Problems set #4

Physics 307

Elements of Linear Algebra

1. Let V be a vector space over F and let T be a linear transformation of the vector space V to itself. A nonzero element $\mathbf{x} \in V$ satisfying $T(\mathbf{x}) = \lambda \mathbf{x}$ for some $\lambda \in F$ is called an eigenvector of T, with eigenvalue λ . Prove that for any fixed $\lambda \in F$ the collection of eigenvectors of T with eigenvalue λ together with **0** forms a subspace of V, that is, a subset of the vector space V that is closed under addition and scalar multiplication.

2. (i) Show that $\{t, \sin t, \cos 2t, \sin t \cos t\}$ is a linearly independent set of functions. (ii) Find all unit vectors lying in span $\{(3, 4)\}$.

3. A matrix $\mathbb{A} \in \mathbb{C}^{n \times n}$ is nilpotent if $\mathbb{A}^k = 0$ for some integer k > 0. Prove that the only eigenvalue of a nilpotent matrix is zero.

4. (i) Determine whether the function $T : \mathbb{R}^2 \to \mathbb{R}^2$, such that $T(x, y) = (x^2, y)$ is linear? (ii) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T(1,0,0) = (2,4,-1), \quad T(0,1,0) = (1,3,-2), \quad T(0,0,1) = (0,-2,2);$$

compute T(-2, 4, -1).

(iii) Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be a linear transformation such that

$$T(x_1, x_2, x_3) = (2x_1 + x_2, 2x_2 - 3x_1, x_1 - x_3), \quad \boldsymbol{x} = (x_1, x_2, x_3) \in \mathbb{R}^3;$$

compute T(-4, -5, 1). (*iv*) Let $T : \mathbb{R}^5 \to \mathbb{R}^2$ be a linear transformation $T(\boldsymbol{x}) = \mathbb{A}\boldsymbol{x}$, with

$$\mathbb{A} = \left(\begin{array}{rrrr} -1 & 2 & 1 & 3 & 4 \\ 0 & 0 & 2 & -1 & 0 \end{array} \right);$$

compute T(1, 0, -1, 3, 0).

(v) Let T(x, y, z) = (3x - 2y + z, 2x - 3y, y - 4z). Write down the matrix representation of T in the standard basis and use it to find T(2, -1, -1).

(vi) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T(a_1, a_2, a_3) = (3a_1 - 2a_3, a_2, 3a_1 + 4a_2)$. Prove that T is an isomorphism and find T^{-1} .

5. (i) Show that if $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the counterclockwise rotation by a fixed angle θ , then $T(x,y) = \mathbb{A}\boldsymbol{x} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$

(ii) Let T be the counterclockwise rotation in \mathbb{R}^2 by an angle 120°, write down the matrix of T

and compute T(2,2).

(iii) Prove that if θ is not an integer multiple of π there does not exist a real valued matrix \mathbb{B} such that $\mathbb{B}^{-1}\mathbb{A}\mathbb{B}$ is a diagonal matrix.

6. Let $\boldsymbol{x} \in \mathbb{R}^n$ be a vector. Then, for $\boldsymbol{y} \in \mathbb{R}^n$, define $\operatorname{proj}_{\boldsymbol{x}}(\boldsymbol{y}) = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\|^2} \boldsymbol{x}$. The point of such projections is that any vector $\boldsymbol{y} \in \mathbb{R}^n$ can be written uniquely as a sum of a vector along \boldsymbol{x} and another one perpendicular to \boldsymbol{x} : $\boldsymbol{y} = \operatorname{proj}_{\boldsymbol{x}}(\boldsymbol{y}) + [\boldsymbol{y} - \operatorname{proj}_{\boldsymbol{x}}[\boldsymbol{y})]$. It is easy to check that $[\boldsymbol{y} - \operatorname{proj}_{\boldsymbol{x}}(\boldsymbol{y})] \perp \operatorname{proj}_{\boldsymbol{x}}(\boldsymbol{y})$.

(i) Show that $\operatorname{proj}_{\boldsymbol{x}} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation.

(*ii*) Let T be the projection on to the vector $\boldsymbol{x} = (1, -5) \in \mathbb{R}^2$: $T(\boldsymbol{y}) = \operatorname{proj}_{\boldsymbol{x}}(\boldsymbol{y})$; find the matrix representation in the standard basis and compute T(2, 3).

7. Show that if
$$\mathbb{A} = \begin{pmatrix} 0.6 & 0.8 \\ 0.4 & 0.2 \end{pmatrix}$$
 then $\lim_{n \to \infty} \mathbb{A}^n = \begin{pmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{pmatrix}$

8. (i) Show that Hermitian matrices satisfy the following properties $(\mathbb{AB})^{\dagger} = \mathbb{B}^{\dagger}\mathbb{A}^{\dagger}$. (ii) Prove that the inverse of a Hermitian matrix is again a Hermitian matrix.

9. Consider a 3×3 real symmetric matrix with determinant 6. Assume $x_1 = (1, 2, 3)$ and $x_2 = (0, 3, -2)$ are eigenvectors with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$.

(i) Give an eigenvector of the form $x_3 = (1, x_2, x_3)$ for some real x_2, x_3 which is linearly independent of the two vectors above.

(ii) What is the eigenvalue of this eigenvector.

10. (i) Find the eigenvalues and eigenvectors of the Pauli matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

(*ii*) Show that the Pauli matrices obey the following commutation and anticommutation relations: $[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$ and $\{\sigma_i, \sigma_j\} = 2\delta_{ij}\mathbb{1}$.

(*iii*) Show that $\{1, \sigma_1, \sigma_2, \sigma_3\}$ are linearly independent.

(iv) Prove that $\{1, \sigma_1, \sigma_2, \sigma_3\}$ form a basis in 2 × 2 matrix space, by showing that any arbitrary matrix

$$\mathbb{M} = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right)$$

can be written on the form $\mathbb{M} = a_0 \mathbb{1} + \vec{a} \cdot \vec{\sigma}$, where $a_0 = \frac{1}{2} \text{Tr}(M)$, $\vec{a} = \frac{1}{2} \text{Tr}(\mathbb{M}\vec{\sigma})$, and $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ is the Pauli vector.

(v) Let \vec{v} be any real, three dimensional unit vector and θ a real number. Show that

$$\exp(i\theta\,\vec{v}\,\cdot\vec{\sigma}) = \mathbb{1}\cos\theta + i\vec{v}\,\cdot\vec{\sigma}\,\sin\theta,$$

where $\vec{v} \cdot \vec{\sigma} \equiv \sum_{i=1}^{3} v_i \sigma_i$, with σ_i the Pauli matrices.