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1.2. A STATISTICAL VIEW 3

Figure 1.1: The falling ball system, which mimics a one-dimensional random walk.

fluctuations ∆Xrms are proportional to N1/2. In the limit N → ∞ then, the ratio ∆Xrms/⟨X⟩ vanishes as N−1/2.
This is a consequence of the central limit theorem (see §1.4.2 below), and we shall meet up with it again on several
occasions.

We can do even better. We can find the complete probability distribution for X . It is given by

PN,X =

(
N

NR

)
pNR qNL , (1.8)

where NR/L are the numbers of steps taken to the right/left, with N = NR + NL, and X = NR − NL. There are
many independent ways to take NR steps to the right. For example, our first NR steps could all be to the right, and
the remaining NL = N − NR steps would then all be to the left. Or our final NR steps could all be to the right. For
each of these independent possibilities, the probability is pNR qNL . How many possibilities are there? Elementary
combinatorics tells us this number is (

N

NR

)
=

N !

NR! NL!
. (1.9)

Note that N ± X = 2NR/L, so we can replace NR/L = 1
2 (N ± X). Thus,

PN,X =
N !(

N+X
2

)
!
(

N−X
2

)
!
p(N+X)/2 q(N−X)/2 . (1.10)

1.2.2 Thermodynamic limit

Consider the limit N → ∞ but with x ≡ X/N finite. This is analogous to what is called the thermodynamic limit
in statistical mechanics. Since N is large, x may be considered a continuous variable. We evaluate lnPN,X using
Stirling’s asymptotic expansion

lnN ! ≃ N lnN − N + O(ln N) . (1.11)

A ball is released from top
Consider mechanical system ☛

Details of each ball’s motion
N

To predict where any given ball                                    
will end up in bottom row is difficult           
because ball’s trajectory depends sensitively                    
on its initial conditions

random vibrations of entire apparatus
We therefore abandon all hope of integrating equations of motion

We assume that ball moves to right with probability    p
q = 1 � p

If there is no bias in system ☛ p = q =
1

2

which cascades consecutively through      levels

are governed by Newton’s laws of motion

and may even be influenced by

and treat the system statistically

and to left with probability

A STATISTICAL VIEW
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Position  after      steps may be writtenN

X =
NX

j=1

�j

           if ball moves to right at level   �j = +1

�j = �1 j

j

A teach level ☛ probability for these two outcomes

Multivariate distribution for all steps ☛

P� = p ��,+1 + q ��,�1 =

(
p if � = +1

q if � = �1

Our system is equivalent to a one-dimensional random walk

Inebriated pedestrian on  sidewalk taking steps to right and left at random
After      steps  ☛ pedestrian’s location is N X

P(�1, ...,�N ) =
NY

j=1

P (�j)

                       if ball moves to left at level

ONE-DIMENSIONAL RANDOM WALK 

(1)

(2)
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hXi = h
NX

j=1

�ji = Nh�i = N
X

�=±1

� P (�) = N (p� q) = N (2p� 1)

VARIANCE AND ROOT MEAN SQUARE

Var (X) = h(�X )2i ⌘ h(X � hXi)2i = hX2i � hXi2

Root mean square deviation ☛ �Xrms =
p
Var(X)

Variance ☛

hXi / N and �Xrms / N1/2 lim
N!1

�Xrms/hXi vanishes as N�1/2☛

hX2i = h
NX

j=1

NX

j0=1

�j�j0i = Nh�2i = N
X

�=±1

�2P (�) = N(p+ q) = N

Var(X) = N
⇥
1� (2p� 1)2

⇤
= N(4p� 4p2) = N4p(1� p) = 4Npq
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(3)

             are numbers of steps taken to right/leftNR/L

N = NR + NL and X = NR � NL

 How many possibilities are there? 

NR

pNR qNL

N ±X = 2NR/L

(4)

PROBABILITY DISTRIBUTION 

PN (X) =

✓
N
NR

◆
pNRqNL

There are many independent ways to take          steps to right

For each of these independent possibilities  ☛  probability is
✓

N
NR

◆
=

N !

