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ANSWERING WAN'S QUESTION
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DIFFUSION EQUATION

The diffusion equation is a partial differential equation
which describes density dynamics in a material undergoing diffusion

Heat flow is a particular case of diffusive behavior
in which the collective diffusion coefficient is constant

4.3.1, Heat flow

Heat equation is a Faraboii«: partial differential equation
which describes distribution of heat in a given region over time
(or variakion in &empera&ure)

Consider a long thin bar of heat conducting material
Length coordinate may be taken to be

Let 0 be the specific heat per unit length
(Le. the capacity of a unit length of the material to hold heat)

and K Ethe heat r:anduc&ivi&j
Let us assume that Eemrxera&ure in the subinterval I = ['Tk—la CUk]
at a given time ¢

can be adequately approximated by scalar function Uy )

Heat contained in I is then Ax o ug (t) w AT =Tp — Tp_1
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The heat tov\du,t&iv&fj coefficient expresses relationship between
rate of flow of heat & temperature differential per unit length Uy

Since our model is spatially discrete so far

we approximate U () by [uk(t) —up_1(t)]/Ax
Rate of heat flow emanating from [ is w» Az o dug /dt
from Ty is = & [i1(6) — us(2)] /A
from I 1 is w K [up_1(t) — up(t)] /Ax

Assuming heat is conserved we obtain

du K
AQCO' d—tk - A_gj [Uk+1(t) o QUk(t) L Uk—l(t)] (4’«5.112«)

Dividing bj Axr we have

while flow of heat ko [} -

duy, L uk+1(t) — 22Uy (?f) o uk_l(t) (4.3.113.)
o— =K saietisd
dt (AT
If we assume actual heat distribution is a function u(x,t)
fraction on right = o second difference divided bj (A33>2

may be reqgarded as an approximation to Uz
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In limit Ax — 0 = we obtain the partial differential equation
il x, b) = o Uy BT —oll (4.3.114.)

with a=kr/oc>0

1{ there are external heat sources or losses
which can be represented bj a function [, (2. 1)

equation is augmented to more general form

ue(z,t) — Qg (z,t) = 70(:13, t) (4.3.118)

Bobth (4.3.114) and (4.3.118.)

are valid for arbitrary number of space dimensions
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4.3.2. Diffusion in an infinitely long metal bar
Let us first study initial value problem of heat flow

on an infinite bar — o < 1 < 0

The system is described by (4.3.114.)
and we assume initial heat distribution u(z,0) = f(z) (4.3.116.)

is ot least plecewise continuous as a function of

Fourier transform of solution is )

a(k,t) e~ T Jr  (4.3.117)

A

a(k,t) e dx  (4.3.11%)
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Substituting (4.3.117.) and (4.3.11%.) into (4.3.114.) we obtain

ey Wd/c+—/ R i (s S
(4.3.119.)

7

regroupiug terms (4.3.119.) becomes

(K, t) + o K*a(k, t)] e dk = 0 (4.3.120.)
A /

Griven that Fourier transform of bracket is zero

bracket must cancel w  Us(k, t) + ak?u(k,t) = 0

Solution of (4.3.121.) is found to be

a(k,t) = f(k)e ot
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Lek us now recownstruct Afu,ti. solution b:j inverse Fourier Etransform

u{ L) \/% / f el e (4.3.123.)

Funhction f (k) so far undetermined
is specified by imposing initial condition

w@0) = o= [ Jh) k= f@)  (@aied

f(k) is Fourier transform of initial temperature distribution

1 ¥ . o (X
Thus = y(x,t) = % dke—a2k2t6m/ g e ™
T (0.0

=3

/ dr' K(xz —x',t)f(2") (4.3.125.)

T

: 1 = ik(x—x')—ak?t
wikh K(a’; - $/,t) — % /_OO dke ( ) (4.3.126.)

This is one integral that we can solve explicitly
so we turned out our problem completely
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Before calculating the explicit expression of K

we veri,ffj that K (x,t) is the fundamental solution

i sense that ik sakisfies
Ki(z, tr="aRahlx. t) = With 8K (1. (==t aiugy

Note that if f(z) = 0(x) then

WL

Therefore = K is response at any point and any time

to an initial distribution of unitary temperature

concentrated on a single Foim&
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To determine explicit form of K we complete square in exponent

; 2
expliks — okt = e (oszt — tkx — az)] exp [
4ot

exp |— (ﬁ% k\/@)j exp [

3&2@.{:&&&\3

—z? /(4at o0 5
= 2/( ) / 6—(im/\/4at—k\/at) i
T

O

6—x2/(4at) o0 _sz
e /_ i e (4.3.129.)

with 2 = Vat —ix/Vidat and dz = Vat dk

©.@)

We then have bto aompu&e integral [ = / e % dz

D,

not over real axis w bub displaced on imaginary axis to —z/vV4at
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2
However m given that € °  is analytical in entire plane

e % dz gives the same integrate along real axis

/ e™% dz :/ Eat’ dC, « & =R (4.3.130.)

