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BASIC ASSUMPTIONS OF THE MOLECULAR THEORY

Because of large number of particles

Characteristic distance between molecules largely exceeds molecular size

This assumption allows to consider gas as ideal

1019 1 cm3

In describing equilibrium properties of ideal gas

There are about         molecules in            at normal conditions

impacts of individual particles on walls merge into time-independent pressure

and typical radius of intermolecular forces

with internal energy dominated by kinetic energy of molecules

collisions between molecules can be neglected

Molecules are uniformly distributed within container

Directions of velocities of molecules are also uniformly distributed

2Saturday, October 11, 14



C. B.-Champagne 2

Overview

Luis Anchordoqui

CHARACTERISTIC LENGTHS OF GAS
Concentration of molecules     is defined byn

n ⌘ N

V

r0 =
1

n
1
3

Characteristic distance       between molecules can be estimated as

volume of container

total number of molecules

There are also long-range attractive forces between molecules

Let     be radius of molecule ☛  assumption (2) requires

r0

a a ⌧ r0

(1)

(2)

but they are weak and do not essentially deviate molecular trajectories
if temperature is high enough and gas is ideal
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MEAN FREE PATH

 molecule under consideration will hit (on average)  other molecules

 mean free path ☛  typical distance   travel by molecules before colliding l

� = ⇡(2a)2l

Volume        of this cylinder ☛  volume per molecule �l 1/n

l =
1

�n
⇠ 1

a2n
=

✓
r0
a

◆2

r0 � r0 � a (3)

Considering other molecules as non-moving ☛

that are within cylinder of height     and cross-section 
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VELOCITY DISTRIBUTION FUNCTIONS 

Distribution of molecules in space is practically uniform,

Introduce the distribution function                             via

(v
x

, v
y

, v
z

)

G (v
x

, v
y

, v
z

)

         number of molecules with velocities within elementary volume

(4)dN = NG(v
x

, v
y

, v
z

) dv
x

dv
y

dv
z

dv
x

dv
y

dv
z

⌘ d3v ⌘ dv (5)

around velocity vector specified by its components

Integration over the whole velocity space gives total number of molecules      

(v
x

, v
y

, v
z

)

                              ☛    satisfies normalization conditionG (v
x

, v
y

, v
z

)

N

(6)

Distribution in space of velocities                        is nontrivial

☟
☟

☛

1 =

Z +1

�1

Z +1

�1

Z +1

�1
dv

x

dv
y

dv
z

G(v
x

, v
y

, v
z

)

☟
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(7)

DISTRIBUTION FUNCTION OF MOLECULAR SPEEDS
Since directions of molecular velocities are distributed uniformly                          
G (vz, vy, vz)                              depends only on absolute value of the velocity ☛ the speed

v =
q

v2z + v2y + v2z

Using expression for elementary volume in spherical coordinates
d3v = dv ⇥ vd✓ ⇥ v sin ✓d' = v2 dv sin ✓d✓d' (8)

(4) becomes  ☛ dN = N G (v)v2 dvd⌦

d⌦ ⌘ sin ✓d✓d' (10)
(9)☟

Using area of a sphere of unit radius
Z

sphere
d⌦ =

Z ⇡

0
d✓ sin ✓

Z 2⇡

0
d' = 2⇡

Z 1

�1
dx = 4⇡

  number of molecules within spherical shell becomes
dN = NG(v) 4⇡v2dv = N f(v)dv

(11)

(12)

f(v) = 4⇡v2G(v)

normalization ☛ 1 =

Z 1

0
dv f(v)

distribution function over molecular speeds ☛

(x ⌘ cos ✓)

☟

(13)

(14)
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AVERAGE, MEAN SQUARE AND RMS SPEEDS
 (9) can be rewritten in terms of          asf(v)

 average speed

 mean square speed

root mean square or rms speed

(15) 

(16) 

(17) 

(18) vrms =
p

v̄2

v̄2 =

Z 1

0
dv v2 f(v)

v̄ =

Z 1

0
dv v f(v)

dN = N f(v)dv
d⌦

4⇡
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MOLECULAR FLUX

Molecular flux determines rate of molecules striking wall 

� dNMolecular flux      is defined as number of molecules       

The expression for flux reads ☛ � =
dN

dSdt
(19)

Consider number of molecules               coming from a particular direction          

dS ✓,'

✓,'dN✓,'

dNv,✓,'

d⌦

Single out molecules with speeds in interval       around     ☛dv v

or exiting container through a small orifice in wall (effusion)

crossing a unit surface in one direction during a unit of time

Molecules are approaching surface       from all directions          of a hemisphere

within solid angle        around it
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MOLECULAR FLUX II

v cos ✓dt

3

θ

!dt

dS

!dtcosθ

•

x

z

y

FIG. 1: Slant cylinder used in the calculation of the molecular flux

Now Eq. (9) can be rewritten in terms of f(v) as

dN = Nf(v)dv
dΩ

4π
. (15)