NR!NL!
☛

PN (X) =
N !�

N+X
2

�
!
�
N�X

2

�
!
p(N+X)/2q(N�X)/2

since ↴
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STIRLING’S APPROXIMATION

      is large ☛       may be considered continuous variable

Consider the limit                  but with                      finite

Using Stirling’s asymptotic expansion ☛ lnN ! ' N lnN � N + O (lnN)

x

N
N ! 1 x ⌘ X/N

Terms proportional to                have all cancelled leaving quantity linear in 

(5)

N lnN N

lnPN (X) ' N lnN �N � 1

2
N(1 + x) ln


1

2
N(1 + x)

�
+

1

2
N(1 + x)� 1

2
N(1� x)

⇥ ln


1

2
N(1� x)

�
+

1

2
N(1� x) +

1

2
N(1 + x) ln p+

1

2
N(1� x) ln q

= �N

✓
1 + x

2

◆
ln

✓
1 + x

2

◆
+

✓
1� x

2

◆
ln

✓
1� x

2

◆�
+N

✓
1 + x

2

◆

⇥ ln p+

✓
1� x

2

◆
ln q

�

lnPN (X) = �Nf(x) +O(lnN)

f(x) =
h⇣1 + x

2

⌘
ln

⇣1 + x

2

⌘
+

⇣1� x

2

⌘
ln
⇣1� x

2

⌘i
�

h⇣1 + x

2

⌘
ln p +

⇣1� x

2

⌘
ln q

i

☟
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PROBABILITY DISTRIBUTION IN LARGE N LIMIT

Since     is by assumption large ☛ probability is dominated by minima of  
        

N
f(x)

f

0(x) = 0

f

0(x) =
1

2
ln
⇣
q

p

.

1 + x

1� x

⌘

1 + x

1� x

=
p

q

) x̄ = p � q

PN (X) = Ce�Nf(X/N)

f

00(x) =
1

1� x

2

f(x) = f(x̄) +
1

2
f

00(x̄) (x � x̄)2 + ...

☛

Invoking Taylor’s theorem  ☛ 

PN (X) = C exp


�N(x� x̄)

2

8pq

�
= C exp


� (X � ¯

X)

2

8Npq

�☟

X̄ = hXi = N(p� q) = N x̄

determined by normalization condition↴1X

X=�1
PN (X) ⇡

Z +1

�1
dX C exp


� (X � ¯X)

2

8Npq

�
= C

p
8⇡Npq

C = (8⇡Npq)�1/2

(6)
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1.2. A STATISTICAL VIEW 5

Figure 1.2: Comparison of exact distribution of eqn. 1.10 (red squares) with the Gaussian distribution of eqn. 1.19
(blue line).

1.2.3 Entropy and energy

The function f(x) can be written as a sum of two contributions, f(x) = e(x) − s(x), where

s(x) = −
(

1+x
2

)
ln

(
1+x
2

)
−

(
1−x

2

)
ln

(
1−x

2

)

e(x) = − 1
2 ln(pq) − 1

2x ln(p/q) .
(1.21)

The function S(N, x) ≡ Ns(x) is analogous to the statistical entropy of our system3. We have

S(N, x) = Ns(x) = ln

(
N

NR

)
= ln

(
N

1
2N(1 + x)

)
. (1.22)

Thus, the statistical entropy is the logarithm of the number of ways the system can be configured so as to yield the same value
of X (at fixed N ). The second contribution to f(x) is the energy term. We write

E(N, x) = Ne(x) = − 1
2N ln(pq) − 1

2Nx ln(p/q) . (1.23)

The energy term biases the probability PN,X = exp(S − E) so that low energy configurations are more probable than

high energy configurations. For our system, we see that when p < q (i.e. p < 1
2 ), the energy is minimized by taking x

as small as possible (meaning as negative as possible). The smallest possible allowed value of x = X/N is x = −1.
Conversely, when p > q (i.e. p > 1

2 ), the energy is minimized by taking x as large as possible, which means x = 1.
The average value of x, as we have computed explicitly, is x̄ = p − q = 2p − 1, which falls somewhere in between
these two extremes.

