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HARMONIC OSCILLATORS

Consider an ensemble of /N identical harmonic oscillators
each of them described by Hamiltonian m 77 = £ 4 **
Stationary Schrodinger equation becomes 3
h*  d? ka?
(— 5 25 + 5 ) V@) = e V(@) (52)
+00
Boundary conditions ¥(£oo) = 0 and / U(z)dr =1

— 00
(52) is a linear differential equation with a variable coefficient
solution can be expressed through special functions (in next semester course)
. . 1 .
main result eigenvalues have the formm ¢; = (3 + 5) hw j=0,1,2,--- (53)
w = \/k/m w frequency of oscillations

energies are equally spaced and states are non-degenerate m ¢g; = 1 \]

ground state €g = hw/2 is not zero as would be case for a classical oscillator
This quantum ground-state energy is called zero-point energy
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PARTITION FUNCTION
7= ge e = ¢Phl2 3 o=t (54)
=0 =0

= PMw/2(1 4 e7Plw 4 @m20Rw LY

using result for geometrical progression

)
l+ox+22+2° +..=(1—2)! r <1
4
o Bhw/2 £0/(2T)
e eyl m—y ¢ (53)

characteristic temperature w 0 = hw / k
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OCCUPATION NUMBERS

% _ e_ej/kT _ 6—5j/kT[69/2T(1 . e—Q/T)]
N  Z
— (1 . 6—9/T)6—8j/kT—|—9/2T

USingﬂ‘ —— + — = —|—§ ——I——:—]—:_]_

¥ v, e 1\ hw hw hw 0
kT 2T J KT 2kT KT T

<£F]

% _ €—j9/T(1 _ 6—9/T)

N (56)
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EXAMPLE

Fractional occupation numbers for quantized linear oscillators

} \
1.0 1.0
T=3 T =20
0.8 | 0.8 |-
N 0.6 |- N 0.6 |-
N ool N oa b m
02 | 02 | l
0 Lo ] 0 l | -
o 1 2 3 o 1 2 3

the lower the temperature the more rapidly occupation numbers decrease with 7
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U

Internal (average) energy of ensemble of oscillators is

B Oln 7z B o (0InZ B 1 1
() (), ) o

The limiting low- and high-temperature cases of this expression are

[ ~ th/Q %f kT < hw (58)
NEKT it KT > hw

This is what we would expect from a diatomic molecule
with two vibrational degrees of freedom

(kinetic and potential energy)

= lim U = Nhw/2 (59)
T'—0
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HEAT CAPACITY OF HARMONIC OSCILLATORS
oU 9,

— | — NkOH— 9/T_1 —1
CV <8T)V keﬁT(e )

2 0/T
N (2 -
T) (ef/T —1)2

@ high temperatures H/T <1 9 9 —2

heat capacity approaches a constant

@ low temperaturesm 0 /T > 1 = /T > 1
0/ T 0\ ?
€ . _—0/T v —0/T
(I 1) > e = Cy — Nk (T> e

Rate at which exponential factor approaches zeroas 1" — 0

is greater than rate of growth of (0 /T)? nl' O 0
11m —
1T'—0 v
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VARIATION WITH TEMPERATURE OF HEAT CAPACITY
C /(Nk )
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VIBRATIONAL MODES OF DIATOMIC MOLECULES

Average quantum number of oscillator m 1 = (J) = Vi Zje_ﬁej (60)

Using 87)mw n = —m—  and U =N (5 +n) (61)

At low temperatures k1" << hw w T becomes exponentially small

This means that oscillator is predominantly in its ground state 5 = ()

Vibrational degrees of freedom are getting frozen out at low temperatures
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CLASSICAL LIMIT

kT
At high temperatures kT > hw w» n =~ "

At high temperatures many levels are populated

ldistribution function e~ ~¢v only slightly changes from one level to other

e—ﬁé‘j _ 6—5€j+1

relative change w — 1 _ 6—6(5j+1—sj) —1_ 6—[3hw

e—Pe;
huw
~1-—1 hw = — 1

+ 0 al) o <

Homework w it is straightforward to show P(S) — (hw)_
summation in (54) can be replaced by integration

