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4.1 T axonomy

A partial differential equation is an equation that
ivolves an unkinowin function and some of its partial derivatives
with respect to two or more independent variables
An n-th order equation has its highest order derivative of ordern
A partial differential equation is linear
if it is an equation of first degree
in the dependent variable and iks derivatives

A partial differential equation is homogeneous
if every term contains the dependent variable

or one of its partial derivatives

Interest here is in Llinear homogeneous 2nd-order equations
the most general of which in two independent variables is given by
0°u o 0u Oty " Rou @y
a@—l‘ (933‘(9y ‘|—C8—y2 —@(%,ay,u> (4_‘1‘1>
P is a Linear btransformation
coefficients a,b, c may be functions of randy

For simplicity w we assume that these coefficients are constants
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Superposition principle holds for Linear homogeneous equation

that is w its solutions form a linear space
By exhibiting an infinite sequence of independent solutions
we will show that dimension of this solution space is infinite

We now inkroduce new independem& variables

§ = ol Dy ANd Y nissqa o 01 (4.1.2)
o, 3,7,0 are constant to be chosen below with m of — B~y £ ()

?ﬁ
ox
Ou
Jy
and for second derivatives that

= auge + 2yougy + Y ugy

— ol EEa e G S o,

= Bluge + 2B0ugy + 0 uqy 2

= Uz = QUg¢ + YUy
It is seen that

= ‘ygemiBue + Gl
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Substituting (4.1.3) and (4.1.4) into (4.1.1) we obtain >

A Ug £ S B Ugp T & Upy = @(U& Uy, u) (4.1.8)

A ac? + 2bafB + cf?
where B ayo + b(ad + By) + B9
C ay? + 2bv8 + ¢d* (4.1.6)

By suitable choice of a, (5,7, 0
we can make two of these three coefficients vanish

For example let us assume that ¢ 7= 0

so bhat rooks A1 and )\ of quadratic a + WA+ =0 (417
are both finite

Leb us set @ = vy =GR X, M=

sothat {=xz+ Ay and n=z+ Xy (4.1.%)
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For this choice @ A =(C =0 and therefore (4.1.8) becomes )

4 o
2 o bg)\l :|: )\224—0 Ao e E(ac — bHugy = G(ue, Uy, u) (4.19.)
—2b/c a/c

Leb us assume thak ov\Lj the second derivakive terms

are present in (4.1.1.) and therefore also i (4.19.)

Then m assuming ac — b’ # (0 we obtain Ugy = 0 (4.1.10.)

This has obvious general integral = 1y = ¢(&) + Y (n) (4.1.11.)

Bj analogj with conie seckions

there are bhree main cases ko be considered

according as discriminant b — ac is positive, negative, or zero
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Cose I: % Mac\=il)

Rooks A\, Ay are real and diskinck

Standard form (4.1.10) has general solution (4.1.11)

or by (4.1.8) w u = @(z + Ay) + Y(z + A2y) (4.1.12.)

In this case (4.1.1.) is said to be hjperboua‘:

Just as a rotation 7/4 changes rectangular hyperbola 1 = constant

to form £ — 1 = constant

1 1

1 1
so rotation »+ S = 55 <t 577, L= 55 3 577 (4.1.13.)

brings about alternative standard form

(4.1.14)
Ut — Ugs = 0
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. o
Cose II: 00 o 0 (4.1.18.)

Roots are conjugate complex: A1 — e — s

E=z+My=2+ py T iglsand | g
Stamdard form is User = 0 with general integral u = ¢(&) + (&)
Let us now write £ = s+ 1t wikth S and l real

sty Loy gl eI (4.1.16.)

