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A STATISTICAL VIEW

Consider mechanical system r
A ball is released from top

T
which cascades consecutively through N levels v U
Details of each ball's motion 2@/\@/%
are governed by Newton's laws of motion BT T
PP s
To predict where any given ball Y U Y U U
will end up in bottom row is difficult T U U YU U U

because ball's trajectory depends sensitively7 & & U W U U
on its initial conditions .
and may even be influenced by random vibrations of entire apparatus
We therefore abandon all hope of integrating equations of motion
and treat the system statistically

We assume that ball moves to right with probability P

and to left with probability ¢ = 1 — p
1

If there is no bias insystemme p = ¢ = —

2
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ONE-DIMENSIONAL RANDOM WALK

Position after /N steps may be written

N o; = 41 if ball moves to right af level j
X — Z - . (1

J 0; = —1 if ball moves to left at level )

g=1
A teach level w probability for these two outcomes
(p if +1
p 1o =

Fo = Plotr 4 4051 = < g ifoc = -1 (2)

\

N
Multivariate distribution for all steps m 77((71, el O'N) = H P(Uj)
=1

Our system is equivalent to a one-dimensional random walk
Inebriated pedestrian on sidewalk taking steps to right and left at random
After N steps m pedestrian's location is X

Luis Anchordoqui

Friday, October 31, 14 3




VARIANCE AND ROOT MEAN SQUARE

ZU:/ = N(o) =N » oP(0)=N(p—q) = N(2p—1)
j=1 o==1

N N

S:S: >:NZ 0°P(c)=N(p+q) =N
1=14'=1 o==x1

Var(X) = N |1 —(2p —1)*] = N(4p — 4p*) = N4p(1 — p) = 4Npq

Root mean square deviationm A X, 4 = \/V&I‘(X

<X> x N and A X, s X N2 w lim AX /(X)) vanishes as N ~1/2

N — o0
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PROBABILITY DISTRIBUTION

N
Py(X) = ( N )PNRQNL (3)

N R/L are numbers of steps taken to right/left

N = Np + Ny ad X = Np — N

There are many independent ways to take /N steps to right

: peas e Nr ,NL
For each of these independent possibilities m probabilityis P~ ¢

N) N

How many possibilities are there? (

NR - NR'NL'
since N + X ZQNR/L 2
Py (X) = N (N+X)/2,(N-X)/2  (4)
AN eSS TR ST !
X | |
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STIRLING’S APPROXIMATION
Consider the limit N — 0o but with = X/N finite

N islarge m 1 may be considered continuous variable
Using Stirling's asymptotic expansionm In N! ~ NInN — N + O (InN)

Py(X)~NInN — N — %N(l +2)In BN(l + .@] + %N(l +a) — %N(l )

<l [INU— )] + IV =) + N+ ) np+ SN = a)Ing
:—N[(1;x>m<1;x) + (1;$)1n(1;x)] +N[(1‘2”'>

Terms proportional to N 1In /V have all cancelled leaving quantity linear in [N

In Py(X) = ﬁNf(x) + O(n N) (5)

o) = [(55)m(57) + (5 m ()] - (5 me+ (57 )md
H
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PROBABILITY DISTRIBUTION IN LARGE N LIMIT

Py (X) = Ce N/ (X/N)
Since [V is by assumption large w probability is dominated by minima of f (1)

€T 4 1
filx) =0 = ?:z:g = I =p—q
Invoking Taylor's theorem w f () % f(x) + %f”(:ﬁ) (x — i)z + ..
N2 2
Pn(X) = Cexp [—N (zpqx) ] = Cexp [— ();N;;) ] (6)

X =(X)=N@p—-q =Nz

C = (877]\[]961)_1/2 determined by normalization condition

Y Pn(X) & +OOdXC (X - X)° = C\/87N
> Pyix) oxp [ EE] ¢

X=—00 —©
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GAUSSIAN DISTRIBUTION

Comparison of exact distribution of (4) (red squares)