It is remarcable that the functional form of G(v) or f(v) can be found from symmetry arguments only. This will
be done later. Here we introduce the average speed

v =

ˆ ∞

0
dv vf(v) (16)

and the mean square speed

v2 =

ˆ ∞

0
dv v2f(v). (17)

The root mean square or rms speed is defined by

vrms =
√
v2. (18)

The two characteristic speeds, v and vrms, are of the same order of magnitude and differ only by a numerical factor of
order 1. We will see that the molecular flux is proportional to v while the pressure on the walls is proportional to v2.

V. MOLECULAR FLUX

Molecular flux Φ is defined as the number of molecules dN crossing a unit surface in one direction during a unit of
time. For instance, molecular flux determines the rate of molecules striking the wall or exiting the container through
a small orifice in the wall (effusion). The expression for the flux reads

Φ =
dN

dSdt
, (19)

where dS is the elementary surface. As the molecules are approaching the surface dS from all directions θ,ϕ of a
hemisphere, one should first consider the number of molecules dNθ,ϕ coming from a particular direction θ,ϕ within
the body angle dΩ around it. From these molecules we single out molecules with the speeds in the interval dv around
v, thus obtaining dNv,θ,ϕ. The latter is the number of molecules within the slant cylinder with the base area dS and
height v cos θdt, see Fig. 1. The volume of this cylinder is dV = dSv cos θdt and the total number of molecules in it
is dNV = ndV, where the concentration n is defined by Eq. (1). From this total number of molecules dNV one has to
pick those within the given velocity interval specified by v, θ,ϕ. With the help of Eq. (15) with N ⇒ dNV this yields

dNv,θ,ϕ = dNV f(v)dv
dΩ

4π
= ndSv cos θdtf(v)dv

sin θdθdϕ

4π
. (20)

☛

dS

Cylinder volume  ☛ dV = dSv cos ✓dt

total number of molecules in it dNV = ndV

velocity interval specified by

and height

dNV

v, ✓,'
From this total number of molecules            

pick up those within given 

dNv,✓,'

with base area  
 is number of molecules within slant cylinder      
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MOLECULAR FLUX III

Upper limit         in (21) corresponds to hemisphere
⇡

⇡/2

Integrating over               using (19) and (16) v, ✓,'

(21)

(22) � =
1

4
nv̄

� =

Z
dNv,✓,'

dSdt
= n

Z 1

0
dv v f(v)

1

4⇡

Z ⇡/2

0
d✓ sin ✓ cos ✓

Z 2⇡

0
d'

in contrast to    for whole sphere

dNv,✓,' = dNV f(v)dv
d⌦

4⇡
= ndSv cos ✓dtf(v)dv

sin ✓d✓d'

4⇡
(20)

With help of (15) with                      N ) dNV
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GAS PRESURE ON THE WALLS

From Newton’s second law  ☛                   

Gas pressure is due to impact of molecules on walls ☛

p

dSdF

P = dF/dS

         ☛ force acting upon surface        from molecules

dp/dt = F

P =
dp

dSdt (23) 

       ☛ change of momentum of molecules within  slant cylinderdp

Adopting this to our case yields ☛

☛ momentum of molecules that changes in time due to rebound from wall
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 molecule-wall collisions average out to the elastic collision

Change of  momentum of single molecule in collision with  wall is not well defined

atomic level walls are rough ☛ incident molecule can rebound in different directions

Since    doesn’t depend on orientation of elementary surfaces 

Inelasticity of molecule-wall collision further complicates model building

Throughout we consider collisions of molecules with wall 

dismiss effect of wall roughness

due to energy exchange between molecules and atoms of the wall

If walls and gas have same temperatures and hence are at equilibrium

as elastic collisions with a flat surface

P

☟

GAS PRESURE ON THE WALLS II
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Change of momentum of individual molecule in elastic collision 

mv cos ✓ � (�mv cos ✓) = 2mv cos ✓

It follows that ☛

(24)

(25)P =
1

3
nmv̄2

= 2nm ⇥ v̄

2 ⇥ 1

4⇡

Z 1

0
dx x

2 ⇥ 2⇡

P =

Z
2mv cos ✓

dNv,✓,'

dSdt
= 2nm

Z 1

0
dv v2 f(v)

1

4⇡

Z ⇡/2

0
d✓ sin ✓ cos

2 ✓

Z 2⇡

0
d'

