Luis Anchordoqui Lehman College City University of New York

Thermodynamics and Statistical Mechanics

Statistical Mechanics II

October 2014

- Boltzmann distribution
- Fermi-Dirac distribution
- Bose-Einstein distribution
- Boltzmann-Maxwell distribution
- Statistical thermodynamics of the ideal gas

BOLTZMANN STATISTICS

Equilibrium configuration for system of N distinguishable noninteracting particles

subject to constraints
$$\blacktriangleright$$
 $\sum_{j=1}^n N_j = N$ and $\sum_{j=1}^n N_j \varepsilon_j = U$ (40)

of ways of selecting $\,N_1$ particles from total of N to be place in $\,j=1\,$ level

$$\left(\begin{array}{c}N\\N_1\end{array}\right) = \frac{N!}{N_1!(N-N_1)!}$$

of ways these N_1 particles can be arranged if there are g_1 quantum states for each particle there are g_1 choices $racksing (g_1)^{N_1}$ possibilities in all

of ways to put $\,N_1$ particles into a level containing g_1 distinct options

$$\left(\begin{array}{c}N\\N_1\end{array}\right) = \frac{N!g_1^{N_1}}{N_1!(N-N_1)!}$$

Luis Anchordoqu

BOLTZMANN STATISTICS II

For j = 2 \blacktriangleright same situation except that there are only $(N - N_1)$ particles remaining to deal with $(N-N_1)!g_2^{N_2}$ $N_2!(N - N_1 - N_2)!$ Continuing process $\omega_{\rm B}(N_1, N_2, N_n) = \frac{N! g_1^{N_1}}{N_1! (N - N_1)!} \times \frac{(N - N_1)! g_2^{N_2}}{N_2! (N - N_1 - N_2)!}$ $\times \frac{(N - N_1 - N_2)!g_3^{N_3}}{N_3!(N - N_1 - N_2 - N_2)!} \cdots$ $= N! \frac{g_1^{N_1} g_2^{N_2} g_3^{N_3} \cdots}{N_1! N_2! N_3! \cdots} = N! \prod_{i=1}^n \frac{g_j^{N_j}}{N_j!}$

We now have to maximize $\omega_{\rm B}$ subject to constraints (40)

<u>Luis Anchordoqui</u>

LAGRANGE MULTIPLIERS

Maximization of f(x,y) subject to constraint $\phi(x,y) = ext{constant}$ $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = 0$ If dx and dy were independent \blacktriangleright $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ However - subject to constraint equation $d\phi = \frac{\partial \phi}{\partial x}dx + \frac{\partial \phi}{\partial y}dy = 0$ $\frac{\partial f/\partial x}{\partial \phi/\partial x} = \frac{\partial f/\partial y}{\partial \phi/\partial y}$ For constant ratio α $\frac{\partial f}{\partial x} + \alpha \frac{\partial \phi}{\partial x} = 0$ and $\frac{\partial f}{\partial u} + \alpha \frac{\partial \phi}{\partial u} = 0$ expressions we would get if we attempt to maximize $f + \alpha \phi$ without constraint For n variables and two constraint relations $\frac{\partial f}{\partial x_i} + \alpha \frac{\partial \phi}{\partial x_i} + \beta \frac{\partial \psi}{\partial x_i} = 0, \qquad i = 1, 2, 3 \cdots n$ Luis Anchordogui

BOLTZMANN DISTRIBUTION

Task 🖛 find maximum of $\omega_{\rm B}$ with respect to all N that satisfy constraints (40)

In practice \blacktriangleright more convenient to maximize $\ln \omega$ than w itself

$$\ln \omega = \ln N! + \sum_{i=1}^{n} N_i \ln g_i - \sum_{i=1}^{n} \ln N_i!$$

We are concerned with $N_i \gg 1$ 🖛 use Stirling's asymptotic expansion

$$\ln N! \simeq N \ln N - N + \ln \sqrt{2\pi N} + \cdots$$
 (41)

Neglecting relatively small last term in (41)

$$\ln \omega = \ln N! + \sum_{i=1}^{n} N_i \ln g_i - \sum_{i=1}^{n} N_i \ln N_i + \sum_i N_i$$
 (42)

