Problems set # 5

Physics 307

Ordinary Differential Equations I

1. Show that a linear equation is homogeneous if and only if 0 is a solution.

2. (i) By virtue of Newton's law, the cooling rate of a body in the open air is proportional to the temperature difference between the body and the environment. If the air temperature is 20° and the body is cooled from 100° to 60° in 20 minutes, determine the time it would take for the body temperature to drop to 30° .

(*ii*) Find the curve that passes through (0, -2) so that the slope of the tangent at each point is equal to the ordinate corresponding to that point plus three units.

3. (i) For a given electrostatic field in the plane, show that the equipotential lines are trajectories orthogonal to the lines of force.

(ii) If the electromagnetic potential is of the form $\Phi = xy$, find the equation for the streamlines.

4. Determine which of the following differential equations have singular solutions (*i.e.*, integral curves where uniqueness is violated):

(i) $\frac{dy}{dx} = y^2 + x^2;$ (ii) $\frac{dy}{dx} = (y - x)^{2/3} + 5;$ (iii) $\frac{dy}{dx} = (y - x)^{2/3} + 1.$

5. (i) Using Picard's theorem find the general solution of $\frac{dy}{dx} = y^2$, with y(0) = 1; (ii) Determine the first and second Picard iterations of $\frac{dy}{dx} = x - y^2$, with y(1) = 0.