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HARMONIC OSCILLATORS
Consider an ensemble of      identical harmonic oscillatorsN

Ĥ =
p̂2

2m
+

kx2

2
Stationary Schrodinger equation becomes

⇣
� ~2

2m

d

2

dx

2
+

kx

2

2

⌘
 (x) = " (x) (52)

each of them described by Hamiltonian ☛

Boundary conditions                           and                     (±1) = 0

(52)  is a linear differential equation with a variable coefficient

solution can be expressed through special functions (in next semester course)

main result eigenvalues have the form ☛

frequency of oscillations

energies are equally spaced and

  is not zero as would be case for a classical oscillator
This quantum ground-state energy is called zero-point energy

☛

↴

"j =

✓
j +

1

2

◆
~! j = 0, 1, 2, · · ·

states are non-degenerate ☛ gj = 1 8j

! =
p

k/m

"0 = ~!/2

Z +1

�1
 (x)dx = 1

ground state

(53)
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PARTITION FUNCTION

using result for geometrical progression

1 + x + x

2 + x

3 + ... = (1 � x)�1
x < 1

(54)

(55)

☟

↴

☛ ✓ = ~!/kcharacteristic temperature

Z =
e��~!/2

1� e��~! =
e✓/(2T )

1� e�✓/T

Z =
1X

j=0

gje
��"j = e��~!/2

1X

j=0

e��~!j

= e�~!/2(1 + e��~! + e�2�~! + · · · )
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OCCUPATION NUMBERS

Nj

N
=

e�"j/kT

Z
= e�"j/kT [e✓/2T (1� e�✓/T )]

= (1� e�✓/T )e�"j/kT+✓/2T

� "j
kT

+
✓

2T
= �

✓
j +

1

2

◆
~!
kT

+
~!
2kT

= �j
~!
kT

= �j
✓

T

☟

Nj

N
= e�j✓/T (1� e�✓/T )

using ☛

(56)
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EXAMPLE

Fractional occupation numbers for quantized linear oscillators

the lower the temperature the more rapidly occupation numbers decrease with j
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U
Internal (average) energy of ensemble of oscillators is 

This is what we would expect from a diatomic molecule 

The limiting low- and high-temperature cases of this expression are

(57)

(58)

(59)☛

U '
⇢

N~!/2 if kT ⌧ ~!
NkT if kT � ~!

with two vibrational degrees of freedom 

lim
T!0

U = N~!/2

(kinetic and potential energy) 

U = �N

✓
@ lnZ

ln�

◆

V

= NkT 2

✓
@ lnZ

@T

◆

V

= Nk✓

✓
1

2
+

1

e✓/T � 1

◆
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CV =

✓
@U

@T

◆

V

= Nk✓
@

@T
(e✓/T � 1)�1

= Nk

✓
✓

T

◆2 e✓/T

(e✓/T � 1)2

CV = Nk

✓
✓

T

◆✓
✓

T

◆�2

= Nk
@ high temperatures ☛ ✓/T ⌧ 1

@ low temperatures ☛ ✓/T � 1 ) e✓/T � 1

 heat capacity approaches a constant

e✓/T

(e✓/T � 1)2
! e�✓/T ) CV ! Nk

✓
✓

T

◆2

e�✓/T

 Rate at which exponential factor approaches zero as   
is greater than rate of growth of 

T ! 0
(✓/T )2

lim
T!0

CV = 0

HEAT CAPACITY OF HARMONIC OSCILLATORS

↴
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12

)/( BNkC

)/( 0ωhTkB

FIG. 2: Heat capacity of harmonic oscillators.

The heat capacity is defined by

C =
dU

dT
= N

!ω0

2

(
− 1

sinh2 [!ω0/(2kBT )]

)(
− !ω0

2kBT 2

)
= NkB

(
!ω0/(2kBT )

sinh [!ω0/(2kBT )]

)2

. (87)

This formula has limiting cases

C ∼=

{
NkB

(
!ω0
kBT

)2
exp

(
− !ω0

kBT

)
, kBT # !ω0

NkB , kBT $ !ω0.
(88)

One can see that at high temperatures the heat capacity can be written as

C =
f

2
NkB , (89)

where the effective number of degrees of freedom for an oscillator is f = 2. The explanation of the additional factor
2 is that the oscillator has not only the kinetic, but also the potential energy, and the average values of these two
energies are the same. Thus the total amount of energy in a vibrational degree of freedom doubles with respect to the
translational and rotational degrees of freedom.