_I L | 11 | | | | III_ | | | | | | | | | | | | |
- N - | N=40 ]
0.3 ] . p=0.65
- 4 0.1
= 02 - -
\E |— -
D_| - -
i 10.05
0.1
O i III|III|III|III|III O |
6 -4 -2 0 2 4 6 —-40 -20 O 20 40
X X

with the Gaussian distribution of (6) (blue line)
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MICROSTATE

From quantum mechanics follows that w
states of system do not change continuously but are quantized

Huge number of discrete quantum states with corresponding energy values
being the main parameter characterizing these states

We formulate quantum statistics for systems of noninteracting particles
then results can be generalized

In absence of interactions m each particle has its own set of quantum states
and for identical particles these sets of states are identical

Particles can be distributed over their own quantum states
in a great number of different ways called realizations

Each realization of this distribution is a microstate of the system

Main assumption of statistical mechanics m all microstates occur with same probability
Luis Anchordoqui
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MACROSTATE

Information contained in microstates is excessive
only meaningful information is how many particles /N; are in energy level %

which specify a macrostate

Each macrostate K can be realized by a very large number W of microstates

4

thermodynamic probability

Probability of k-th macrostate is simply proportional to wy

w
pkzﬁk QE;wk (7)

True probability is normalized w 1 = Z Pk (8)
k

A microstate is specified by number of particles in each energy state
Degeneracy: In general m more than 1 energy state (quantum state) for energy level
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AVERAGE OCCUPATION NUMBER

Both Wy and Pk depend on whole set of IV

Pk = Pk (N1, Na, ...) (9)
For isolated system number of particles /N and energy U are conserved
Z N; =N (10)
£; w energy of particle in level
> Njgj=U (11)
J

Number of particles N ;j averaged over all macrostates &

_ Ngk)w N(k)w

N; =
J v number of particles in microstate J cor'r'espondlng to macrostate k

W
N( k) Zk k
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MAXIMUM PROBABILITY

For each macrostate thermodynamic probabilities differ by a large amount

Macrostates having small Pk practically never occur

and state of system is dominated by macrostates with largest Pk

Consideration of particular models shows that:

maximum of Pk is very sharp for large number of particles
whereas N;k) is a smooth function of k

. \ ] kmax kmax
In this case (6) becomes mw N ~ N]( ) Zpk — N]( ) (13)
k
kmax corresponds to maximum of Dk

For large /N m dominating true probability Pk

is found by maximization with respect to all Nj obeying two constraints above
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TWO-STATE PARTICLES

A tossed coin can land in two positions = head up or tail up

Considering coin as a particle w has two quantum states
N1 > head

No = N — N7 > tail
If N coins are tossed
this can be considered as a system of [V particles with 2 quantum states each

Microstates of system are specified by states occupied by each coin
As each coin has 2 states there are total

QO = 2V microstates (14)

Macrostates of this system are defined by numbers of particles in each state:

N1 and N2

Luis Anchordoqui

Friday, October 31, 14 13




POSSIBLE OUTCOMES OF COIN-TOSSING EXPERIMENT
N = 4 Thermo-
Macrostate Macrostate dynamic True
Label  Specification Microstate Probability  Probability
k N, N, Comnl Coin2 Coin3 Coin4 W, 4
- 1 4 0 H H H H 1 1/16
2 3 1 H H H T 4 4/16
H H T H
H T H H
T H H H
3 2 2 H H T T 6 6/16
T T H H
H T H T
T H T H
H T T H
T H H T
4 1 3 H T T T 4 4/16 5
T H T T
T T H T () = Z wr = 16
T T T H k—1
5 0 4 T T T T 1 1/16
__ 1
N1:1—6[(4><1)+(3><4)+(2><6)+(1><4)+(0><1)]:2
Ny =2 Ni+Ny=4=N
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THERMODYNAMIC PROBABILITY

We need a way of computing thermodynamic probability
without tabulating actual state of each coin

N'! N

This formula can be derived 3

Pick N1 particles to be in state 1 and all others will be in state 2
How many ways are there to do this?
N ways to pick first coin m leaving N — 1 ways for the second
N — 2 ways for the third ...