Search for maximum of target function using Lagrange multipliers \neg

$$\frac{\partial}{\partial N_j} \left[\sum_i N_i \ln g_i - \sum_i N_i \ln N_i + \sum_i N_i \right] + \alpha \frac{\partial}{\partial N_j} \left(\sum_i N_i \right) + \beta \frac{\partial}{\partial N_j} \left(\sum_i N_i \varepsilon_i \right) = 0$$

<u>Luis Anchordoqu</u>

BOLTZMANN DISTRIBUTION II

In working out the derivatives \blacksquare only contribution comes from terms with j~=~i

$$\ln g_j - \ln N_j - \frac{N_j}{N_j} + 1 + \alpha + \beta \varepsilon_j = 0$$
(43)

For every energy level

of particles per quantum state for equilibrium of the system

$$\frac{N_j}{g_j} = e^{\alpha + \beta \varepsilon_j} = f_j(\varepsilon_j)$$
(44)

Constants α and β are related to physical properties of the system Multiply (43) by N_i and sum over j

$$\sum_{j} N_{j} \ln g_{j} - \sum_{j} N_{j} \ln N_{j} + \alpha \sum_{j} N_{j} + \beta \sum_{j} N_{j} \varepsilon_{j} = 0 \quad (45)$$
$$\sum_{j} N_{j} \ln g_{j} - \sum_{j} N_{j} \ln N_{j} = -\alpha N - \beta U \quad (46)$$

Luis Anchordoau

TEMPERATURE AS A LAGRANGE MULTIPLIER

Substituting (42) $rackspace \ln \omega = \ln N! + N - \alpha N - \beta U$ simplifying $rac{ln}\omega = C - \beta U$ Identification with Boltzmann entropy yields - $S = k \ln \omega = S_0 - k \beta U$ (47) From classical theory $rac{d}{d}S = \frac{dU}{dT} + \frac{PdV}{T} = \left(\frac{\partial S}{\partial U}\right)_{-1} dU + \left(\frac{\partial S}{\partial V}\right)_{-1} dV$ giving $\blacktriangleright \left(\frac{\partial S}{\partial U}\right)_{V} = \frac{1}{T}$ From (47) $\leftarrow \left(\frac{\partial S}{\partial U}\right)_{U} = -k\beta$ giving $\blacktriangleright \ \beta = -\frac{1}{\nu T}$ (48) Constancy of V is implied in (40) - because $\epsilon_i \propto V^{-2/3}$

Luis Anchordoqui

PARTITION FUNCTION

Substituting (48) into (44) \blacktriangleright $N_{j} = g_{j}e^{\alpha}e^{-\varepsilon_{j}/kT}$ $\alpha\,$ can be easily found from (40) $\blacktriangleright\,\,N=\sum_j N_j=e^{\alpha}\sum_j g_j e^{-\varepsilon_j/kT}$ **SO** $e^{\alpha} = \frac{1}{\sum_{j} g_{j} e^{-\varepsilon_{j}/kT}}$ Boltzmann distribution becomes - $f_j = \frac{N_j}{g_j} = \frac{N e^{-\varepsilon_j/kT}}{\sum_j g_j e^{-\varepsilon_j/kT}}$ partition function (German Zustandssumme) $Z \equiv \sum_{j=1}^{n} g_j e^{-\epsilon_j/kT}$ Luis Anchordoqui

ENERGY LEVELS CROWDED TOGETHER VERY CLOSELY

degeneracy g_j replaced by $\rho(\varepsilon)d\varepsilon = \#$ of states in energy range $(\varepsilon, \varepsilon + d\varepsilon)$ correspondingly N_j replaced by $N(\varepsilon)d\varepsilon = \#$ of particles in range $(\varepsilon, \varepsilon + d\varepsilon)$

$$f(\varepsilon) \equiv \frac{N(\varepsilon)}{\rho(\varepsilon)} = \frac{Ne^{-\varepsilon/kT}}{\int \rho(\varepsilon)e^{-\varepsilon/kT}d\varepsilon}$$

Continuous distribution function is analogous to discrete case

$$Z = \int \rho(\varepsilon) \ e^{-\varepsilon_j/kT} d\varepsilon$$

Occupation numbers are fully determined by temperature and volume

Set of occupation numbers that maximize $\ \omega$ specify equilibrium macrostate Conclusion:

Two states variables define a thermodynamic state exactly as in classical theory!