In actual thermodynamic systems, as we shall see, entropy and energy are not dimensionless. What we have
called S here is really S/kB, which is the entropy in units of Boltzmann’s constant. And what we have called E
here is really E/kBT , which is energy in units of Boltzmann’s constant times temperature.

3The function s(x) is the specific entropy.

Comparison of exact distribution of (4) (red squares) 
with the Gaussian distribution of (6) (blue line)

GAUSSIAN DISTRIBUTION
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MICROSTATE

From quantum mechanics follows that ☛ 
states of system do not change continuously but are quantized

Huge number of discrete quantum states with corresponding energy values

We formulate quantum statistics for systems of noninteracting particles

In absence of interactions ☛ 

Particles can be distributed over their own quantum states

Each realization of this distribution is a microstate of the system

being the main parameter characterizing these states

then results can be generalized

in a great number of different ways called realizations

and for identical particles these sets of states are identical
each particle has its own set of quantum states

Main assumption of statistical mechanics ☛ all microstates occur with same probability

9Friday, October 31, 14
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MACROSTATE
Information contained in microstates is excessive

iNi

  which specify a macrostate

Each macrostate    can be realized by a very large number       of microstates

Probability of   -th  macrostate  is simply proportional to  k

wk

pk =
wk

⌦
⌦ ⌘

X

k

wk
(7)

only meaningful information is how many particles        are in energy level

thermodynamic probability

k

wk

True probability is normalized ☛ (8)

A microstate is specified by number of particles in each energy state
Degeneracy: In general  ☛ more than 1 energy state (quantum state) for energy level 

☟

☟

1 =
X

k

pk

10Friday, October 31, 14
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AVERAGE OCCUPATION NUMBER

Both        and       depend on whole set of       

pk = pk (N1, N2, ...) (9)

pkwk

For isolated system number of particles      and energy     are conservedN U

 ☛  energy of particle in level

(10)

(11)

Number of particles       averaged over all macrostates    k

   ☛ number of particles in microstate   corresponding to macrostate

(12)

kN (k)
j

Nj

"j j

X

j

Nj"j = U

X

j

Nj = N

N̄j

j

N̄j =

P
k N

(k)
j !kP

k !k
=

P
k N

(k)
j !k

⌦
=

X

k

N (k)
j pk
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MAXIMUM PROBABILITY

For each macrostate thermodynamic probabilities differ by a large amount

Macrostates having small       practically never occur

Consideration of particular models shows that: 

In this case (6) becomes ☛

corresponds to maximum of

For  large      ☛ dominating true probability     

pk

pk

pk

pk

N

k

k
max

pk

(13)

and state of system is dominated by macrostates with largest

whereas             is a smooth function of
maximum of        is very sharp for large number of particles

is found by maximization with respect to all       obeying two constraints above

N (k)
j

N̄j ' N (k
max

)
j

X

k

pk = N (k
max

)
j

Nj
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TWO-STATE PARTICLES 

A tossed coin can land in two positions ☛ head up or tail up
Considering coin as a particle  ☛ has two quantum states 

 

If     coins are tossedN
N

Microstates of system are specified by states occupied by each coin

As each coin has 2 states there are total
microstates

Macrostates of this system are defined by numbers of particles in each state:

andN1 N2

⌦ = 2N (14)

N1 ➣ head

➣ tailN2 = N �N1

this can be considered as a system of      particles with 2 quantum states each

13Friday, October 31, 14
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POSSIBLE OUTCOMES OF COIN-TOSSING EXPERIMENT
N = 4

⌦ =
5X

k=1

!k = 16

N1 =
1

16
[(4⇥ 1) + (3⇥ 4) + (2⇥ 6) + (1⇥ 4) + (0⇥ 1)] = 2

�

N̄1 + N̄2 = 4 = NN̄2 = 2

14Friday, October 31, 14
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THERMODYNAMIC PROBABILITY
We need a way of computing thermodynamic probability  

This formula can be derived 

factorial ☛

(15)

(16)

(17)

Pick        particles to be in state 1 and all others will be in state 2
↴

 How many ways are there to do this?
N1

N � 1
N � 2

N

N ⇥ (N � 1) ⇥ (N � 2) ⇥ ... ⇥ (N � N1 + 1) =
N !

