t-t')} d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega e^{i\omega(t-t')} \frac{2}{L} \sin\left(\frac{n\pi x'}{L}\right) d\omega$ which leads to $\left[i\omega + \alpha \left(\frac{n\pi}{L}\right)^2\right]\hat{g}_n(x',\omega) = \frac{1}{\sqrt{2\pi}}\frac{2}{L}\sin\left(\frac{n\pi x'}{L}\right) \quad (4.3.162.)$ $\hat{g}_n(x',\omega) = \frac{1}{L}\sqrt{\frac{2}{\pi}} \frac{\sin(n\pi x'/L)}{i\omega + \alpha(n\pi/L)^2}$ (4.3.163.) and so

Now - we must solve anti-Fourier transformation

$$g_n(x',t-t') = \frac{1}{L}\sqrt{\frac{2}{\pi}} \frac{\sin(n\pi x'/L)}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \frac{e^{i\omega(t-t')}}{i\omega + \alpha(n\pi/L)^2}$$

This integral can be performed in complex plane ω closing contour on upper half-plane (where exponential function decreases at infinity)

$$\int_{-\infty}^{\infty} d\omega \frac{e^{i\omega(t-t')}}{i\omega + \alpha(n\pi/L)^2} = 2\pi e^{\alpha(n\pi/L)^2(t-t')}$$

Therefore

$$g_n(x,t-t') = \frac{2}{L}e^{-\alpha(n\pi/L)^2(t-t')}\sin\left(\frac{n\pi x'}{L}\right)$$
 and

$$G(x, x', t - t') = \frac{2}{L} \sum_{n=1}^{\infty} e^{-\alpha (n\pi/L)^2 (t - t')} \sin\left(\frac{n\pi x'}{L}\right) \sin\left(\frac{n\pi x}{L}\right)$$

4.2.5 Schrödinger & Klein-Gordon equation A quantum mechanical description of a relativistic free particle results from applying correspondence principle which allows one to replace classical observables by quantum mechanical operators acting on wave functions In position representation the correspondence principle states $E
ightarrow -rac{\hbar}{i}rac{\partial}{\partial t} \equiv -rac{\hbar}{i}\partial_t, \qquad \mathbf{p}
ightarrow rac{\hbar}{i}
abla \qquad extsf{(4.2.58.)}$ which in four-vector notation reads $p_{\mu} \to i\hbar(\partial_t, \nabla) = i\hbar\partial_{\mu}; \qquad p^{\mu} \to i\hbar(\partial_t, -\nabla) = i\hbar\partial^{\mu}$ $\mu = 0, 1, 2, 3 \equiv t, x, y.z \checkmark$ General prescription for obtaining Schrödinger equation for a free particle of mass *m* is to substitute differential operators into classical energy momentum relation

$$E = \frac{\mathbf{p^2}}{2m}$$
 (4.2.59.

Resulting operator equation

 $-\frac{\hbar^2}{2m}\nabla^2\psi = i\,\hbar\,\partial_t\psi$ (4.2.60.) is understood to act on a (complex) wavefunction $\psi(\mathbf{x},t)$ schrödinger equation can be viewed as a diffusion equation with imaginary diffusion constant $i\hbar/(2m)$ or mathematically as diffusion equation in imaginary time itwith a real diffusion constant $\,\hbar/(2m)$ Wavefunction does not have any physical interpretation but we interpret $ho = |\psi|^2$ as probability density — that is ho $|\psi|^2 d^3 x \Rightarrow$ probability of finding particle in volume element $d^3 x$ Because of its parabolic anatomy (4.2.60) violates Lorentz invariance and is not suitable for a particle that moves relativistically Applying correspondence principle to relativistic energy-momentum relation $E^2={f p}^2+m^2$ (4.2.61.) one obtains wave equation $(\hbar^2\partial^\mu\partial_\mu+m^2)\psi=0$ (4.2.62.) where $\psi(\mathbf{x},t)$ is a scalar complex-valued wavefunction

