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Problems set # 3 Physics 307 September 21, 2016

Complex Analysis III

1. Let f(z) = πz(1−z2)
sin(πz) .

(i) Find all zeros of f and their orders;

(ii) find all singularities of f and classify them;

(iii) discuss the Laurent expansion of f around zero, and calculate the first few non-zero coefficients.

2. (i) Give two Laurent series expansions in powers of z for the function

f(z) =
1

z2(1− z)

and specify the regions in which those expressions are valid.

(ii) Write two Laurent series in powers of z that represent the function

f(z) =
1

z(4 + z2)

in certain domains and specify these domains.

3. Find all the singularities of the following functions, clasify them, and compute the residues

at those points:

(i) f(z) = z2

sin2 z
;

(ii) f(z) = z2−1
(z2+1)2

;

(iii) 1
z2 sinh z

.

4. Evaluate:

(i) ∮
C

2z + 6

z2 + 4
dz,

where the contour C is the circle |z − i| = 2;

(ii) ∮
C

ez

z4 + 5z3
dz,

where the contour C is the circle |z| = 2;

(iii) ∮
|z|=8

tan z dz,

(iv) ∫ 2π

0

1

(2 + cos θ)2
dθ

(v) ∫ ∞
−∞

1

(x2 + 1)(x2 + 9)
dx;



(vi) ∫ ∞
−∞

1

x4 + 1
dx ;

(vii) ∫ ∞
0

x sinx

x2 + 9
dx .

5. One of the most important applications of Bosse-Eisntein statistics is to investigate the

equilibrium properties of the black-body radiation. Consider a gas of photons in a radiation cavity

of volume V and temperature T . The energy of a given photon is ~ωs, where ωs is the angular

frequency of the radiation mode. The number of normal modes of vibration per unit volume of

the enclosure in the frequency range (ω, ω+ dω) is given by the Rayleigh expression: ω2dω/(π2c3).

The energy density associated to the frequency range (ω, ω + dω) is given by,

u(ω)dω =
~

π2c3
ω3 dω

e~ω/kT − 1
, (1)

which may as well be rewritten in the dimensionless form

u′(x)dx =
x3 dx

ex − 1
(2)

where

u′(x) =
π2~3c3

(kT )4
u(x) and x =

~ω
kT

.

The total energy density in the radiation cavity

U

V
=

∫ ∞
0

u(x) dx =
(kT )4

π2~3c3

∫ ∞
0

x3 dx

ex − 1
(3)

can be evaluated by expanding the integrand in a series. Since e−x ≤ 1 throughout the range of

integration, one can write

x3

ex − 1
=

e−xx3

1− e−x
= e−xx3

(
1 + e−x + e−2x + . . .

)
=

∞∑
n=1

e−nxx3 . (4)

Therefore the integral in (3) becomes∫ ∞
0

x3 dx

ex − 1
=

∞∑
n=1

∫ ∞
0

e−nxx3dx

=

∞∑
n=1

1

n4

∫ ∞
0

e−y y3 dy . (5)

(i) Using contour integration in the complex plane show that

∞∑
n=1

1

n4
=
π4

90
.



(ii) Using the result of (i), show that

U

V
=

π2k4

15~3c3
T 4 . (6)

Hint: Consider the integral
∫∞
0 e−x xn dx. For n = 0, the evaluation is trivial∫ ∞

0
e−xdx = − e−x

]∞
0

= 1 . (7)

More generally, the integral can be simplified using integration by parts. For n > 0,∫ ∞
0

e−x xndx = −
∫ ∞
o

xn d(e−x)

= − xn e−x
]∞
0

+ n

∫ ∞
0

xn−1 e−x dx .

Since the first term on the right vanishes at both limits, one obtains the recurrence relation∫ ∞
0

e−x xn dx = n

∫ ∞
0

e−x xn−1 dx . (8)

If n is a positive integer, one can apply (8) repeatedly to obtain∫ ∞
o

e−x xn dx = n (n− 1) (n− 2) . . .

= n! . (9)