(N � N1)!

N ! ⌘ N ⇥ (N � 1) ⇥ ... ⇥ 2 ⇥ 1 0! = 1

without tabulating actual state of each coin

Total number of ways of picking       heads is

Binomial coefficient  ☛

 ways to pick first coin ☛ leaving               ways  for the second
ways for the third ...

N1

order of coins is not important ☛ divide by          permutationsN1!

(16) isn’t yet thermodynamical probability
because contains multiple counting of same microstates

! =
N !

N1!(N �N1)!
=

✓
N
N1

◆

15Friday, October 31, 14
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MOST PROBABLE MACROSTATE

 (14) is satisfied 

Thermodynamic probability       has a maximum at                   

(17)

N1 = N/2

⌦ =
X

k

!k =
NX

N1=0

N !

N1!(N �N1)!
= 2N

half of coins head and half of coins tail
w

To prove that                    is maximum of          N1 = N/2 !
rewrite (15) in terms of new variable

! =
N !

(N/2 + p)!(N/2� p)!

!N/2±1

!N/2
=

(N/2)!(N/2)!

(N/2 + 1)!(N/2� 1)!
=

N/2

N/2 + 1
< 1

       is symmetric around 

p = N1 �N/2

! N1 = N/2

Working out ratio↴
p = 0☛

16Friday, October 31, 14
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STIRLING FORMULA

Analysis of expressions with large factorials is simplified by Stirling formula

 (13) becomes

is maximal value of the thermodynamic probability

where

(19)

(20)

(18)

! '
p
2⇡N(N/e)Np

2⇡(N/2 + p)[(N/2 + p)/e]N/2+p
p

2⇡(N/2� p)[(N/2� p)/e]N/2�p

=

r
2

⇡N

1q
1� ( 2pN )2

NN

(N/2 + p)N/2+p(N/2� p)N/2�p

=
!N/2q

1� ( 2pN )2 (1 + 2p
N )N/2+p(1� 2p

N )N/2�p

!N/2 '
r

2

⇡N
2N

N ! '
p
2⇡N

✓
N
e

◆N
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(16) can be expanded for 
Since     enters both bases and exponents ☛ careful must be taken                                              

p ⌧ N
p

(22)

(21)

expand         rather than      itself
Square root term in (16)  discarded ☛ gives negligible contribution  

ln! !
O(p2/N2)

MAXIMUM VALUE OF THERMODYNAMIC PROBABILITY

! ' !N/2 exp

✓
�2p2

N

◆

ln! ' ln!N/2 �
✓
N

2
+ p

◆
ln

✓
1 +

2p

N

◆
�
✓
N

2
� p

◆
ln

✓
1� 2p

N

◆

' ln!N/2 �
✓
N

2
+ p

◆"
2p

N
� 1

2

✓
2p

N

◆2
#
�
✓
N

2
� p

◆"
�2p

N
� 1

2

✓
2p

N

◆2
#

' ln!N/2 � p� 2p2

N
+

p2

N
+ p� 2p2

N
+

p2

N

= ln!N?2 �
2p2

N ☟

☟
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BINONIAL DISTRIBUTION FOR N  TWO-STATE PARTICLES

3

)2//()2/( 1 NNN −

)2/(/)( 1 NwNw

N = 4

N = 16

N = 1000

FIG. 1: Binonial distribution for an ensemble of N two-state systems.

by the number of permutations N1! of the N1 particles that yields Eq. (9). One can check that the condition (1) is
satisfied,

N∑

N1=0

wN1 =
N∑

N1=0

N !