This integral is easily solved in polar coordinates

72 / d¢ s < / dn SR / / d¢ dn Gty
_oo 275 - 5 ;o % 4 00
/ / r dr dgo.e® :27r/ Edries & :7T/ g —
0 Jo 0 0

F-':EM&LLj w ] = \/% and (4.3.129.) becomes

ik 2
K(z,t) = el ) (4.3.131.)

VAot
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K(x — T, t) is response function of heat equation
for an infinite bar
It describes temperature u(z,t)ak position T and time a0
for an initial temperature distribution u(z,0) = d(x — a:'/)
located ob '

As a cohsequence of this desarip&icm K (x =2 .CC/, t)
is referred ko as heat kernel

it follows a Graussian distribution centered ot v = 2/

that spreads over time with standard deviation gl \/ 20t

Since total heat is comserveciD
—+ 00
using normalization of initial condition / 6(x — x')dx =1

= O

we obtain Vi = / Ktz f)sds =il (4.3.132.)
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With increasing { w heat kernel flattens and spreads
preserving iks area

For a fix = # 0, [{(gj7 t) has a maximum at {§ = 332/(2&)
with K(x,t9) =1/(V2rx)

decreasing then as t_l/ 2 ‘FOI” r — 00

Note also that f ¢ > 0, K(x,t) £ 0 Vx # 0

which indicates an infinite speed of heat transmission

(4.2.114.) is clearly not invariant under Lorentz transformations

(as opposed to wave equation)

However w K (7,1) is very small for © > o(t)
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Exampt& 4.3.1. ‘
for u(z,0) = A cos(kx) = A Re [eF*]
itk follows that
.. ikr—oak?t i —ak?t
u(z,t) = A Re |e | = A cos(kx) e (4.3.133.)
Greneral solution (4.3.125.) is therefore
“sum" of etemem&arj solutions for inikial conditions U(ZI?, 0) == fb(k, 0)

Note that initial spatial fluctuations of temperature

decay much more rapidly for higher frequency k

b= 0, ule we—
Example 4.3.2.
P
For u(z,0)=Ae /" /\/ar, with" r >0
(Gaussian initial distribution of temperatures)
itk follows that

6—332/(7“4—40475)
A
V7 (r + 4at)
Temperature distribution remains Gaussian Vi > 0
17— 0" then u(z,t) = AK(z,t)

Ul )

= AK(ZIZ,t o to),
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4.3.3. Ditfusion tn a finike mekal bar
(L) Homogeneous equation
Consider evolution of temperature u(z,?)in a bar of finite length L
with boundary conditions u(0,t) = u(L,t) = 0
and initial condition u(z,0) = f(z)
The temperature is assumed separable in T and ¢

and we write u(x,t) = X(z)T(t) so that (4.3.114.) becomes

Lo Gl

ZETRERND S i) SR o = BT LY e e
T R Sl

where k£ s separation constant and X(0)=X(L)=0

The spa&ial equ&&on ts then X7 + E2X =0

which s s&mpte harmonic mwokion equ&&iav\

with trigonometric solutions

X(x) = Acos (kx)+ Bsin (kx) (4.3.136.)

Thursday, April 30, 15



Now m applying boundary conditions we find
X{(z).= sin{(nrz IS a2 )
For such values of L we have
To(t) = bre-(e/EPat  (4325m)

We take most general solution
by adding together all possible solutions
sa&isﬁing bcuv\dar-j conditions

Ul = Z b~ (D) o sin(nmz/L) (4.3.139.)
n=1

~unal s?:e[z:» is ko QWL-; inikial conditions >

Uz 0= Z b, sin(nmz/L) = f(zx) (4.3.140.)
—

and invert Fourier series to determine coefficients 0y,
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We do this by mulkiplying equation by sin (mrz/L)
and integrating over interval |0, L]

o L
= E/ f(s) sin (nws/L) ds (4.3.141.)
Solution is then >
©.@) 2 L .
u(z s Z Z/ f(s)sin(nrs/L) sin(nrz/L)e~ "™/ L)t gg
E (4.3.142.)