Lo daelh o 1
s SellE — o0 Sl tet ]

1 1 1
t s o A _— — 4 —_ — o
S LG s

In these variables standard form is seen to be = 1, + .. = ()
In this case equation is said to be elliptic

Greneral solution becomes m u = @(s + it) + (s — it) (4.1.19.)

solution is sum of a formal analytic function of & = s+ it

. . . & :
and a formal antianalytic function of & =5 — 1
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Case 11I: b2 —ac =0
Roots are real and equal A1 = Ao
Note that Etransformation (4.1.%.) degenerates if 7 = 3
Instead w we choose for 7] any combination of x and Y
not proportional to 5

Because of (4.1.7.) m A still vanishes & mixed coefficient becomes

a7y + b0 @t Ao — (@ P A sl b+ c)h)o  (4.1.20)

In this case of equal roots —\ = a/b = b/c
so this expression also vanishes

Therefore m standard form must be u,, =0 (4.1.21.)

with general integral U = ¢(§) ] w(f) (4.1.22.)

orw U=+ Ay +yY(z+Ay)  (42.23)

Ehis is Parabotic cose
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4.2 WAVE EQUATION
4.2.1. Vibrating string

Consider a string in tension

between two fixed end-points
and acted upon
by transverse forces mh

Let u(x,t) denote transverse displacement
where 1 is distance from left end and { is time

Force distribution (of dimension §0rce/£eug&h2) denoted n-?(g;, t)
We assume that all motion is vertical

and displacement u and slope § = 9y /0x are both small
For small 0 = sin 0 =~ tan 0

Differential equation of motion
is derived by applying
Newkon’s second Law b

to a small differential segment of string
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Using 2-term Tavtor’s series Qpproximaﬁov\ tension per unit length

oT
T+dl ~T+ > da (4.2.24.)
Likewise for 0 -

@Jrﬁ @ o (4.2.258.)
Qs NWOx

we how equate net applied force in vertical direction to ma

oT ou  0%u Ou o 0%
(T + %d:c> (895 e dac) — T+ flz,t)dz = (pAdz) o5 (4226

where P is density of string material and Ais cross-sectional area

After expav\olihg this equation and eliminating small terms
we get linearized partial differential equation for vibrating string

o 1
Uge + JrlZ,t) = o Uit
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Note that C has unibts of velocily

For zero force f =0 (4.2.2%) reduces ko C
which s one-dimensional wave equa&imn

2
Ugpy — Ut = 0

Transverse displacement for unforced infinitesimal vibrations

of a stretched string satisfies wave equation

In any number of dimensions m wave equation can be wriltten as

1 s
2 o A : £ ralit] , '
Vu = —uyy wikh N — jEZl a—x? (4.2.33)

2
For time-harmonic motion wm u = ugcos(wt)

wave equation simplifies to Helmholtz equation

Viug + k% ug = 0 (4.2.34.)

ug is &mPLL&ude of sine wave

k=w/c is called wave number

Helmholtz equation is usually referred ko as reduced wave equation
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4.2.2. d'Alembert solukion

2
The wave equation m  C Uy — Ut = 0
can be rewritten in canonical form m Ugy = 0

by passing to characteristic variables
£ =gt ct.and 0=k (4.2.35.)

Integrating first wrt the variable 77 and then wrt &
we obtain (4.1.11.) which in terms of x —t variables reads

u(x,t) = ¢(x — ct) + Y(x + ct) (4.2.36.)

u(@,0) = f(z)=o(x)+v(z) 237

For initial conditions -

u(z,0) = glx) =c [¢'(z) - ¢'(z)

we can determine Afumé:&icms O and U

Im&egra&mm

/¢ da—/¢

leads to =
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Conmbining (4.2.37.) and (4.2.40.) we obtain

1 1

— 7@+ 5 [ g(a) dat 5 g(0)

oa) = ;@ -5 [ o)

Substituting these two expressions into (4.2.36.) we get

w(z ) %[ F@= o) £ F (e + el Qic ( /0 Ay /0 2 da)

2¢

[f(z et Fl2 + )| + & (/OerCtg(oz) do + /: g(e) da)

—ct

1 x+ct
f(zx —ct)+ f(x +ct) + — / g(a) da (4.2.42)

C Jr—ct
or equivalent u(z,t) = 5[f(z — ) + f(z +et) + Gla+ct) - Glo — 1)
Witk Gt % / +tt o
Initial form splits into 2 pulses that kravel in opposite directions

1
Initial velocity originates 2 pulses of different signs £5G(x £ ct)
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Example 4.2.1
For special case g(z) =0 d'Alembert solution simplifies to

