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BASIC ASSUMPTIONS OF THE MOLECULAR THEORY

19 . 3 ere
There are about 10 molecules in 1 cm” at normal conditions

Because of large number of particles
impacts of individual particles on walls merge into time-independent pressure

Characteristic distance between molecules largely exceeds molecular size
and typical radius of intermolecular forces

This assumption allows to consider gas as ideal
with internal energy dominated by kinetic energy of molecules

In describing equilibrium properties of ideal gas
collisions between molecules can be neglected

Molecules are uniformly distributed within container

Directions of velocities of molecules are also uniformly distributed
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CHARACTERISTIC LENGTHS OF GAS

Concentration of molecules 1 is defined by

total number of molecules

A
N (1)
n=—
%
\volume of container
Characteristic distance 70 between molecules can be estimated as
1
o — —
o (2)

Let @ be radius of molecule m assumption (2) requires a << 1

There are also long-range attractive forces between molecules
but they are weak and do not essentially deviate molecular trajectories

if temperature is high enough and gas is ideal
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MEAN FREE PATH
mean free path m typical distance [ travel by molecules before colliding
o
O
Diameter d Q
Considering other molecules as hon-moving m N - »"‘:\’_“;. Y
V) ° :“:
Area = md? o
o
molecule under consideration will hit (on average) other molecules
that are within cylinder of height [ and cross-section 0 = 7T(2a)2
Volume ol of this cylinder m volume per molecule 1/n
2
1 1 To
ZZ—NT: — | o > 19 > a (3)
on a=mn a
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VELOCITY DISTRIBUTION FUNCTIONS

Distribution of molecules in space is practically uniform,
Distribution in space of velocities (Um, Uy, Uz) is nontrivial
Introduce the distribution function G (v, Vy, V) via
dN = NG(vg,vy,v,)dv, dv, dv, (4)

humber of molecules with velocities within elementary volume 7
dv, dv, dv, = d>v = dv (5)
around velocity vector specified by its components ™ (?Jx, Uy, UZ)

Integration over the whole velocity space gives total number of molecules [N

G fux,vy,vz m satisfies normalization condmon@

—+00 —+00 —+00
1 = / / / dv, dvy, dv, G(vg,vy,v,)  (6)
H
5
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DISTRIBUTION FUNCTION OF MOLECULAR SPEEDS

Since directions of molecular velocities are distributed uniformly
G (vy,vy,v,) depends only on absolute value of the velocity m the speed

U:\/vg—l—vg—kvg (7)

Using expression for elementary volume in spherical coordinates
d°v = dv x vdf x v sin Ody = v* dv sin 0dfdy (8)

(4) becomes = AN = N G (v)v* dvdQ g (9)

d€) = sin 0dOdy (10)
Using area of a sphere of unit radius
™ 27 1
/ dQ:/ d@sin@/ dg0:27T/ dr = 4m (11)
sphere 0 0 —1 @
(x = cos 0)

number of molecules within spherical shell becomes

dN = NG(v)4mvidv = N f(v)dv (12)

distribution function over molecular speeds w f (V) = 47T712G(U) (13)
normalization = 1 = /0 dv f(v) (14)
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AVERAGE, MEAN SQUARE AND RMS SPEEDS
(9) can be rewritten in terms of f(?}) as
df)
dN = N f(v)dv — (15)
A7
average speed
v = / dvv f(v) (16)
0
mean square speed
V2 — / dv v? f(v) (17)
0
root mean square or rms speed
Urms — U—Z (18)
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MOLECULAR FLUX

Molecular flux @ is defined as number of molecules d /N
crossing a unit surface in one direction during a unit of time

Molecular flux determines rate of molecules striking wall
or exiting container through a small orifice in wall (effusion)

dN

- 19
dSdt 42

The expression for flux reads mw O

Molecules are approaching surface d.S from all directions 6, o of a hemisphere

Consider number of molecules dNg, coming from a particular direction 6,
within solid angle {2 around it

Single out molecules with speeds in interval dv around v dNy 6,0
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MOLECULAR FLUX 11

de,@,cp is number of molecules within slant cylinder
with base area dS and height v cos Odt

<

das |

X

Cylinder volume m dV = dSwv cos 0dt

total number of moleculesinit wm dNy = ndV

From this total number of molecules d/Ny/
pick up those within given velocity interval specified by v, 6,
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MOLECULAR FLUXIII

With help of (15) with N = dNy,

ds) in 6dod
dNy 9., = dNy f(v)dv— = ndSv cos Hdtf(v)dvsm 7

47 T

dNU,e, 0o 1 /2 . 27
d — / det“’ — n/O dm;f(v)ﬂ /0 df sin 6 cos 9/0 dy (21)