>° 1 kT
/O = ple) e hoB  hw

OlnZ aln%—l—-" Omnpg+.--- N

a0 a0 a0 b

Luis Anchordoqui

Thursday, November 6, 14 10




QUANTUM MECHANICS INTERLUDE

Angular Momentum

Classically, angular momentum with respect to the origin is given
by the formula:

L=FXxp (1)
In Cartesian coordinates, the components are

L, =yp. — zpy; Ly=z2p; —xp,; L.=xpy— yp.- (2)

The corresponding quantum mechanical operators are obtained us-
ing p— (h/1)V :

Lo = % (Y5 — 25,) (3)
Ly — 72 (y 88z> (4>
L, = ’Z (wa — y8w> (5>

The components of L do not commute. By explicit calculation:
Ly, Ly =thL,; [L,,L,] =thL,; |[L,,L;] =1ihL,. (6)
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QUANTUM MECHANICS INTERLUDE 11

Angular Momentum Eigenstates

As the components do not commute, the generalized uncertainty
principle tells us that:

h
o101, > | |(L2)] )

Perhaps surprisingly, the square of the total angular momentum
2 _ 12 2 2
L*=L,+ L, + L (8)
does commute with each of the components:

[L*, L,) = [L* L, =[L* L., =0. (9)

This means that (with luck) we can find simultaneous eigenstates
of L? and one of the components, L, for example:

L2f =Af;  L.f=npuf. (10)
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QUANTUM MECHANICS INTERLUDE III

Angular Momentum Ladder Operators

We can use a ladder operator technique to determine the

eigenvalues of L? and L. algebraically.

Li=L,+iL, (11)

With the definition of the ladder operators we calculate the com-
mutators of the ladder operators with L? and L,:

[L.,Li] = £hLy; [L* Li] =0. (12)
If f is an eigenfunction of both L? and L., then Ly f also is:
L*(Lsf) = La(L’f) = Li(Af) = A(L2f) 13
L.(L+f) = (L:Ly — LiL.)f + L.L.f (14)
= thLyf + Li(pf) = (£ h)(Lif) (15)
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QUANTUM MECHANICS INTERLUDE IV
The Angular Momentum Ladder

The ladder operators L4 raise and lower the eigenvalues of L, by h
while leaving the eigenvalues of L? unchanged. For each value of \
we have a ladder of states with values of i separated by h. If f is
simultaneously an eigenfunction of L? and of L4, then u < X

We designate the state with the largest value of u
as the top of the ladder and denote it f; and write its eigenvalues:

L.fi = hLfy; szt = Afi. (16)
Note that we have introduced ¢ as the maximum eigenvalue of L.,
With a bit of manipulation, we can calculate A in terms of /.

LiL: = (L, +iL,)(L, FiLy,) (17)
= L+ L ¥i((LzLy — LyL,) = L*— L Fi(shL.) (18)

L*=L.L-+ L>FHhL, (19)
L?’f;, = (L_L,+L*+hL.f, = (0+R**+h%)f  (20)

A = Rh%(L+1) (21)
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QUANTUM MECHANICS INTERLUDE V

Angular Momentum Eigenvalues

Operating from the bottom of the ladder L. f, = hLf,, we find
A=h€L—-1) (22)
from which we conclude that
L= —4 (23)

L. has eigenvalues mh where m varies from —/£ to £ in integer steps.
Denoting the number of steps IV,

¢ =—(+ N (24)
20 = N (25)
L = N/2 (26)

This implies that £ is either integer or half-integer. The eigenfunc-
tions are characterized by the quantum numbers £ and m:

L*f" = R°e(€+ 1) " L.f;" = hmf" (27)

m = —£, 041, -+, £—1,2 (28)
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SPECTRUM OF ROTATIONAL STATES

Rotation of diatomic molecule
is modeled as motion of quantum mechanical rigid rotator

Rotation take place about axis through center of mass of molecule
and perpendicular to line joining two atoms

moment of inertiam I = [T reduced mass m w=mims/(mi + ms)