1
u(z,t) = 5 [ f(x — ct)] EREETEE e (4.2.45)
e.q. m consider a triangular pulse of width 20 and height 0

Bl e
f(x)—{ 0 z| > b

Solution is piecewise defined in 4 different regions of x-t haif-—yi.ane
In order to determine these regions notice that

b— |x+ ct| lx +ct]| < b

f(x+6t):{ 0 z+ct| > b

b— |x — ct| |z — ct| < b

f(x_Ct):{ 0 |z —ct| > b
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4 regions are given by
I: {|lz+ct|<b, |x—ct| <b}
IT: {|lr+ct| <b, |x—ct| > b}
. {lz+ct| >0, |x—ct| < b}
IV: {|lz+et| > bz —cti> b}
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Volue of d'Alembert solution ot a point (g, 1)

1 1 To+cto
o gl §[f(m0 — cto) + f(xo + cto)] + = / g(a)da (4.2.83)

%
0 —cto
depends on values of [ at only kwo points on T axis
To + ctg and T — Clo

and values of ¢ only on interval lxg — cto, xo + cto]

For this reason the inkerval [-TO — CUHL o Cto]

is called interval of dependence for point (zq, 1)

Sometimes entire triangular region

wikth vertices at T — Ct() and Lo T+ Cto on T axis and verkex (SISQ, t())

is called domain of ciape.mdewce. of F.'QEME (3307 tO)

Sides of this triangle are seqments of characteristic Lines
passing through point &), 1)
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Range- of
Influence

- L Loty o

An tnverse notion to domain of dependence

is notion of range of influence of point L0 on T axis
This is region in ¢ —{ plane consisting of all points
whose domain of dependence contains point o

Region has an upside-down triangular shape
with sides being characteristic Lines emanating from point 2o

This also means that value of initial data ak point o
impacts values of solution 1 ot all points in domain of influence

Notice that ot a fixed time 1
only points satisfying zy — ctg < 2 < z¢ + cto
are influenced by point To on T axis
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4.2.3. Linear algebra of space-time

Whewn C is spee_d\ of Light
range of influence and domain of dependence

can be thought of as fubture and past Light cones
of (1+1)-dimensional Minkowski spacetime M (]R%, <y >)

with w  RE = (G - fag € TR

and cioubte-signeci ner Frad.m:& <(t17 551)7 (t2> 5172)> == Cztth e o b))

Inner product specifies structure of Minkowski spacetime:
a two-vector v = (t,x) € M is said to be:

timelike f (v,0) >0 null f (v,v) =0  spacelike f (v,v) <0
Orthogonal vectors U, W € M are defined bj i <v, w> ="

Null curves are orthoqonal ko ibself

Minkowsid norm w ||(t, 2)|| = V/c22 — 22 (4.2.57.)

ranges over all hon-negative real and posi&ive imagimarj values

Curves of constant Minkowski norm s so&&s{j e 2 2
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Parameter S determines three families of such curves:
() s =0 w (4.2.87.) defines Light cone « = Tct
(i) f s € RT

w  (4.2.87.) defines a kjperbota 2 1? = 5° nside Light cone
(W) ¥ s =4¢ € iRt i

w (4.2.87.) defines a hyjperbaia T — 17 = (° oubside Light cone
We can generalize structure of Minkowski spacetime

to any arbitrary number of dimensions

Stricktly speaking m Light cone is a 3-dimensional surface
i (3+1)-dimensional Minkowski spacetime

and events in sEaCeEime may be characterized according to

whether they are inside of, outside of, or on light cone
Light cone classification clarifies distinction between

double-signed inner product spacetime
and a genuine inner F?racimt& space
in that two points in Minkowski spacetime may be separated
by a distance whose square could be positive, hegative, or zero,
which embodies impossibilities for any Euclidean space
Lightlile particles have worldlines confined to Light cone

and square of separation of any 2 points on lightlike worldline is zero
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Light cone diagram for two space and onhe time dimension

Timelike

Spacelike

Spacelike

Timelike
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424, Cousal Green function
Let us begin with erc:-btem of initial velocities:

Ust — CoUpy = 0,5 8u(z, 0) = TR z) (2.650
By d'Alembert formula m solution is definite integral

x+ct
g, 1= i/ g(a) da (4.2.66.)