<u>Luis Anchordoqui</u>

FERMI-DIRAC STATISTICS

FERMI-DIRAC & LAGRANGE

$$\ln \omega_{\rm FD} = \sum_{i} \ln g_{i}! - \sum_{i} \ln N_{i}! - \sum_{i} \ln(g_{i} - N_{i})!$$

$$\operatorname{using Stirling's} \rightarrow$$

$$\ln \omega_{\rm FD} = \sum_{i} [g_{i} \ln g_{i} - g_{i} - N_{i} \ln N_{i} + N_{i} - (g - N_{i}) \ln(g_{i} - N_{i}) + (g_{i} - N_{i})]$$

$$= \sum_{i} [g_{i} \ln g_{i} - N_{i} \ln N_{i} - (g_{i} - N_{i}) \ln(g_{i} - N_{i})]$$

$$\operatorname{using} \leftarrow \sum_{i} N_{i} = N \qquad \sum_{i} N_{i} \varepsilon_{i} = U$$

$$-\frac{\partial}{\partial N_{j}} \left[\sum_{i} N_{i} \ln N_{i} + \sum_{i} (g_{i} - N_{i}) \ln(g_{i} - N_{i}) \right] + \alpha \frac{\partial}{\partial N_{j}} \left(\sum_{i} N_{i} \right) + \beta \frac{\partial}{\partial N_{j}} \left(\sum_{i} N_{i} \varepsilon_{i} \right) = 0$$
Note that
$$\neg$$

$$-\frac{\partial}{\partial N_{j}} \left(\sum_{i} g_{i} \ln g_{i} \right) = 0 \quad \text{and} \quad -\ln N_{j} - \underbrace{\frac{N_{j}}{N_{j}}}_{1} + \ln(g_{j} - N_{j}) - \underbrace{\frac{(g_{j} - N_{j})}{(g_{j} - N_{j})(-1)}}_{-1} = -\alpha - \beta \varepsilon_{j}$$
Luis Anchordoqui

FERMI-DIRAC DISTRIBUTION

$$\ln\left(\frac{g_j}{N_j} - 1\right) = -\alpha - \beta\varepsilon_j \Rightarrow \frac{N_j}{g_j} = \frac{1}{e^{-\alpha - \beta\varepsilon_j} + 1}$$

once again
$$\blacktriangleright \ \beta = -\frac{1}{kT}$$

provisionally define
$$rackrine lpha = \frac{\mu}{kT}$$

Fermi-Dirac distribution $rackrine f_j = \frac{N_j}{g_j} = \frac{1}{e^{(\varepsilon_j - \mu)/kT} + e^{(\varepsilon_j - \mu)/kT}}$

continuous energy spectrum
$$\blacktriangleright$$
 $f($

$$(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/kT} + 1}$$

1

Luis Anchordoqui

BOSE-EINSTEIN STATISTICS

Luis Anchordoqu

$$\begin{aligned} \textbf{BOSE-EISNTEIN & & \textbf{LAGRANGE} \\ \ln \omega_{\rm BE} &= \sum_{i} \ln(N_i + g_i - 1)! - \sum_{i} \ln N_i! - \sum_{i} \ln(g_i - 1)! \\ \textbf{using Stirling's } \\ \ln \omega_{\rm BE} &= \sum_{i} [(N_i + g_i - 1) \ln(N_i + g_i - 1) - (N_i + g_i - 1) - N_i \ln N_i \\ &+ N_i - (g_i - 1) \ln(g_i - 1) + (g_i - 1)] \\ &= \sum_{i} [(N_i + g_i - 1) \ln(N_i + g_i - 1) - N_i \ln N_i - (g_i - 1) \ln(g_i - 1)] \\ \textbf{using } = \sum_{i} N_i = N \sum_{i} N_i \varepsilon_i = U \\ &\xrightarrow{\partial} \frac{\partial}{\partial N_j} \left[\sum_{i} (N_i + g_i - 1) \ln(N_i + g_i - 1) - \sum_{i} N_i \ln N_i \right] + \alpha \frac{\partial}{\partial N_j} \left(\sum_{i} N_i \right) + \beta \frac{\partial}{\partial N_j} \left(\sum_{i} N_i \varepsilon_i \right) = 0 \\ &\text{Note that} \quad \overrightarrow{\ln}(N_j + g_j - 1) + \underbrace{\frac{N_j + g_j - 1}{1}}_{1} - \ln N_j - \underbrace{\frac{N_j}{N_j}}_{1} = -\alpha - \beta \varepsilon_j \end{aligned}$$