Note that due to rapid decrease in exponential when 1 grows
series is strongly convergent

Moreover m given bthat |u, (2,1)] < |c,| VE,0 < x < L

and that series of absolute value of Fourier coefficients converqges

fxf f is continuous with continuous derivakive ko Piate‘_s

(with f(0) = f(L) =0)

©.©,

series E Un converges uniformly

nzl . . .
and determines a continuous function for t > 0
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Due to uniform convergence

we can swap order of integral and sum to obtain
L
Wl — f(s) K(z,s,t) ds (43.143)

sin(nws/L) sin(nwaj/L)e—(nﬁ/L)%t
(4.3.144.)

is fundamental solution that satisfies bmumd&rj conditions

K (0,848 = KL, s, 1} =0

Fundamenkal solukion ciet:sz expamen&auj i Eime

and hence describes a Eransient process :

Le. if we wail long enough then K(z,s,1) d&cajs away
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Other bou,ndarj conditions

lead to different eigenvalues and eigenfunctions for spatial part
e.q. = if edges are isolated X" +Ek*X =0, X' (0)=X'(L)=0
From these boundary conditions we obtain

X = coslpary/ By, n =W L el 3046,

ao

—(nz/L)?at
: +Za” e~(nz/L)"at oog(pary /L) (4.3.147.)

90—

and so w( T, Tl

a ©.@)
Initial condition yields f (8)is= —2—0 + g ancos(nmx/L) (4.3.14%)
Tl

2 L
and so ¢, = E/ f(s)cos(nms/L) ds,
0

L
dy i % /O T s (4.3.149.)

Note Ehabk kerms with 7 > 1 are btransient

Stationary term of solution ag / s independent of T
and gives average of initial temperatures
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Problem with fixed temperature at edges
u(0,t) =Ty, and. SRR {4 37Ee )

with 70 and 1L independent of t
can be reduced to Previ,c:vu,s Frmbiem wikth substibubion

u(z,t) =w(x,t) + To + = (TL —Tp) (4.3.181)

L

Note that Linear function on right is a stationary solution

of diffusion equation that satisfies boundary conditions (4.3.150.)

whereas W(7,1) also satisfies homogeneous diffusion equation

bub wikh homogeneous boumdarj condikions

w(x,0) =u(x,0) — Ty — (T —To)/ L)

In this case  lim u(zx,t) = Tp + — (TL —T0) (4.3.182)

t— 00 L
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(il) Inhomogeneous equation

Solution of ihomogeneous equ&&ion (4.3.118)

with tikial conditkion

ulE)) = 00 fop i+ < (4.3.153.)

and boundarj conditions

u(0,4) = u(Lyg) =0, for Oz <L (4.3.154.)

s glven bfj

(e / / Glo 2B ) Pl Y. (4.5155)

where G(z,7',t — 1) satisfies differential equation

Gi(z, 2, t —1t") — onGm(x, o' t—t)=0(x—x2')o(t —t') (4.3.186)

with G(0,z2',t—t')=G(L,z',t—t') =0
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We have seen that solution of homogeneous equation (4.3.114.)
con be expanded n a Fourier sine series w )

NI
ele T n(@',t =) sin () 3167,
(s nzlg x’ ") sin T (4.3.187.)

oy . : Y
We have also seen that a Fourier series expansion of 0(z — 2') gives

© @)

A 2 ; nrx’ EhO ok
A M o i 4 23 185%,
o(x LU)—LE sin | — sm(L) ( )

nN=

Substituting (4.3.167.) and (4.3.16%.) into (4.3.166.) we obtain

% isin (nzx’) 6(t —t') sin (mm:) Zsm (mm;) {%(x’,t —t)
n=1
+ «a (%)Q%(I’;t—t/)l

and so Fourier coefficients of G satisfy

2
) @, (= —

OGn ¥ : N
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To determine g, (z',t —t')
we write ik in terms of iks Fourier transform

gn(x,t — 1) gl wyee s ) du (4.3.160.)