☟

Substituting ☟

GAS PRESURE ON THE WALLS III
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MOLECULAR INTERPRETATION OF TEMPERATURE

Rewriting (25) as                                   

(26)

(27)

PV = (1/3)Nmv̄2

PV = NkBT

kBT =
1

3
mv̄2

fundamental relation between temperature & average kinetic energy of molecule 

This relation can be rewritten in the form

"̄

"̄ =
1

2
mv̄2 =

3

2
kBT

Since                                             and by symmetry                                           ,      

for kinetic energies corresponding to three degrees of freedom           

Thermal energy per degree of freedom  ☛ (1/2)kBT

(28)
"̄
x

= "̄
y

= "̄
z

=
1

2
k
B

T

v̄2 = v̄2
x

+ v̄2
y

+ v̄2
z

v̄2
x

= v̄2
y

= v̄2
z

= v̄2/3

x, y, z

and comparing this with equation of state ☛
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For diatomic molecules there are two rotational degrees of freedom             

for diatomic molecules

f = 3 + 2 + 2 = 7
(29)

(1/2)kBT

Total number of degrees of freedom 

and one vibrational degree of freedom that is counted twice

This is a particular case of the equipartition of energy valid for classical systems: 

There is thermal energy                      per each degree of freedom

 If molecules of gas consist of more than one atom                  

Vibrational degrees of freedom are counted twice

ENERGY EQUIPARTITION

there are rotational and vibrational degrees of freedom
in addition to three translational degrees of freedom

since there are both kinetic and potential energies involved

corresponding to rotations around axes perpendicular to axis connecting  molecules
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(30)

That is ☛                 vibrational degrees of freedom that should be counted twice

For multi-atomic molecules with               atoms that are not aligned

Number of vibrational degrees of freedom can be calculated

 by subtracting 3 + 3 non-vibrational degrees of freedom

Total number of degrees of freedom for multi-atomic molecules 

for f = 12N = 3

f = 3 + 3 + 2 (3N � 6) = 6(N � 1)

N > 2

3N

3N � 6

there are 3 translational and 3 rotational degrees of freedom

ENERGY EQUIPARTITION II

from the total         degrees of freedom

☛
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HEAT CAPACITY OF THE IDEAL GAS
For monoatomic gas average energy per particle is given by (27)

Since there is no potential energy ☛    (31)

CV =
⇣@U
@T

⌘

V
=

3

2
NkB  (32) Heat capacity at constant volume ☛

Using of Mayer’s formula ☛

 (34)

 (33)

that yields ☛

For multi-atomic molecules assuming equipartition  ☛ U = (f/2)NkBT

� = CP /CV = 5/3

CP = CV + NkB = =
5

2
NkB

CV =
f

2
NkB CP =

f + 2

2
NkB � = 1 +

2

f

U =
3

2
NkBT
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As a result ☛ heat capacities increase with temperature

We have taken heat capacity as constant so that ideal gas is perfect gas 

Vibrational degrees of freedom for multi-atomic gases

As a result ☛ these degrees of freedom are fully or partially frozen out                    

so that there is less thermal energy in them than equipartition would suggest

 At high temperatures the vibrational modes behave classically

WHEN IDEAL IS NOT PERFECT  

are affected by quantum effects at low temperatures

making the ideal gas not a perfect gas
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MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION

Statistical independence of different velocity components ☛             factorizesG(v)

G(v) = G
⇣q

v2
x

+ v2
y

+ v2
z

⌘
= g(v

x

) g(v
y

) g(v
z

)

1 =

Z 1

�1
dv

x

g(v
x

)

Number of molecules within shell         around       
Each velocity component has its own distribution function

dv
x

v
x

vy, vz

g

dN = N
h Z Z 1

�1
dv

y

dv
z

G(v)
i
dv

x

 (35)

 (36)

 (37)

With help of (35) and (36) this becomes ☛  (38)

that is ☛            is distribution function of v
x

g(v
x

)
dN = N g(v

x

) dv
x

Motion of molecules of an ideal gas along different axes x, y, z
is completely independent

is obtained by integrating (4) over irrelevant           
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 (39)

 (40)

 (41)

Factorization of     and its spherical symmetry implemented in (35) G

Take logarithm of  (35) 

and differentiate with respect to       v
x

lnG(v) = ln g(v
x

) + ln g(v
y

) + ln g(v
z

)

G0(v)

G

@v

@v
x

=
G0(v)

G

v
x

v
=

g0(v
x

g(v
x

)

Rearranging and adding similar results for other components one obtains

1

v

G0(v)