Hereafter we work with natural units $\hbar=c=1$ In natural units quantities: energy, momentum, mass, (length) and (time) - all have the same dimension $(\Box^2 + m^2)\psi = 0$ In these units (4.2.60.) reads (4.2.61.) $\Box^2\equiv\partial_\mu\partial^\mu$ is invariant d'Alembertian operator Partial differential equation (4.2.61) is called Klein-Gordon equation Multiplying Klein-Gordon equation by $-i\psi^*$ and complex conjugate equation by $-i\psi$ and subtracting - leads continuity equation $\partial_t \left[i(\psi^* \,\partial_t \psi - \psi \,\partial_t \psi^*) \right] + \nabla \left[-i(\psi^* \,\nabla \psi - \psi \,\nabla \psi^*) \right] = \mathbf{0} \quad \textbf{(4.2.62.)}$ probability density density flux of a beam of particles

HINTS FOR THE CALCULATION

$-i\phi^*\partial_\mu\partial^\mu\phi - i\phi^*m^2\phi + i\phi\partial_\mu\partial^\mu\phi^* + i\phi m^2\phi^* = -i\phi^*\partial_\mu\partial^\mu\phi + i\phi\partial_\mu\partial^\mu\phi^* = 0$

Considering motion a free particle of energy E and momentum \mathbf{p} described by Klein-Gordon solution $\psi = N \, e^{i ({f p} \, . {f x} - Et)}$ (4.2.63.)from (4.2.62.) we find $ho = -i(2\,i\,E)|N|^2 = 2\,E\,|N|^2$ and $\mathbf{j} = -i(2\,i\,\mathbf{p})|N|^2 = 2\,\mathbf{p}\,|N|^2$ We note that probability density hois timelike component of a four-vector $\rho \propto E = \pm (\mathbf{p}^2 + m^2)^{1/2}$ (4.2.64.)In addition to acceptable E > 0 solutions we have negative energy solutions which have associated a negative probability density We cannot simply discard negative energy solutions as we have to work with a complete set of states and this set inevitably includes unwanted states

Prescription for handling negative energy configurations was put forward by Stückelberg and by Feynman Expressed most simply - idea is that a negative energy solution describes a particle which propagates backwards in time or equivalently

a positive energy antiparticle propagating forward in time

To master this idea - consider a spin-zero particle of: energy Ethree-momentum P and charge -egenerally referred to as spinless electron substituting (4.2.63.) into the charge current density of electron (4.2.65.) $j^{\mu} = -i e \left(\psi^* \ \partial^{\mu} \psi - \psi \ \partial^{\mu} \psi^* \right)$ we obtain the electromagnetic four-vector current $j^{\mu}(e^{-}) = -2e|N|^{2}(E, \mathbf{p})$ (4.2.66.)

Green function (or propagator) of spinless electron satisfies $(\Box^2 + m^2) G_F(x - x') = \delta^{(4)}(x - x')$ (4.2.68.) To define Green function entirely one also needs to fix boundary condition Retarded (advanced) Green function is defined to be non-vanishing for positive (negative) values of time $t-t^\prime$ Boundary conditions for Feynman propagator are causal: positive (negative) solutions propagate forward (backward) in time To solve (4.2.68.) - we first Fourier transform to momentum space $G_F(x - x') = \frac{1}{(2\pi)^4} \int S_F(p) \ e^{-ip \cdot (x - x')} \ d^4p$ (4.2.69.)

Then - on substituting into (4.2.68.) we obtain

$$\frac{1}{(2\pi)^4} \int (p^2 - m^2) S_F(p) e^{-ip \cdot (x - x')} d^4 p = \frac{1}{(2\pi)^4} \int e^{-ip \cdot (x - x')} d^4 p$$

right-hand side is Fourier representation of delta function In momentum space - (4.2.68.) therefore becomes simply

$$(p^2 - m^2) S_F(p) = 1$$

that is \blacktriangleright $S_F(p) = rac{1}{p^2 - m^2}$ (4.2.72.) To complete determination of $S_F(p)$ we need to know how to treat singularities at $p^{2} - \mu^{2} = p_{0}^{2} - (\mathbf{p}^{2} + m^{2}) = (p_{0} - E) (p_{0} + E) = 0$ To obtain correct prescription for integration over poles at $p_0=\pm E$ we need to impose appropriate boundary conditions on $\,G_F(x-x')$ Thursday, April 30, 15

(4.2.71.)