=7

Substituting Fourier-integral expression for delta function

low, [ P /
6(t—t') = 2—/ el i aien )
T e

and (4.3.160.) inko (4.3.189.) we obkain

1 +o0 2 | : 1 + o0 . e 4
\/—Q—W/_OO [z’w—ka(n%) ]f]n(a:’,w)ew(t—t)dw: %/_OO dwew(t_t)zsm (m;a:)

which leads to
/
[m il (n—7T ' ) (4.2.162.)

sin(nrz’ /L) (4.3.163.)
T tw + a(na/L)?

and so
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Now m we must solve anti-Fourier transformation
(it 1 \/Esin(nmc’/[/) /OO o Pl
T, b =) = :
I EY o \ 2T i

This integral can be performed in complex plane W

closing contour on upper half-plane
(where exponential function decreases at infinity)

o eiw(t—t’) 4 ;
/ s _ o pa(nm/LY? (¢=t)
iw + a(nm/L)?

5320, )

Therefore
2 2 /

and
0, @)

2 2 /
Glz, & "t 7 Z e SRR S E YTy

==l
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4.2.8 Schrodinger & Klein-Gordon equation
A quantum mechanical description of a relativistic free particle
results from applying correspondence principle
which allows one to replace classical observables
by quantum mechanical operators acting on wave functions

In Fosi&ios« represem&a&iam the Corres[ponclem:e primcipi.e skakes

ey f
Ecy Uil g R V. (a8lew.)

which i four-vector notation reads

(R zﬁ(@t, V) = zﬁ@u : p,u S zﬁ(@t, —V) = tho" >

M:O,l,Q,SEt,Qf,y.Z

Greneral prescription for obtaining Schrédinger equation

for a free particle of mass M is to substitute differential operators
into  classical energy momentum relation

2
P (4.2.59.)

2m
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Resulting operator equation
2
_h_v% — i h O (4.2.60.)
2m
is understood to act on a (complex) wavefunction P (x,1)

Schrodinger equation can be viewed as a diffusion equation
with imaginary diffusion constant ifi/(2m)
or mathematically as diffusion equation i imaginary time 1t

with a real diffusion constant A /(2m)
Wavefunction does not have any physical interpretation

but we interpret p = WP as Frobabui&j devxsi&v w Ehat is )

‘¢‘2d3$ probability of finding particle in volume element d>x
Because of its parabolic anatomy (4.2.60) violates Lorentz invariance

and is not suitable for a particle that moves relativistically
Agpljiv\g) carrasyomdemae priv\t‘ipt@.

to relativistic energy-momentum relation E? = P’ +m? (4.2.61.)

one obtains wave equation (ﬁ28uﬁu e m2)¢ =0 (4.2.62.)

where 1)(X, 1) is a scalar complex-valued wavefunction
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Hereafter we work with natural units h =c =1
In natural units quantities:
energy, momentum, mass, (Le.tr\g&h) and (time)

w oll have the same dimension

In these units (4.2.60.) reads (D2 - mz)w — 1 (4.2.61.)

B! 6,,@“ is Uavartant d'Alewmbertian operator

Partiol differential equation (4.2.61) is called Klein-Gordon equation
Multiplying Klein-Gordon equation bj —gp*
and tmmpi&x tahjuga&e equaEimn bj —)

and subltracting w leads continuity equation

O |1(" Oph — p Bep™)| V. [=i(y)" Vb — 9 V7)| = 0 (4.2.62.)

. 4
probability density density flux of a beam of particles
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HINTS FOR THE CALCULATION

Ou(9"0"¢) = 0,¢"0" ¢ + 9" 0,0" ¢

—i¢* 0,01 — i¢" MG + 190,01 P* + idmPPT = —ig"0,0"$ + i¢,0" "
0
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Considering motion a free particle of energy E and momentum p
described bfj Klein-Gordon solution ¥ = N et P X—Ft) (4263
from (4.2.62.) we find

p=—i(2iE)JN?=2E|N> and Jj= —i(2ip)|N|°=2p|N|?

We nobe that prmbab&ti&v density p

s timelike «campouan& of a four-vector

px E==+(p?2+m?)/? (4.2.64.)

In addition ko atcep&&bi.e E > 0 solutions

we have hegative enerqy solutions

which have associated a negative probability density

We cannot simply discard negative energy solutions
as we have to work with a complete set of states

and this sek inevi&abij ncludes unwanted skates
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Prescription for handling negative energy configurations
was put forward by Stuckelberg and by Feynmoan
Expressed most simply w idea is that a negative energy solution
describes a particle which propagates backwards in time
or equivalently

a positive energy antiparticle propagating forward in time

To master this idea w consider a spin-zero particle of:

energy E
three—-momentum P

and charge —€
generally referred to as spinless electron

Substituting (4.2.63.) into the charge current density of electron
G = —ie(* O — o O (4.2.658.)
we obtain the electromagnetic four-vector current

j#(e”) = —2¢|N|*(E, p) (4.2.66.)
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Now = taking ibs ah&ipar&iai& €+oaf same (E ; p)
because iks charge is +¢ we obtain

j*(e") = 2e|N|*(E,p)
= —2¢|N|*(~E,-p) (42.67)
which is exactly same as current of original particle with—F/ —p