N1!(N −N1)!
= 2N . (12)

The thermodynamic probability wN1 has a maximum at N1 = N/2, half of the coins head and half of the coins tail.
This macrostate is the most probable state. Indeed, as for an individual coin the probabilities to land head up and
tail up are both equal to 0.5, this is what we expect. For large N the maximum of wN1 on N1 becomes sharp.

To prove that N1 = N/2 is the maximum of wN1 , one can rewrite Eq. (9) in terms of the new variable p = N1−N/2
as

wN1 =
N !

(N/2 + p)!(N/2− p)!
. (13)

One can see that wp is symmetric around N1 = N/2, i.e., p = 0. Working out the ratio

wN/2±1

wN/2
=

(N/2)!(N/2)!

(N/2 + 1)!(N/2− 1)!
=

N/2

N/2 + 1
< 1, (14)

one can see that N1 = N/2 is indeed the maximum of wN1 .

IV. STIRLING FORMULA AND THERMODYNAMIC PROBABILITY AT LARGE N

Analysis of expressions with large factorials is simplified by the Stirling formula

N ! ∼=
√
2πN

(
N

e

)N

. (15)

!/!N/2

becomes very small if! |p| ⌘ |N1 �N/2| � N
that is much smaller thanN for large N

is small in most of the interval               
and is sharply peaked nearN1 = N/2

! 0  N1  N
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THERMODYNAMIC PROBABILITY AND ENTROPY

Main postulate of statistical mechanics
observed macrostate is realized by greatest number of microstates 

We have seen in thermodynamics that 

evolves to the equilibrium state characterized by the maximal entropy    
isolated system initially in a non-equilibrium state 

 Entropy    and thermodynamic probability      should be related              
 one being a monotonic function of the other

S !

   Form of this function can be found 
f noticing that entropy is additive while thermodynamic probability is multiplicative  

If a system consists of two subsystems that weakly interact with each other

S = S1 + S2  whereas ! = !1!2

 Boltzmann entropy S = kB ln!

kB = 1.38⇥ 10�23 JK�1

C. B.-Champagne 2

Overview

Luis Anchordoqui

THERMODYNAMIC LIMIT

most nearly random configuration (macrostate)  is the one almost always occurs

N1 = N2

N ! 1For

“ordered regions” almost never occur

is extremely small compared to 

We are led to a very important conclusion: 

! !
max

⌦ =
X

k

!k ⇡ !
max

total number of microstates is very nearly equal to maximum number

(23)

☟

☟

☟
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THERMODYNAMIC PROBABILITY AND ENTROPY

Main postulate of statistical mechanics
observed macrostate is realized by greatest number of microstates 

We have seen in thermodynamics that 

evolves to equilibrium state characterized by maximal entropy    
isolated system initially in a non-equilibrium state 

 Entropy    and thermodynamic probability      should be related              
 one being a monotonic function of the other

S !

   Form of this function can be found 
f noticing that entropy is additive while thermodynamic probability is multiplicative  

If  system consists of two subsystems that weakly interact with each other

S = S1 + S2  whereas ! = !1!2

 Boltzmann entropy ☛ S = kB ln!

kB = 1.38⇥ 10�23 JK�1

(24)

☟
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MANY-STATE PARTICLES

Number of ways to distribute      particles over     boxesN
Ni ith

n

Number of microstates in macrostate described by numbers

Thermodynamic temperature

Ni

(25)! =
N !

N1!N2!...Nn!
=

N !Qn
i=1 Ni!

This formula can be obtained by using (15) successively

Number of ways to put       particles in box 1 N1
N � N1

Number of ways to put       particles in box 2 is given by (15) with replacement 

Iteration continues for box 3 until last box

N2

N ! N � N1 N1 ! N2

so that there are particles in        box

and other                  in other boxes is given by (15)

and
✓

N �N1

N2

◆
=

(N �N1)!