At low temperatures the vibrational heat capacity above becomes exponentially small. One says that vibrational
degrees of freedom are getting frozen out at low temperatures.

The average quantum number of an oscillator is given by

n ≡ 〈ν〉 = 1

Z

∞∑

ν=0

νe−βεν . (90)

Using Eq. (76), one can calculate this sum as follows

n =
1

Z

∞∑

ν=0

(
1

2
+ ν

)
e−βεν − 1

Z

∞∑

ν=0

1

2
e−βεν =

1

!ω0

1

Z

∞∑

ν=0

ενe
−βεν − Z

2Z
= − 1

!ω0

1

Z

∂Z

∂β
− 1

2
=

U

N!ω0
− 1

2
. (91)

Finally with the help of Eq. (84), one finds

n =
1

eβ!ω0 − 1
=

1

exp [!ω0/(kBT )]− 1
(92)

VARIATION WITH TEMPERATURE OF HEAT CAPACITY
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Vibrational degrees of freedom are getting frozen out at low temperatures

Using (57) ☛

(60)

(61)and 

n ⌘ hji = 1

Z

1X

j=0

je��"j

n =
1

Z

1X

j=0

✓
1

2
+ j

◆
e��"j � 1

Z

1X

j=0

1

2
e��"j =

1

~!
1

Z

1X

j=0

"je
��"j � Z

2Z

= � 1

~!
1

Z

@Z

@�
� 1

2
=

U

N~! � 1

2

n =
1

e�~! � 1
U = N~!

�
1
2 + n

�

VIBRATIONAL MODES OF DIATOMIC MOLECULES

Average quantum number of oscillator 

At low temperatures                                   becomes exponentially smallkT ⌧ ~! ☛

☛

n

This means that oscillator is predominantly in its ground state j = 0
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CLASSICAL LIMIT

 At high temperatures                             

At high temperatures many levels are populated

relative change ☛

e��"⌫

kT � ~! ☛ n ' kT

~!

distribution function              only slightly changes from one level to other

e��"j � e��"j+1

e��"j
= 1� e��("j+1�"j) = 1� e��~!

' 1� 1 + �~! =
~!
kT

⌧ 1

summation in (54) can be replaced by integration

Z =

Z 1

0
d" ⇢(") e��" =

1

~!� =
kT

~!

U = �N
@ lnZ

@�
= �N

@ ln 1
� + · · ·
@�

= N
@ ln� + · · ·

@�
=

N

�
= NkT

Homework ☛ it is straightforward to show ⇢(") = (~!)�1
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QUANTUM MECHANICS INTERLUDE
Angular Momentum

Classically, angular momentum with respect to the origin is given
by the formula:

!L = !r × !p (1)
In Cartesian coordinates, the components are

Lx = ypz − zpy; Ly = zpx − xpz; Lz = xpy − ypx . (2)

The corresponding quantum mechanical operators are obtained us-
ing !p → (h̄/i)∇ :

Lx = h̄
i

(

y ∂
∂z

− z ∂
∂y

)

(3)

Ly = h̄
i

(

y ∂
∂x

− x ∂
∂z

)

(4)

Lz = h̄
i

(

x ∂
∂y

− y ∂
∂x

)

(5)

The components of !L do not commute. By explicit calculation:

[Lx, Ly] = ih̄Lz; [Ly, Lz] = ih̄Lx; [Lz, Lx] = ih̄Ly . (6)
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QUANTUM MECHANICS INTERLUDE II

Angular Momentum Eigenstates

As the components do not commute, the generalized uncertainty
principle tells us that:

σLxσLy ≥
h̄

2
|〈Lz〉| (7)

Perhaps surprisingly, the square of the total angular momentum

L2 ≡ L2
x + L2

y + L2
z (8)

does commute with each of the components:

[L2, Lx] = [L2, Ly] = [L2, Lz] = 0 . (9)

This means that (with luck) we can find simultaneous eigenstates
of L2 and one of the components, Lz for example:

L2f = λf ; Lzf = µf . (10)
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QUANTUM MECHANICS INTERLUDE III

Angular Momentum Ladder Operators

We can use a ladder operator technique similar to that we devel-
oped for the simple harmonic oscillator problem to determine the
eigenvalues of L2 and Lz algebraically.