Total number of ways of picking /N1 heads is

_ _ _ _ __ N (16)
Nx(N-1) x(N—-2)x..x (N N1+1)_(N—N1)!
factorialmw N! = N x (N — 1) x ... x 2 x 1 0 =1 (17)

(16) isn't yet thermodynamical probability
because contains multiple counting of same microstates

order of coins is hot important m= divide by Nl! permutations
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MOST PROBABLE MACROSTATE

N

N 17)
(14) is satisfied () = g W = g — o (
! _ !
- o N1I(N — Ny)!

Thermodynamic probability 120 has a maximum at N7 = N/2

half of coins head and half of coins tail

To prove that Ny = N/2 is maximum of W
rewrite (15) in terms of new variable P = N1 — N/2

N!
(N/2 4+ p){(N/2 = p)!
W is symmetric around N = N/2 w p =10
Working out ratio 2
WN/24+1 (N/2)I(N/2)!  NJ2
wn/e  (N/2+ DIN/2-1)!  N/2 41

|
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STIRLING FORMULA

Analysis of expressions with large factorials is simplified by Stirling formula

N N
N! ~v21rN ( ) (18)

(13) becomes €

V2t N(N/e)N
~ VRN + p(N/2+ p) el 2n (N2 = p)[(N/2 = p) e V2

NN
\/_\/1 2 (N/2+ p)N/2+p(N/2 — p)N/2=p

_p
(%)
WN/2
\/1 _ Wp 1 4+ 2p)N/2+p(1 N)N/Q_p (19)
: oN (20)
W ~ —_
where N/2 N

is maximal value of the thermodynamic probability
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MAXIMUM VALUE OF THERMODYNAMIC PROBABILITY

(16) can be expanded for p K N

Since P enters both bases and exponents m careful must be taken
expand In w rather than w itself

Square root term in (16) discarded m gives negligible contribution O(p2 /Nz)

N 2 N 9
RN )

N
~ Inwpy e — (— —I—p)

2
2 2 2 2 2 2
e L ot
2 2
= lnwpnoo — % ' 2 (21)
2
W~ W /2 €XP <—%> (22)
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BINONIAL DISTRIBUTION FOR N TWO-STATE PARTICLES

W becomes very small if |p‘ = |N1 — N/2| > N
that is much smaller than N for large N

W is small in most of the interval 0 < N; < N
and is sharply peaked near N1 = N /2

w/WN/2 & |
e e
0.9t
HF N=4
¢ * 0_.55-:: * ¢
0 N=16
o (
° . ik . °
. N=1000

-1.0 -0.5 0.5 1.0

(N, =N /2)/(N/2)
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THERMODYNAMIC LIMIT

For N%OO@

most nearly random configuration (macrostate) is the one almost always occurs
N1 = No

“ordered regions" almost never occur

w is extremely small compared to W4

We are led to a very important conclusion:

total number of microstates is very nearly equal to maximum number

g
Q=) Wk~ Wnax (23)
k
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THERMODYNAMIC PROBABILITY AND ENTROPY

Main postulate of statistical mechanics
observed macrostate is realized by greatest number of microstates

We have seen in thermodynamics that
isolated system initially in a hon-equilibrium state
evolves to equilibrium state characterized by maximal entropy

Entropy.S and thermodynamic probability W should be related
one being a monotonic function of the other

Form of this function can be found q
noticing that entropy is additive while thermodynamic probability is multiplicative

If system consists of two subsystems that weakly interact with each other

S=51+59 whereas W = WiWw2

Boltzmann entropy m S = kp In w (24)

kg =1.38 x 10723 JK!
H
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MANY-STATE PARTICLES

Number of ways to distribute [V particles over 1@ boxes
so that there are particles in [V; box ith

Number of microstates in macrostate described by numbers [V;
N! N!
— n
NN N, T, N

This formula can be obtained by using (15) successively

Thermodynamic temperature W =

(25)

Number of ways to put [V particles in box 1
and other NV — NN, in other boxes is given by (15)

Number of ways to put [V, particles in box 2 is given by (15) with replacement
N —- N — Ny and N]_%NQ

(N—N1 )ZN'((N—Nl)! (N — Nyp)!