2C —ct

We can expre.ss Ehis as a distribuktion K

U ) / K(x —x',t)g(z')dx’

(4.2.67.)

pravud&d we choose

/
& s |z — 2'| < ct B
K(x x,t)—{ A i e (4.2.6%.)

Thus w K — () unless ct exceeds both T — x'and 1 —

This step function can be expressed by Heaviside function

Kz —2',t)= 5 [0z —2' +ct) — Oz — 2’ — ct)] (4.2.69)

This is Green function for one-dimensional wave equation
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When we regard K as distribution m time T enters as a parameter

Thus we can differentiote K (z — ') with respect to ¢

Ki(x —2',t) = 3 [6(z — 2’ + ct)O(ct —z + a') + 6(ct —x+ 2')O(ct + = — ')

For t > () = we can omit Heaviside factors in each term

Note that when t = 07 we have for K inikial values

K(x— 2400 == 8
Ki(z—2',0) = 5[0(z—2)+d(" —a)]=d(z—12) (4.270)

Now let us examine solution of initial problem
Ut — Czum; = U(CE, O) — f( ), ut(a:, O) =0 (4271
This solution is
u(z,t) = L[f(otet)+ Fz )

o

[6(x +ct —2') + d(ct — x + 2)]f(2)) do’

Ki(x —2',t)f (") da’ (4.2.72.)

Thursday, April 23, 15



ALL in all w we can rewribte d'Alembert soluktion as

u (T, ble= /OO [Ki(z —x',t) f(z') + K(z — 2, t)g(z")] do’ (4.2.73.)

= .0

For t >0 initial data that fall outside past cone of point (wyl)

do not therefore affect value of u(z,t)
Solution of non-homoqgeneous wave equation with zero initial data
is convolution (i space and time) of Green distribution

with forcing force
To verify that causal Green function

Gz, 1) = Kie go ) (4.2.74.)

is a solution of point source wave equation

G 206 o — 0y 0y (4.2.78.)

we should change over to characteristic coordinates
G = c(Gee+ Gyy) — 267Gy

(4.2.76.)
Gro = Gee+ Gyp+2Ge,

such Ehakt

Gyt — 2Grp = —4c* Gy, (4277)
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Reason we have chosen (7 (x, t) ko be zero for l wnegative is that
cause must precede effect

Substituting (4.2.69.) into (4.2.74.) we obtain

1
Glcin) — Q—C@(f)@(—ﬁ) (4.2.7%.)

Now m we Falkee derivakives with respe«a& to f and 1)

Cen = —5-3(6)5(n) (4279

and use relation
2co(ct + x)d(ct — x) = 6(x)o(t) (4.2.%0)

to obtain desired resulk
For a par&tutar poinﬁ (20,t0) w solution reads

o) =g [ [ Frle dgan= ot [[ Faten dg an
no /1o
(4.2.%1.)
where double integral is taken over triangle of dependence
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Triangle of dependence of point (20, t0)
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Using change of variable (4.2.35.) and computing Jacobian

06, Mhee. | 1 aC R (4.2.%2.)
= Az.t) |t Ze

we can transform double integral (4.2.%1.)

to o double integral in terms of (2,1) variables to get

u(zostole / Bz )| dodt = / Tt £ dodi

(4.2.¥3.)

Finally = rewriting last double integral as an iterated integral

r+c(t— t)
wir g / / E s e (4.2.54)
2C x—c(t—t’)
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General solution of (4.2.2%.) with ?T (b=l For b=z ()
and tnitial conditions u(x,0) = f(z), ui(z,0) = g(x)
can be written as

u(z, ) /OO (Ge(xz — 2", t) f(2') + Gz —2',t) g(z')] do’

e OO0

/ / O - o T e (B s a2 x5

Example 4.2.4-. 3s
For o constant field f(x,t) = a O(t)

solution of initial value probt&m (with zero initial data)

z+c(t—t’)
s found to be u(m,t) S / / e

c(t—t")

2c(t —tYdt'  (4.2.%6.)

(4.2.57.)

which torresmeis to o constant accelerakion
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fUBE
FNNTINNED. .
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