This technique is important because angular momentum is a funda-
mental characteristic of a system and because the same formalism
applies to internal symmetries of particles called weak and strong
isospin.

L± = Lx ± iLy (11)

With the definition of the ladder operators we calculate the com-
mutators of the ladder operators with L2 and Lz:

[Lz, L±] = ±h̄L±; [L2, L±] = 0 . (12)

If f is an eigenfunction of both L2 and Lz, then L±f also is:

L2(L±f) = L±(L2f) = L±(λf) = λ(L±f) ; (13)

Lz(L±f) = (LzL± − L±Lz)f + L±Lzf (14)
= ±h̄L±f + L±(µf) = (µ ± h̄)(L±f) (15)

Angular Momentum Ladder Operators

We can use a ladder operator technique similar to that we devel-
oped for the simple harmonic oscillator problem to determine the
eigenvalues of L2 and Lz algebraically.

This technique is important because angular momentum is a funda-
mental characteristic of a system and because the same formalism
applies to internal symmetries of particles called weak and strong
isospin.

L± = Lx ± iLy (11)

With the definition of the ladder operators we calculate the com-
mutators of the ladder operators with L2 and Lz:

[Lz, L±] = ±h̄L±; [L2, L±] = 0 . (12)

If f is an eigenfunction of both L2 and Lz, then L±f also is:

L2(L±f) = L±(L2f) = L±(λf) = λ(L±f) ; (13)

Lz(L±f) = (LzL± − L±Lz)f + L±Lzf (14)
= ±h̄L±f + L±(µf) = (µ ± h̄)(L±f) (15)

Angular Momentum Ladder Operators

We can use a ladder operator technique similar to that we devel-
oped for the simple harmonic oscillator problem to determine the
eigenvalues of L2 and Lz algebraically.

This technique is important because angular momentum is a funda-
mental characteristic of a system and because the same formalism
applies to internal symmetries of particles called weak and strong
isospin.

L± = Lx ± iLy (11)

With the definition of the ladder operators we calculate the com-
mutators of the ladder operators with L2 and Lz:

[Lz, L±] = ±h̄L±; [L2, L±] = 0 . (12)

If f is an eigenfunction of both L2 and Lz, then L±f also is:

L2(L±f) = L±(L2f) = L±(λf) = λ(L±f) ; (13)

Lz(L±f) = (LzL± − L±Lz)f + L±Lzf (14)
= ±h̄L±f + L±(µf) = (µ ± h̄)(L±f) (15)

Angular Momentum Ladder Operators

We can use a ladder operator technique similar to that we devel-
oped for the simple harmonic oscillator problem to determine the
eigenvalues of L2 and Lz algebraically.

This technique is important because angular momentum is a funda-
mental characteristic of a system and because the same formalism
applies to internal symmetries of particles called weak and strong
isospin.

L± = Lx ± iLy (11)

With the definition of the ladder operators we calculate the com-
mutators of the ladder operators with L2 and Lz:

[Lz, L±] = ±h̄L±; [L2, L±] = 0 . (12)

If f is an eigenfunction of both L2 and Lz, then L±f also is:

L2(L±f) = L±(L2f) = L±(λf) = λ(L±f) ; (13)

Lz(L±f) = (LzL± − L±Lz)f + L±Lzf (14)
= ±h̄L±f + L±(µf) = (µ ± h̄)(L±f) (15)
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QUANTUM MECHANICS INTERLUDE IV
The Angular Momentum Ladder

The ladder operators L± raise and lower the eigenvalues of Lz by h̄
while leaving the eigenvalues of L2 unchanged. For each value of λ
we have a ladder of states with values of µ separated by h̄. If f is
simultaneously an eigenfunction of L2 and of L±, then µ ≤ λ (see
Problem 4.18). We designate the state with the largest value of µ
as the top of the ladder and denote it ft and write its eigenvalues:

Lzft = h̄"ft; L2ft = λft . (16)
Note that we have introduced " as the maximum eigenvalue of Lz
With a bit of manipulation, we can calculate λ in terms of ".