Hence w as far as a system is concerned
emission of an antiparticle with energy [

is the same as absorption of a particle of energy — L

?Lt&ori,ad.i.j

— I particle solutions going backward in time
describe [ antiparticle solutions going forward in time

). —iEt

this identification can be made because € e
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Green function (or propagator) of spinless electron satisfies
(0% m?) Gr(z — z') =69z — z') (4.2.6%.)

To define Green function entirely
one also heeds to fix bound&r'j condition

Retarded (advanced) Green function is defined to be

non-vanishing for positive (negative) values of time t — ¢’
Boundary conditions for Feynman propagator are causal:
positive (negative) solutions propagate forward (backward) in time

To solve (4.2.6%.) = we first Fourier transform ko momentum space

1

GF(x i SIZ/) T (27_‘_)4

/ Srlp) e P20 g4p (4.2.69.)
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Then = on substituting into (4.2.6%.) we obtain

1 —ip-(x—zx’ 1 —ip-(x—=x’
(27)4 /(p2 —m2) Sr(p) e e )d4p = (27)4 /6 7 ) d'p

right-hand side is Fourier representation of delta function
In momentum space m (4.2.6%.) therefore becomes simply

2 2 3
(p: —m%) Srigh=1 s 91 s

1
P2 — m?2 (4.2.72.)
To campte&e determination of Sp (p)

Ehat is w SF( ):

we need to khow how to treat singularities at
p —pf =po P ) = E (pg E) =0

To obtain correct prescription for integration over poles at po = aud )

we heed to impose appropriate boundary conditions on Gr(zx — 1)
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From (4.2.101.) and (4.2.104.)

e—ip-(a:—a;’)d4p

(4.2.108)

6—?:p0(t—t/) d
oo (PO (5, P

Grlzes represents wave prmduceci at T b? L S urce of T

That is = prmpaga&&mv\ s from T to T

We will see that Sp(p) which is associated with propagation of
pmsi&ive_nenergj spimiess electrons forward in time (f > t') and
with negative energy spinless electrons backwards in time (1)
This can be accomplished by performing P0 integration

LA COMPL&X F»'LOLV\Q. using Cauc:hj residue theorem
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To do this = we rewrite propagator as

1
S S (4‘2‘1061>
r(p) P2 —m? —¢

2

introduction of +ic (with € infinitesimal and positive)

has the effect of disptacing Doe— =k poles slightly off axis

There are two poles one Just above real axis and one just below

~irsk Fwte has

exp{+i(E —ie/2E)(t —t')}
2WE — ie/2E)

location =&  + (E - 22—;) residue —

while second has

exp{—i(FE —ie/2E)(t —t')}
2(E — i¢/2E)

location — —( ) residue — —
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It > t' from (4.2.108) we see that ko ensure

that conbribution from semicircle vanishes

we must close contour in Lower half-plane

We therefore enclose Fmi.e at pg = +F to obkain (in Limik ¢ — 0)
—iE(t—t")

00 e—ipo(t—t/) : o 3
/oo (PO 3 E)(po 3t E) Poggan < ile 2F (4.2.107.)

Substituting this result into (4.2.108.)
2 [ d°p  _; /
G e 5 —ip-(x—x")
T (27)3 / (2E) *
s 3 , :
(27)° 2F

S (p) represents propagation of +E spinless electrons forward in time
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For t < t semicircle conbribution will vanish
provided we close contour in upper half-plane

We now enclose pote atk Do = —F and so

OO e A d o edl=E)(t=1')
/oo o Bl ET 5F (4.2.109.)

. 271 d°p
3&@1&&.&\3 Gr ($ St ) = (27_‘_)4 / (—2E)

Since we are integrating over all of three-momentum space

P (x—x") —i(—E)(t—t)

Gr  is unchanged by substitution P — —P
—1 dgp - /
we obtain Gp(x —2') = e 6@19‘(58—3? )
F( ) (27_‘_)3 9F (4.2.211.)
Sr(p) represents propagation of —E,—p
spinless electrons backward in time
which is equivalent to propagation of +F +p
spinless positrons forward in time
We see that origin of antiparticle states is pole at Po = 3
which is not present in a nonrelativistic theory
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