(20)

Integrating over v, 0, ( using (19) and (16)

1
(I) — Zm_) (22)

Upper limit /2 in (21) corresponds to hemisphere
in contrast to 7 for whole sphere
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GAS PRESURE ON THE WALLS

Gas pressure is due to impact of molecules on walls w P = dF'/dS

dF' w force acting upon surface 45 from molecules

From Newton's second law w dp/dt = F

P v momentum of molecules that changes in time due to rebound from wall

d
Adopting this to our case yields w P = 4P
dSdt (23)
dp w change of momentum of molecules within slant cylinder
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GAS PRESURE ON THE WALLS 11

Change of momentum of single molecule in collision with wall is not well defined

atomic level walls are rough w incident molecule can rebound in different directions

Since Pdoesn't depend on orientation of elementary surfaces

dismiss effect of wall roughness
Inelasticity of molecule-wall collision further complicates model building

due to energy exchange between molecules and atoms of the wall

If walls and gas have same temperatures and hence are at equilibrium

molecule-wall collisions average out to the elastic collision

Throughout we consider collisions of molecules with wall

as elastic collisions with a flat surface
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GAS PRESURE ON THE WALLS II1

Change of momentum of individual molecule in elastic collision

muv cos  — (—mu cos 0) = 2mwv cos 6

Substituting §

dN, 00 1 /2 27
P = / 2mo cos 6 0% — onm / dvv? f(v) — / df sin 0 cos® 0 / dp
0 0 0

dSdt 41
_ 1 1
= 2nm X v? X — / dex? x 27 (24)
47T 0
1 _
It follows that w P = gnm?ﬂ (25)
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MOLECULAR INTERPRETATION OF TEMPERATURE

Rewriting (25) as PV = (1/3) Nmw?
and comparing this with equation of state m PV = NEkgT

kT = 1mv_Q (26)
3

fundamental relation between temperature & average kinetic energy of molecule €

This relation can be rewritten in the form

1 - 3
E = §mv2 = §]€BT (27)

Since v? = v?; + v?, + v?, and by symmetry v?, = v?, = v?, = v?/3

for kinetic energies corresponding to three degrees of freedom 1, Y, =

~ ~ ~ 1
Ex = &y = &, = §kBT (28)

Thermal energy per degree of freedom m (1/2)kgT
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ENERGY EQUIPARTITION

This is a particular case of the equipartition of energy valid for classical systems:
There is thermal energy (1/2)kgT" per each degree of freedom

If molecules of gas consist of more than one atom
in addition to three translational degrees of freedom

there are rotational and vibrational degrees of freedom

Vibrational degrees of freedom are counted twice
since there are both kinetic and potential energies involved

For diatomic molecules there are two rotational degrees of freedom

corresponding to rotations around axes perpendicular to axis connecting molecules
and one vibrational degree of freedom that is counted twice

Total number of degrees of freedom for diatomic molecules

2
f=3+4242=7 &2
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ENERGY EQUIPARTITION II

For multi-atomic molecules with N > 2 atoms that are not aligned
there are 3 translational and 3 rotational degrees of freedom

Number of vibrational degrees of freedom can be calculated

by subtracting 3 + 3 non-vibrational degrees of freedom
from the total 3\ degrees of freedom

That is = 3\ — 6 vibrational degrees of freedom that should be counted twice

Total number of degrees of freedom for multi-atomic molecules
f=3+3+20BN —-6)=06WN-1) (30)

for NN =3 w f =12
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HEAT CAPACITY OF THE IDEAL GAS

For monoatomic gas average energy per particle is given by (27)

Since there is no potential energy U = gNkBT (31)

Heat capacity at constant volume mw ('}, = (g—g) == gNkB (32)
D

Using of Mayer's formulam Cp = Cy + Nkp = = 2 Nkg (33)

that yieldsm v = Cp/Cy = 5/3

For multi-atomic molecules assuming equipartition m [J = (f/2)NkpT

2 2
CvngkB Cp = f—2|_ Nkp ’y:l—|—? (34)
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WHEN IDEAL IS NOT PERFECT

We have taken heat capacity as constant so that ideal gas is perfect gas

Vibrational degrees of freedom for multi-atomic gases
are affected by quantum effects at low temperatures

As a result m these degrees of freedom are fully or partially frozen out

so that there is less thermal energy in them than equipartition would suggest

At high temperatures the vibrational modes behave classically

As a result m heat capacities increase with temperature
making the ideal gas not a perfect gas
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MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION

Motion of molecules of an ideal gas along different axes x, y, z
is completely independent

