Prof. Anchordoqui

Problems set # 9‘ Physics 307 November 16, 2016

Ordinary Differential Equations V

1. (i) Find the Fourier series of f(x) = |z|, with 0 <z < L.
(i) Evaluate > >° (=1)"
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2. Show that:
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demonstrate the following Fourier transforms:
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(iv) Show that the Fourier transform of f(™(z) is (is)"g(s).

4. (i) Show that the Laplace transform, Z[f(z)] = [ e % f(x) dx, of f'(z) is

Z[f'(z) = Sf[f(fﬂ)] — £(0).
(ii) Generalize the previous result for
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(i4i) Show that
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(iv) Using Laplace transform solve
y'+2 ty=2z¢",
with y(0) = 0 and 3/(0) = 1.

5. Show that in the vicinity of a simple jump of a function f, the partial sums S, always
overshoot the mark by about 9%. This is the so-called “Gibbs phenomenon.”