Solution of stationary Schrodinger equation yields
L2f" = R+ 1)f",  1=0,1,2,-
Lsfm=hm, m=—l,—l+1,---,1—1,1
energy levels of linear rigid rotator with two degrees of freedom
ﬁQ
e =Il(l+1)—
=1+ 1)y

principal moments of inertiaw (I, I,0)
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ROTATIONAL PARTITION FUNCTION OF THE MOLECULE

For diatomic molecules there are 2[ 4 1degenerate levels
For fully symmetric body mw [; = [5 = I3 = |

degeneracy of quantum level [ » ¢g; = (2] + 1)2

Rotational partition function for symmetric body and for a diatomic molecule

4

2  symmetric bod
_ —Bey . £ . Yy y
4 = ; gLe g = (2+1) § = { 1 diatomic molecule (62)

Z cannot be calculated analytically
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LOW-TEMPERATURE LIMIT

In low-temperature limit m most of rotators are in their ground state [ = (
and very few are in first excited state [ = 1

Discarding all other values of [

ﬁ2
Z = 1+3§exp(—5—)

Rotational internal energy

U= —-N agnﬁz = th;exp(— 5—h2> = 3571_26’@(_ IIZT)

is exponentially small

Heat capacity

v = (57), = %4 (ghyz) (- 1iy0)

is also exponentially small
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HIGH-TEMPERATURE LIMIT

In high-temperature limit m T > ;}—k

many energy levels are thermally populated m replace summation by integrationin (62)

using 3

g(Ql)f e e @ %_h_Ql g_] h2_ !
gL = ! 27 ol I g m2V2re ~ V on2e

Z = / dl gje= P =~ 28 / dllfePer = 28 / de—15e= "¢
0 0 @ 0 Je
[ T [ 1 /2Ie\&/2 I\ (E+1)/2 [
~ ot [ 1 —Be _ o(3¢-1)/2 (L (-1)/2 ,—Be
J =2 oz | de\/g(hQ) e 2 (h2> /o de e e

_ o(36-1)/2 (%)““W /°° do 2 6-D/2 o=t o g—(E+D)/2
h 0

112

21
For £ =1 w» /7 = —_
§ EE
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INTERNAL ENERGY AND HEAT CAPACITY

Olnz §+1Nalnﬂ _ €+1Nl _ §+1

i 5 > N3 NksT (63)

U= —-N

oU

Cv = (57), = 3 Nks

f = &+ 1 = number of degrees of freedom

f = 2 for diatomic molecule and f = 3 for fully symmetric rotator

This result confirms principle of equipartition of energy over degrees of freedom
in classical limit which requires high enough temperatures
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ROTATIONAL HEAT CAPACITY

C /(Nk,)
2.0t
LS T .
Fully symmetric body
L Ofmemmmmmmmme e e e T T TR R TR =
Diatomic molecule
0.5
0.0 0.5 10
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CLASSICAL PARTITION FUNCTION AT HIGH-T
General case of all moments of inertia different w [ . — L_% 4+ L_% 4 L_%
U T o 2L, 203

Dynamical variables here are angular momentum components 1.1, Lo and Lg
partition function can be obtained by integration with respect to them

chass — / dLl dL2 dLB eXp (_BErot)

_ [T BLY > BL3 > BL3
—LdeleXp<—ﬁ> X[mdLgeXp(—E) X/_OOCZL?)eXp(—Z—IS)
21 21 21 > 3
S it N g </ dxe_x2) x B73/2
B B BN

Zclass contains some additional coefficients

e.g. = from integration over orientations of molecule
These coefficients are irrelevant in calculation of internal energy
OlnZ 3 0l 3
nz _ 3yolmfB 3 (64)
0f 2 0p 2
that coincides with (63) for & = 2
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CLASSICAL PARTITION FUNCTION AT HIGH-T 11

L% L%
For diatomic molecule »w [/ - — 4 =
ot o1, T 2l

partition function becomes 3

chass — / dLl dL2 eXp (_BErot)

o0 L2 o0 L2
:/ dLleXp(—g—Ill) X/ dLgeXp(—g—I;)
2[1 2[2 (/OO 2 2 1
= 4/ — X —= dx e "”’) x
B B N

This leads to 3

U = NkT w inaccordance with (63) for & = 1
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