Statistical independence of different velocity components G(v) factorizes

G(v) — G(\/vg + fug +v§) — g(vx)g(vy)g(vz) (35)

1 :/ dvy g(vs) (36)

— 00

Each velocity component has its own distribution function g

Number of molecules within shell AUz around vy,
is obtained by integrating (4) over irrelevant Uy, U,

AN = N{// dv,, dv, G(v)} dv,, (37)

With help of (35) and (36) this becomes m dN = N g(v,) dv, (38)
that is m §(V, )is distribution function of Uy
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MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION 11

Factorization of (5 and its spherical symmetry implemented in (35)
already allows to find its functional form

Take logarithm of (35)

InG(v) = Ing(v,) + Ing(vy) + Ing(v,) (39)

and differentiate with respect to v,

G'(v) Ov _ G'(v) vy g (vg) (40)
G Ovg G v g(vg)

Rearranging and adding similar results for other components one obtains

1G'(w) 1 4g(w) 14wy 1g(v)
v G vy gluy) vy gluy) v g(vs) 4D
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MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION III

Different terms of (41) depend on different independent arguments

only possibility to satisfy equations is all terms being equal to same constant

v G Uy g(va:)
Integrating m (G(v) = Ae— kv (43)
§

infegration constant

G(v) factorizes and so m g(vg) = Al/3 e—k’vi (44)

k and A can be found from:
normalization condition (14) and condition for mean square speed (17)

taking into account (26)
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MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION 1V

f(v) is related to G(v) by (13)
f(v) = 4mv? Ae= v’ (45)
Using Gaussian integrals

/OO dr 2 e=*e = ﬁk_?’/Q /OO dp vt e k2" — 3\8/7?/@_5/2 (46)
4
0 0

obtained by successive differentiation of generic integral

/ dr e F = ﬁk_l/z (47)
0 2 .
with respect to k

Normalization condition (14) works out as

1 = / dv f(v) = 47TA/ dvv?e ™ = 732 Ak3/2  (48)
0 0
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MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION 1V

Condition for mean square speed becomes

3kgT - 3r3/2

== / dvv® f(v) = 47TA/ dvvte ™ = Ak™%? (49)
m 0 0 2
From (48) and (49)
m kN 3/2 m 3/2
e A= (" ()
QkBT v QW]CBT (50)

Let us now write down final results for distribution functions:

(45) becomes

flv) = (%Z;T)m dmv* exp ( N k;T) ° = mzv2 (51
and (44) becomes
m 1/2 Er mu?
9(vz) = (27rkBT) eXp(_ kBT) o=y 2
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CHARACTERISTIC SPEEDS OF GAS MOLECULES

rms speed can be immediately obtained from (49)

= T T
Urms = V0% = \/SkB ~ 1.732\/]{i
m m

(53)
To calculate average speed m use of Gaussian integral
o0 I
2n—+1 —kx? L . .
/0 dr x € = Spnii n=0,1,2,... (54)

with n = 1
Form (16) it follows that

. kv 1 . 2w 1k 3/2 . 2 . 8kBT kBT
v / dvov f (v 47TA/ dvvde” = 47“42]{:2 = 12 (77) v 1/ m— 1.596 4 / - (55)
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CHARACTERISTIC SPEEDS OF GAS MOLECULES

Third characteristic speed is most probable speed vy,
corresponding to maximum of f(v)

From

d
0 = ﬁUZG_kUQ — e kT _ 2Lk (56)
v

it follows that

1 [2kpT [ksT

smallest of three characteristic speeds
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EFFUSION

If there is a small hole in the wall of the container
molecules will escape through this hole m process called effusion

If hole is small enough it does not disturb gas in the container close to hole
and result for molecular flux given by (22) remains valid

Number of molecules leaving container per second is given by & AS

area of the hole
Speed distribution of escaping molecules is not Maxwell-Boltzmann distribution

Characteristic speeds of effusing molecules
are higher than speeds of molecules in the container

Faster molecules are approaching hole from inside container
and exit at a higher rate than slow molecules
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EFFUSION (cont’d)

Speed distribution of effusing molecules v
O = / dv ®, (58)
0 4
1
O,= —nv f(v) (59)
g 4

defines speed distribution of effusing molecules

Because of additional v m this distribution is shifted to higher speeds
Most probable speed of effusing molecules corresponds to maximum of @,
d 3 —kv?

0 = d—v e — 302 e R _ 3 2kpe kY’ (60)
v

., B 3_ [3kgT 61
emo o2oh m (61)

It follows that m Ve 1y > Uy, given by (57)

similarly w Ve rms > Urms and Ve > U
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