G
=

1

v
x

g0(v
x

)

g(v
x

)
=

1

v
y

g0(v
y

)

g(v
y

)
=

1

v
z

g0(v
z

)

g(v
z

)

MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION II

already allows to find its functional form

)
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Different terms of  (41) depend on different independent arguments 

 (42)

 (43)

 (44)

Integrating ☛

          factorizes  and so ☛

integration constant

1

v

G0(v)

G
= �2k

1

v
x

g0(v
x

)

g(v
x

)
= �2k

G(v) = Ae�kv2

g(v
x

) = A1/3 e�kv

2
zG(v)

MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION III

only possibility to satisfy equations is all terms being equal to same constant

☟

    and       can be found from: 

taking into account (26) 
normalization condition (14) and condition for mean square speed (17) 

k A
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          is related to             by (13)

(45)

G(v)f(v)

f(v) = 4⇡v2 Ae�kv2

(46)

(47)

(48)

Using Gaussian integrals

obtained by successive differentiation of generic integral

Normalization condition (14) works out as

with respect to k

Z 1

0
dx x

2
e

�kx

2

=

p
⇡

4
k

�3/2

Z 1

0
dx x

4
e

�kx

2

=
3
p
⇡

8
k

�5/2

Z 1

0
dx e

�kx

2

=

p
⇡

2
k

�1/2

1 =

Z 1

0
dv f(v) = 4⇡A

Z 1

0
dv v2 e�kv2

= ⇡3/2 Ak�3/2

MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION IV
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(49)

(50)

(51)

(52)

 Condition for mean square speed becomes

From (48) and (49)

Let us now write down final results for distribution functions:  

and (44) becomes

3kBT

m
= v̄2 =

Z 1

0
dv v2 f(v) = 4⇡A

Z 1

0
dv v4 e�kv2

=
3⇡3/2

2
Ak�5/2

k =
m

2kBT
A =

⇣k
⇡

⌘3/2
=

⇣ m

2⇡kBT

⌘3/2

f(v) =

⇣ m

2⇡kBT

⌘3/2
4⇡v2 exp

⇣
� "

kBT

⌘
" =

mv2

2

g(v
x

) =

⇣ m

2⇡k
B

T

⌘1/2
exp

⇣
� "

x

k
B

T

⌘
"
x

=

mv2
x

2

MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION IV

(45) becomes
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CHARACTERISTIC SPEEDS OF GAS MOLECULES

(53)

(54)

(55)

rms speed can be immediately obtained from (49) 

To calculate average speed ☛ use of Gaussian integral

with

Form (16) it follows that

n = 1

vrms =
p

v̄2 =

r
3kBT

m
' 1.732

r
kBT

m

Z 1

0
dx x

2n+1
e

�kx

2

=
n!

2kn+1
n = 0, 1, 2, ...

v̄ =

Z 1

0
dv v f (v) = 4⇡A

Z 1

0
dv v3 e�kv2

= 4⇡A
1

2k2
=

2⇡

k2

⇣k
⇡

⌘3/2
=

2p
⇡k

=

r
8kBT

⇡m
' 1.596

r
kBT

m
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CHARACTERISTIC SPEEDS OF GAS MOLECULES

(56)

(57)

Third characteristic speed is most probable speed       

 From

vm
f(v)

it follows that

smallest of three characteristic speeds

0 =
d

dv2
v2e�kv2

= e�kv2

� v2ke�kv2

vm =
1p
k

=

r
2kBT

m
' 1.414

r
kBT

m

corresponding to maximum of 
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If there is a small hole in the wall of the container

If hole is small enough  it does not disturb gas in the container close to hole

Number of molecules leaving container per second is given by                 ��S

Speed distribution of escaping molecules is not Maxwell-Boltzmann distribution

Characteristic speeds of effusing molecules

Faster molecules are approaching hole from inside container

EFFUSION 

molecules will escape through this hole ☛ process called effusion

 and result for molecular flux given by (22) remains valid

area of the hole

are higher than speeds of molecules in the container

and exit at a higher rate than slow molecules
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EFFUSION (cont’d)

(58)

(59)

(60)

(61)

Speed distribution of effusing molecules v

� =

Z 1

0
dv�v

� =
1

4
nv f(v)

Most probable speed of effusing molecules corresponds to maximum of          

        defines speed distribution of effusing molecules 

Because of additional     ☛  this distribution is shifted to higher speedsv

�v

�v

                        given by (57)

0 =
d

dv
v3 e�kv2

= 3v2 e�kv2

� v3 2kve�kv2

It follows that ☛

ve,m =

r
3

2k
=

r
3kBT

m
ve,m > vm

ve,rms > vrms v̄e > v̄similarly ☛                               and

☟

☟
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