From (4.2.101.) and (4.2.104.)

$$G_F(x - x') = \frac{1}{(2\pi)^4} \int \frac{1}{(p_0 - E)(p_0 + E)} e^{-ip \cdot (x - x')} d^4 p \quad (4.2.105.)$$

= $\frac{1}{(2\pi)^4} \int d^3 p \; e^{i\mathbf{p} \cdot (\mathbf{x} - \mathbf{x}')} \int_{-\infty}^{\infty} \frac{e^{-ip_0(t - t')}}{(p_0 - E)(p_0 + E)} \, dp_0$

 $G_F(x-x')$ represents wave produced at x by a unit source at x'That is $rac{}$ propagation is from x' to x

We will see that $S_F(p)$ which is associated with propagation of positive-energy spinless electrons forward in time (t > t') and with negative energy spinless electrons backwards in time (t < t')This can be accomplished by performing p_0 integration in complex plane using Cauchy residue theorem To do this - we rewrite propagator as

$$S_F(p) = \frac{1}{p^2 - m^2 - \epsilon^2}$$

(4.2.106.)

introduction of $+i\epsilon$ (with ϵ infinitesimal and positive) has the effect of displacing $p_0=\pm E$ poles slightly off axis

There are two poles one just above real axis and one just below

First pole has

location
$$\rightarrow + \left(E - \frac{i\epsilon}{2E}\right)$$
 residue $\rightarrow \frac{\exp\{+i(E - i\epsilon/2E)(t - t')\}}{2(E - i\epsilon/2E)}$

while second has

location
$$\rightarrow -\left(E - \frac{i\epsilon}{2E}\right)$$
 residue $\rightarrow -\frac{\exp\{-i(E - i\epsilon/2E)(t - t')\}}{2(E - i\epsilon/2E)}$

If t > t' from (4.2.105) we see that to ensure that contribution from semicircle vanishes we must close contour in lower half-plane \rightarrow

We therefore enclose pole at $p_0=+E$ to obtain (in limit $\epsilon
ightarrow 0$) $\int_{-\infty}^{\infty} \frac{e^{-ip_0(t-t')}}{(p_0-E)(p_0+E)} \, dp_0 = -2\pi i \left(+\frac{e^{-iE(t-t')}}{2E} \right) \quad (4.2.107.)$ Substituting this result into (4.2.105.) $G_F(x-x') = \frac{-2\pi i}{(2\pi)^4} \int \frac{d^3p}{(2E)} e^{-ip \cdot (x-x')}$ $= \frac{-i}{(2\pi)^3} \int \frac{d^3p}{2E} e^{-ip \cdot (x-x')} \quad (4.2.108.)$ $S_F(p)$ represents propagation of +E spinless electrons forward in time

For t < t' semicircle contribution will vanish provided we close contour in upper half-plane We now enclose pole at $p_0 = -E$ and so $\int_{-\infty}^{\infty} \frac{e^{-ip_0(t-t')}}{(p_0-E)(p_0+E)} \, dp_0 = +2\pi i \left(-\frac{e^{-i(-E)(t-t')}}{2E}\right) \quad (4.2.109.)$ yielding $G_F(x-x') = \frac{2\pi i}{(2\pi)^4} \int \frac{d^3p}{(-2E)} e^{i\mathbf{p} \cdot (\mathbf{x}-\mathbf{x}')} e^{-i(-E)(t-t')}$ since we are integrating over all of three-momentum space is unchanged by substitution $\,{
m p}
ightarrow -{
m p}$ G_F we obtain $G_F(x-x') = rac{-i}{(2\pi)^3} \int rac{d^3 p}{2E} \ e^{ip \cdot (x-x')}$ (4.2.111.) $S_F(p)$ represents propagation of $-E,-{f p}$ spinless electrons backward in time which is equivalent to propagation of $+E,+\mathbf{p}$ spinless positrons forward in time We see that origin of antiparticle states is pole at $p_0=-E$ which is not present in a nonrelativistic theory