Luis Anchordoqui Thursday, October 30, 14

BOSE-EINSTEIN DISTRIBUTION

$$\ln\left(\frac{N_j + g_j + 1}{N_j}\right) = -\alpha - \beta\varepsilon_j$$

neglecting unity compared to $\blacksquare \frac{N_j}{I} =$

$$\frac{1}{g_i} = \frac{1}{e^{-\alpha - \beta \varepsilon_j} - 1}$$

1

Jsing
$$eta = -rac{1}{kT}$$
 and $lpha = rac{\mu}{kT}$, $\$

Bose-Eisntein distribution 🖛

$$f_j = \frac{N_j}{g_i} = \frac{1}{e^{(\varepsilon_j - \mu)/kT} - 1}$$

continuous energy spectrum 🖛

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/kT} - 1}$$

Luis Anchordoqui

MAXWELL-BOLTZMANN STATISTICS

Dilute gas 🖛 for all energy levels occupations numbers are very small compared with available number of quantum states

Extremely unlikely more than 1 particle will occupy given state whether or not particles obey Pauli exclusion principle becomes irrelevant

FD and BE statistics should be approximately identical in dilute gas limit

$$\omega_{\rm FD} = \prod_{j} \frac{g_j!}{N_j!(g_j - N_j)!} \qquad \qquad \omega_{\rm BE} = \prod_{j} \frac{(g_j + N_j - 1)!}{N_j!(g_j - 1)!}$$

For
$$N_j \ll g_j \rightarrow$$

$$\frac{g_j!}{(g_j - N_j)!} = \frac{g_j(g_j - 1)(g_j - 2)\cdots(g_j - N_j + 1)(g_j - N_j)!}{(g_j - n_j)!} \approx g_j^N$$

$$(g_j + N_j - 1)! = (g_j + N_j - 1)(g_j + N_j - 2)\cdots(g_j + N_j - N_j)(g_j - 1)!$$

$$\approx g_j^{N_j}(g_j - 1)!$$

$$\omega_{\text{FD}} \approx \omega_{\text{BE}} \approx \prod_j \frac{g_j^{N_j}}{N_j!}$$

Luis Anchordoqui

MAXWELL-BOLTZMANN DISTRIBUTION

Difference between Boltzmann and Maxwell-Boltzmann statistics

Boltzmann statistics assumes distinguishable (localizable) particles

$$\omega_{\rm MB} = \prod_j \frac{g_j^{N_j}}{N_j!} \Rightarrow \omega_{\rm B} = N! \; \omega_{\rm MB}$$

Much larger Boltzmann probability includes permutation \blacktriangleright N!

of Nidentifiable particles giving rise to additional microstates Distribution of particles among energy levels – found using Lagrange multipliers

Result can be written down immediately observing that

 $\omega_{\rm B}\,$ and $\omega_{\rm MB}\,$ differ only by a constant

Maxwell-Boltzmann distribution 🖛

$$f_j \equiv \frac{N_j}{g_j} = \frac{N \ e^{-\varepsilon_j/kT}}{Z}$$
(49)

Luis Anchordoqui Thursday, October 30, 14

CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS when matter is added or taken from open system change of internal energy is -1 $dU = TdS - PdV + \mu dN$ define Helmholtz function F = U - TS $rackstarrow dF = -SdT - PdV + \mu dN$ $\mu = \left(\frac{\partial F}{\partial N}\right)_{TV}$ (50) Calculate S and F for MB statistics \blacksquare $\omega_{MB} = \prod_{i} \frac{g_{j}^{N}}{N_{j}!}, \qquad \frac{N_{j}}{g_{j}} = \frac{N}{Z} e^{-\varepsilon_{j}/kT}$ $S = k \ln \omega = k \left| \sum_{i} N_{j} \ln g_{j} - \sum_{i} \ln N_{j}! \right|$ $= k \left| \sum_{i} N_{j} \ln g_{j} - \sum_{i} N_{j} \ln N_{j} + \sum_{i} N_{j} \right|$ $=k\left|N-\sum_{i}N_{j}\ln\left(\frac{N_{j}}{g_{j}}\right)\right|$

Luis Anchordoqui

CONNECTION BETWEEN CLASSICAL AN STATISTICAL THERMODYNAMICS II

$$S = k \left[N - \ln N \sum_{j} N_{j} + \ln Z \sum_{j} N_{j} + \frac{1}{kT} \sum_{j} N_{j} \varepsilon_{j} \right]$$
$$= \frac{U}{T} + Nk (\ln Z - \ln N + 1)$$
$$F = U - TS = -NkT (\ln Z - \ln N + 1)$$