N2!(N �N1 �N2)!
=

(N �N1)!

N2!N3!
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MANY-SATE PARTICLES (cont’d)

 All numerators in (26) except for first one and all second terms in denominators 

Resulting number of microstates is

(26)

so that (25) follows

cancel each other 

☟

☟

☟

! =
N !

N1!(N �N1)!
⇥ (N � 1)!

N2!(N �N1 �N2)!
⇥ (N �N1 �N2!

N3!(N �N1 �N2 �N3)!

⇥ (Nn�2 +Nn�1 +Nn)!

Nn�2!(Nn�1 +Nn)!
⇥ (Nn�1 +Nn)!

Nn�1!Nn!
⇥ Nn!

Nn!0!

23Friday, October 31, 14
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STATIONARY SCHRODINGER EQUATION
..

In  formalism of quantum mechanics

☛ complex function called wavefunction

Number of measurements        of total     measurements
r

r

 =  (r)

| (r)|2

dN = N | (r)|2 d3 r

1 =

Z
d3 r | (r)|2

d

3
r = dxdydz

NdN

(27)

(29)

quantized states and their energies  are solutions of eigenvalue problem    

Ĥ =
p̂2

2m
+ U(r)

☛ probability for a particle to be found near space point 

 in which particle is found in elementary volume                                around      

classical momentum     is replaced by operator ☛p

☛ Hamilton operator or Hamiltonian

Ĥ = " 

(28)

p̂ = �i~ @

@r

24Friday, October 31, 14
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 ONE-DIMENSIONAL RIGID BOX 

Consider  particle in a one-dimensional rigid box

momentum becomes ☛

0  x  L

(27) takes form ☛

(30)

(31)

rewritten as ☛

Solution of this equation satisfying boundary conditions                         

 Eigenstates are labeled by index  and normalization (28) yields

d

2

dx

2
 (x) + k

2 (x) = 0 (32)

 (0) =  (L) = 0

A =
p
2/L

(33)

p̂ = �i~ d

dx

� ~2
2m

d

2

dx

2
 (x) = " (x)

 n(x) = A sin(knx) kn =
n⇡

L

n = 1, 2, 3, · · ·

n
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ENERGY LEVELS OF A PARTICLE IN A BOX

Energy eigenvalues are ☛

Energy    is quadratic in momentum  (as it should be)

  Energy levels are discrete because of quantization
For very large box ☛  and energy levels become quasicontinuous
Lowest-energy level with                ground state

For a three-dimensional box with sides                       ☛  similar calculation yields 
energy levels parametrized by three quantum numbers  ☛

ground state ☛  

 We order states in increasing    and number them by index    

(34)

(35)

p = ~k"

L ! 1

" j
j = 1ground state being

de Broglie relation

"n =
~k2n
2m

=
⇡2~2n2

2mL2

n
x

= n
y

= n
z

= 1

"
n

x

,n

y

,n

z

=
⇡2~2
2m

 
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
Z

!

L
x

, L
y

, L
z

n
x

, n
y

, n
z

n = 1

↴
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DEGENERACY

If

number of different sets  having same      is called degeneracy  

Same value of      can be realized for different sets of             

(36)

"j

"j gj

(n
x

, n
y

, n
z

)

L
x

= L
y

= L
z

= L

First three states of a three-dimensional infinite potential well  

"
j

= "
n

x

,n

y

,n

z

=
⇡~2
2mL2

(n2
x

+ n2
y

+ n2
z

) =
⇡2~2
2mL2

n2
j

☟
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DENSITY OF QUANTUM STATES

For systems of a large size and very finely quantized states

⇢(") d"dn"

dn" = ⇢(") d" (37)

(38)

(39)

we define density of states          as number of energy levels         in interval      

dn" =
⇡

4
V
⇣ 2m

⇡2~2
⌘3/2 p

"d"

⇢(") =
V

(2⇡)2

⇣2m
~2

⌘3/2 p
"

It is easily seen that

☟
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