L±L∓ = (Lx ± iLy)(Lx ∓ iLx) (17)

= L2
x + L2

y ∓ i((LxLy − LyLx) = L2 − L2
z ∓ i(ih̄Lz) (18)

L2 = L±L∓ + L2
z ∓ h̄Lz (19)

L2ft = (L−L+ + L2 + h̄Lz)ft = (0 + h̄2"2 + h̄2")ft (20)

λ = h̄2"(" + 1) (21)
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QUANTUM MECHANICS INTERLUDE V

Angular Momentum Eigenvalues

Operating from the bottom of the ladder Lzfb = h̄!fb, we find

λ = h̄2!(! − 1) (22)
from which we conclude that

! = −! (23)

Lz has eigenvalues mh̄ where m varies from −! to ! in integer steps.
Denoting the number of steps N ,

! = −! + N (24)
2! = N (25)
! = N/2 (26)

This implies that ! is either integer or half-integer. The eigenfunc-
tions are characterized by the quantum numbers ! and m:

L2fm
! = h̄2!(! + 1)fm

! ; Lzf
m
! = h̄mfm

! (27)

m = −!, −! + 1, · · · , ! − 1, ! (28)

15Thursday, November 6, 14



C. B.-Champagne 2

Overview

Luis Anchordoqui

Rotation of diatomic molecule
is modeled as motion of quantum mechanical rigid rotator

Rotation take place about axis through center of mass of molecule
and perpendicular to line joining two atoms

I = µr20 µ = m1m2/(m1 +m2)

Solution of stationary Schrodinger equation yields     

moment of inertia ☛ reduced mass ☛

..

L̂2fm
l = ~2l(l + 1)fm

l , l = 0, 1, 2, · · ·

L̂3f
m
l = ~m, m = �l,�l + 1, · · · , l � 1, l

"l = l(l + 1)
~2
2I

SPECTRUM OF ROTATIONAL STATES

energy levels of linear rigid rotator with two degrees of freedom 

    principal moments of inertia ☛ (I, I, 0)
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ROTATIONAL PARTITION FUNCTION OF THE MOLECULE

   cannot be calculated analytically Z

(62)

For diatomic molecules there are             degenerate levels

Z =

X

l

gle
��"l gl = (2l + 1)

⇠ ⇠ =

n
2 symmetric body

1 diatomicmolecule

2l + 1

For fully symmetric body ☛ I1 = I2 = I3 = I

degeneracy of quantum level l ☛ gl = (2l + 1)2

Rotational partition function  for symmetric body and for a diatomic molecule 

☟
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LOW-TEMPERATURE LIMIT

In low-temperature limit ☛ most of rotators are in their ground state            

Discarding all other values of    l

l = 0
l = 1

Z ⇠
=

1 + 3

⇠
exp

⇣
� �~2

I

⌘

and very few are in first excited state

Rotational internal energy 

U = �N
@lnZ

@�
= 3

⇠ ~2
I

exp

⇣
� �~2

I

⌘
= 3

⇠ ~2
I

exp

⇣
� ~2

IkBT

⌘

 is exponentially small

Heat capacity 

CV =

⇣@U
@T

⌘

V
= 3

⇠kB
⇣ ~2
IkBT

⌘2
exp

⇣
� ~2

IkBT

⌘

          is also exponentially small
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HIGH-TEMPERATURE LIMIT
In high-temperature limit ☛

gl ⇠= (2l)⇠ "l ⌘ " ⇠=
~2l2
2I

@"

@l
=

~2l
I

@l

@"
=

I

~2

r
~2
2I"

=

r
I

2~2"

Z ⇠=
Z 1

0
dl gle

��"l ⇠= 2⇠
Z 1

0
dl l⇠e��"l = 2⇠

Z 1

0
d"

@l

@"
l⇠e��"

Z ⇠= 2⇠
r

I

2~2

Z 1

0
d"

1p
"

⇣2I"
~2

⌘⇠/2
e��" = 2(3⇠�1)/2

⇣ I

~2
⌘(⇠+1)/2

Z 1

0
d" "(⇠�1)/2 e��"

= 2(3⇠�1)/2
⇣

I

�~2
⌘(⇠+1)/2

Z 1

0
dx x

(⇠�1)/2
e

�x / �

�(⇠+1)/2

replace summation by integration
using↴

☟

☟

For ☛  Z =
2I

~2�

many energy levels are thermally populated  in (62) ☛
T � ~2

2Ik

⇠ = 1
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INTERNAL ENERGY AND HEAT CAPACITY