Using (50)
$$= -kT(\ln Z - \ln N + 1) + \frac{nkT}{N}$$
$$= kT\ln\left(\frac{N}{Z}\right)$$

$$\frac{N}{Z} = e^{\mu/kT} \Rightarrow f_j \equiv \frac{N_j}{g_j} \frac{1}{e^{(\varepsilon_j - \mu)/kT}}$$

Luis Anchordoqui

COMPARISON OF THE DISTRIBUTIONS

Distribution functions for identical indistinguishable particles

STATISTICAL THERMODYNAMICS OF IDEAL GAS

Consider ideal gas in a sufficiently large container

Levels of system are quantized so finely \blacktriangleright introduce density of states ho(arepsilon)

Number of particles in quantum states within energy interval darepsilon

of particles in one state $f(\varepsilon)$ times # of states dn_{ε} in this energy interval With $f(\varepsilon)$ given by (49)

$$dN_{\varepsilon} = f(\varepsilon)dn_{\varepsilon} = \frac{N}{Z}e^{-\beta\varepsilon}\rho(\epsilon)d\varepsilon$$

For finely quantized levels - replace summation by integration

$$\sum_{i} \dots \Rightarrow \int d\varepsilon \rho(\varepsilon) \dots$$
Partition function \blacktriangleright $Z = \int d\varepsilon \rho(\varepsilon) e^{-\beta\varepsilon}$

Luis Anchordoqui

MAXWELL SPEED DISTRIBUTION

For quantum particles in a rigid box

$$Z = \frac{V}{(2\pi)^2} \left(\frac{2m}{\hbar}\right)^{3/2} \int_0^\infty d\varepsilon \sqrt{\varepsilon} e^{-\beta\varepsilon} = \frac{V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{\sqrt{\pi}}{2\beta^{3/2}} = V \left(\frac{mk_\beta T}{2\pi\hbar^2}\right)^{3/2}$$
(51)
Using $\varepsilon = mv^2/2$ and $d\varepsilon = mvdv$

number of particles in speed interval $dv \models dN_v = N(v) dv = N \ f(v) \ dv$

$$f(v) = \frac{1}{Z} e^{-\beta\varepsilon} \rho(\varepsilon) mv = \frac{1}{V} \left(\frac{2\pi\hbar^2}{mk_BT}\right)^{3/2} \frac{V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{\frac{m}{2}} v mv e^{-\beta\varepsilon}$$
$$= \left(\frac{m}{2\pi k_BT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_BT}\right)$$

coincides with result from kinetic theory of gases

Plank's constant $\hbar rackspace{-1.5} rackspace{-1.5} link to quantum mechanics disappeared from final result$

<u>Luis Anchordoqui</u>

Thursday, October 30, 14

EQUATION OF STATE OF IDEAL GAS

Internal energy of ideal gas is its kinetic energy $\,U\,=\,Nar{arepsilon}\,$

 $ar{arepsilon} = m ar{v}^2/2$ being average kinetic energy of an atom

From kinetic theory $\blacktriangleright \ \bar{\varepsilon} = \frac{f}{2}k_BT$ $f=3 \ \text{corresponding to three translational degrees of freedom}$

Same result obtained from (51) and $U = \sum_{i=1}^{n} \varepsilon_i N_i = \frac{N}{Z} \sum_{i=1}^{n} e^{-\beta \varepsilon_i} = -\frac{N}{Z} \frac{\partial Z}{\partial \beta}$ $U = -N \frac{\partial \ln Z}{\partial \beta} = -N \frac{\partial}{\partial \beta} V \ln \left(\frac{m}{2\pi\hbar^2 \beta}\right)^{3/2} = \frac{3}{2} N \frac{\partial}{\partial \beta} \ln \beta = \frac{3}{2} N \frac{1}{\beta} = \frac{3}{2} N k_B T$ P is defined by thermodynamic formula r $P = -\left(\frac{\partial F}{\partial V}\right)_T$ With help of (51) $P = N k_B T \frac{\partial \ln Z}{\partial V} = N k_B T \frac{\partial \ln V}{\partial V} = \frac{N k_B T}{V}$

that amounts to equation of state of ideal gas $PV = Nk_BT$

Luis Anchordoqui