NQ N-Nl —Ng)! B NQ'Ng'

Iteration continues for box 3 until last box
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MANY-SATE PARTICLES (cont'd)

Resulting number of microstates is

4

B NI y (N —1)! ’ (N — Ny — No!
T NI(N =N Nol(N =Ny — No)! ~ N3!(N — Ny — Ny — N3)!

(Nn—2+Nn—1+Nn)' (Nn—1_|_Nn)' Nn'
X X
Ny _o!(Np_1 + Np)! N,,_1!N,,! N, 10! (26)

W

All numerators in (26) except for first one and all second terms in denominators
§

cancel each other

4

so that (25) follows
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STATIONARY SCHRODINGER EQUATION

In formalism of quantum mechanics
quantized states and their energies are solutions of eigenvalue problem

HYU = el (27)
U =V (I‘) w- complex function called wavefunction

W (r) ‘2 w probability for a particle to be found near space point I’

2 | = /dgfr\\IJ(r)F (283
]:I — ZP; + U(I‘) m Hamilton operator or Hamiltonian 9
m
classical momentum P is replaced by operator m P = —Zha

Number of measurements AN of total N measurements
dxdydz around T

in which particle is found in elementary volume d>r

dN = N |¥ (r)]*d’r (29)
H
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ONE-DIMENSIONAL RIGID BOX

Consider particle in a one-dimensional rigidbox 0 < z < L

. L d
momentum becomes m P = —th— (30)
dx
2 2
(27) takes form m h* d _
W) = () G1)
itt & U(z) + k°¥(z) =0 (32)
[ nas m - X L) =
rewritten a T3

Solution of this equation satisfying boundary conditions W (0) = W (L) = 0

U, (r) = Asin(k,x) k, = nfﬂ n=123,--- (33)

Eigenstates are labeled by index 70 and normalization (28) yields A = v/ 2/L
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ENERGY LEVELS OF A PARTICLE IN A BOX
~ hkZ  wh*n? (34)
- 2m 2ml>2
Energy € is quadratic in momentum p = hk — (as it should be)
de Broglie relation

Energy eigenvalues are mw <,

Energy levels are discrete because of quantization
For very large box m» [, — 00 and energy levels become quasicontinuous

Lowest-energy level with 7 = 1 ground state
For a three-dimensional box with sides L., L, L, = similar calculation yields
energy levels parametrized by three quantum numbers w Tl , Tlq, Tl

2
7.‘.2 h2 ,n2 ny n2

remne = 5 \ 12 T2 T I (39

ground statem N, =N, =N, = 1

We order states in increasing € and number them by index J
ground state being j = 1
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DEGENERACY

Th? (2 + n? + n?) = T4 h? 2
Ei = Em mom. = n n n
J xylby, 1tz 2mL2 xXr 2mL2 ,,7

(36)

Same value of € can be realized for different sets of (nx, Ty, nz)

humber of different sets having same ¢ jis called degeneracy ¢,

First three states of a three-dimensional infinite potential well

Level Energy Statc (ny.ny.n,) n, g
) = I Ground state (1.1.1) 3 ]
j=2 First excited state (1.1.2): (1.2.1): (2.1.1) 6 3
j=3 Second excited state (1.2.2); (2,1.2): (2.2.1) 9 3
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DENSITY OF QUANTUM STATES

For systems of a large size and very finely quantized states

we define density of states P(€)as number of energy levels dn.in interval de

dn. = p(e)de (37)
It is easily seen that
s 2m \ 3/2
dn. = ZV (thQ) Vede (38)
@ /
Vo /2m\3/2
ple) = (27)2 (hQ) Ve (39)
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