                    ☛  number of degrees of freedom   

This result confirms principle of equipartition of energy over degrees of freedom

(63)U = �N
@ lnZ

@�
=

⇠ + 1

2
N

@ ln�

@�
=

⇠ + 1

2
N

1

�
=

⇠ + 1

2
NkBT

CV =
⇣@ U

@T

⌘

V
=

⇠ + 1

2
NkB

f = ⇠ + 1

f = 2 for  diatomic molecule and                 for  fully symmetric rotatorf = 3

in classical limit which requires high enough temperatures
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ROTATIONAL HEAT CAPACITY
15

)/( BNkC

2/2 hIT

Fully symmetric body

Diatomic molecule

FIG. 3: Rotational heat capacity of a fully symmetric body and a diatomic molecule.

one has

Z ∼=
ˆ ∞

0
dl gle

−βεl ∼= 2ξ
ˆ ∞

0
dl lξe−βεl = 2ξ

ˆ ∞

0
dε

∂l

∂ε
lξe−βε (113)

and further

Z ∼= 2ξ
√

I

2!2

ˆ ∞

0
dε

1√
ε

(
2Iε

!2

)ξ/2

e−βε = 2(3ξ−1)/2

(
I

!2

)(ξ+1)/2 ˆ ∞

0
dε ε(ξ−1)/2e−βε

= 2(3ξ−1)/2

(
I

β!2

)(ξ+1)/2 ˆ ∞

0
dxx(ξ−1)/2e−x ∝ β−(ξ+1)/2. (114)

Now the internal energy is given by

U = −N
∂ lnZ

∂β
=

ξ + 1

2
N

∂ lnβ

∂β
=

ξ + 1

2
N

1

β
=

ξ + 1

2
NkBT, (115)

whereas the heat capacity is

CV =

(
∂U

∂T

)

V

=
ξ + 1

2
NkB . (116)

In these two formulas, f = ξ + 1 is the number of degrees of freedom, f = 2 for a diatomic molecule and f = 3 for a
fully symmetric rotator. This result confirms the principle of equidistribution of energy over the degrees of freedom
in the classical limit that requires temperatures high enough.

To conclude this section, let us calculate the partition function classically at high temperatures. The calculation
can be performed in the general case of all moments of inertia different. The rotational energy, Eq. (101), can be
written as

Erot =
L2
1

2I1
+

L2
2

2I2
+

L2
3

2I3
. (117)

The dynamical variables here are the angular momentum components L1, L2, and L3, so that the partition function
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CLASSICAL PARTITION FUNCTION AT HIGH-T

Dynamical variables here are angular momentum components              and        

These coefficients are irrelevant in calculation of internal energy

contains some additional coefficients
orientations of molecule

that coincides with (63) for

(64)

L1, L2 L3

⇠ = 2
U = �N

@ lnZ

@�
=

3

2
N

@ ln�

@�
=

3

2
NkBT

Zclass

Z
class

=

Z 1

�1
dL

1

dL
2

dL
3

exp (��E
rot

)

=

Z 1

�1
dL1 exp

⇣
� �L2

1

2I1

⌘
⇥

Z 1

�1
dL2 exp

⇣
� �L2

2

2I2

⌘
⇥

Z 1

�1
dL3 exp

⇣
� �L2

3

2I3

⌘

=

s
2I1
�

⇥ 2I2
�

⇥ 2I3
�

⇣Z 1

�1
dx e

�x

2
⌘3

/ �

�3/2

partition function can be obtained by integration with respect to them

e.g. ☛ from integration over

E
rot

=
L2

1

2I
1

+
L2

2

2I
2

+
L2

3

2I
3

General case of all moments of inertia different ☛
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partition function becomes

This leads to

in accordance with (63) forU = NkBT ⇠ = 1

For diatomic molecule E
rot

=
L2

1

2I
1

+
L2

2

2I
2

Z
class

=

Z 1

�1
dL

1

dL
2

exp (��E
rot

)

=

Z 1

�1
dL1 exp

⇣
� �L2

1

2I1

⌘
⇥

Z 1

�1
dL2 exp

⇣
� �L2

2

2I2

⌘

=

s
2I1
�

⇥ 2I2
�

⇣Z 1

�1
dx e

�x

2
⌘2

/ �

�1

CLASSICAL PARTITION FUNCTION AT HIGH-T II

☛

↴

↴
☛
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